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Abstract

Modern industrial production systems benefit from the classification and processing of

objects and their attributes. In general, the object classification procedure can coincide

with vagueness. Vagueness is a common problem in object analysis that exists at various

stages of classification, including ambiguity in input data, overlapping boundaries between

classes or regions, and uncertainty in defining or extracting the properties and relationships

of objects. To manage the ambiguity mentioned in the classification of objects, using a

framework for L-fuzzy relations, and displaying such uncertainties by it can be a solution.

Obtaining the least unreliable and uncertain output associated with the original data is the

main concern of this thesis.

Therefore, my general approach to this research can be categorized as follows:

We developed a L-Fuzzy Concept Analysis as a generalization of a regular Concept

Analysis. We start our work by providing the input data. Data is stored in a table (database).

The next step is the creation of the contexts and concepts from the given original data using

some structures. In the next stage, rules or patterns (Attribute Implications) from the data

will be generated. This includes all rules and a minimal base of rules. All of them are using

L-fuzziness due to uncertainty. This requires L-fuzzy relations that will be implemented

as L-valued matrices. In the end, everything is nicely packed in a convenient application

and implemented by Java programming language. Generally, our approach is done in an

algebraic framework that covers both regular and L-Fuzzy FCA, simultaneously.

The tables we started with are already L-valued (not crisp) in our implementation. In other

words, we work with the L-Fuzzy data directly. This is the idea here. We start with vague

data.

In simple terms, the data is shown using L-valued tables (vague data) trying to relate objects

with their attributes at the start of the implementation. Generating attribute implications

from many-valued contexts by a relational theory is the purpose of this thesis, i.e, a range

of degrees is used to indicate the relationship between objects and their properties. The



smallest degree corresponds to the classical no and the greatest degree corresponds to the

classical yes in the table.
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Chapter 1

Introduction

Nowadays data-sets are available in very complex and heterogeneous ways. Mining of
such data collections is essential to support many real-world applications ranging from
healthcare to marketing [18]. Data mining is the process of extracting desirable knowl-
edge or interesting patterns from existing databases for specific purposes. Many types of
knowledge and technology have been proposed for data mining [38]. Among them, finding
association rules or attribute implications is the most commonly seen.

Formulas of the form A ⇒ B where A and B are collections of attributes have been
studied for a long time in computer science and mathematics. In Formal Concept Analysis
(FCA), formulas A ⇒ B are called attribute implications. Attribute implications are inter-
preted in formal contexts, i.e. in data tables with binary attributes, and have the following
meaning: Each object having all attributes from A has also all attributes from B (see e.g.
[14, 34, 37]). In databases, formulas A ⇒ B are called functional dependencies. Func-
tional dependencies are interpreted in relations on relation schemes, i.e. in data tables with
arbitrarily-valued attributes and have the following meaning: Any two objects which have
the same values of attributes from A, have also the same values of attributes from B, see
e.g. [5, 14, 47].

Generally, attribute implications are formulas of the form A ⇒ B, where A and B are
collections of attributes, which describe dependencies between attributes [14].
As an example, assume a data set of requirements for eligible drivers and attribute implica-
tion of {Driver} → {Driver′s Licence, Car Insurance, Car}. This association rule indicates
that to be able to drive, you have to have driver’s licence, car insurance, and a car.

Formal Concept Analysis (FCA) was introduced in the early 1980s by Rudolf Wille as
a mathematical theory [34, 39, 57]. Formal Concept Analysis is concerned with the formal-
isation of concepts and conceptual thinking and has been applied in many disciplines such
as software engineering, machine learning, knowledge discovery, and ontology construc-
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CHAPTER 1. INTRODUCTION 2

tion during the last 20-25 years. Informally, FCA studies how objects can be hierarchically
grouped together with their common attributes [39]. Formal Concept Analysis (FCA) is
a conceptual framework for structuring, analyzing, mining, and visualizing scientific data.
From a formal context, which primarily describes binary relation between objects and at-
tributes, FCA produces two outputs: first is the hierarchically ordered collection of clusters
called formal concepts, and the second is the non-redundant basis of attribute dependencies
called attribute implications. The goal of FCA is to discover the formal concepts – data de-
pendencies in the form of attribute implications – and visualize them by a concept lattice
[44].
To interpret a formal context using a table, rows and columns correspond to objects and
attributes, respectively. The entries in the table can be 0 or 1, meaning whether an object
has a specific property or not.
It might not always be obvious whether an object has a certain attribute or not. In this case,
we have to use another concept known as fuzzy set. With more detail, in classical set the-
ory, the membership of elements in a set is assessed in binary terms according to a bivalent
condition — an element either belongs or does not belong to the set, i.e., the membership
function of elements in the set is one or zero. By contrast, fuzzy set theory permits the
gradual assessment of the membership of elements in a set. The membership function is
valued in the real unit interval of [0, 1] [12].
The basic structure of FCA is the formal context which is a binary relation between a set
of objects and a set of attribute. The formal context is based on the ordinary set, which
elements have on the two values, 0 or 1 (Fig. 1.1) [68].

Figure 1.1: Ordinary set and fuzzy set.

Besides the ordinary set, fuzzy set theory permits uncertainty information that is directly
represented by membership value in the range of [0, 1] (Fig. 1.1). The membership value
which is taken through membership function indicates the grade of membership of set ele-
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ments. If an element is mapped to the value 0, the element is not included in the fuzzy set,
and 1 describes a fully included element [27, 68].
The truth degree by which an object has an attribute is usually taken from an appropriate
lattice L. In other words, this truth degree is the same as mentioned assessment of the
membership for elements in a fuzzy set theory. A typical choice for L is the real unit in-
terval [0,1] or some subset of thereof [12]. It means that L can take any value. So, the unit
interval [0,1] and the Boolean values are two special cases of such a lattice L.

Conceptual scaling is a way provided by FCA to manage a many-valued context, i.e., a
context with L different from [0, 1], and transform it into a one-valued context. One-valued
context is known as a Boolean context. In summary, conceptual scaling transforms any ta-
ble using L values to a Boolean context. This transformation is based on certain rules.
More precisely, Table 1.1(a) shows a many-valued context which lists different water pipes
having different attribute values. In order for FCA theory to be applied to a many-valued
context, it needs to be unfolded into a one-valued context through conceptual scaling [34].
Table 1.1(b) shows the one-valued context for the many-valued context in Table1.1(a) after
conceptual scaling [29].

Table 1.1: context transformation using conceptual scaling.

what how
pipeType1 foul gravity
pipeType2 sludge pressure

foul sludge gravity pressure
pipeType1 X X
pipeType2 X X

(a)

A many-valued context. (b) A one-value context after conceptual scaling

Generally, multiple approaches are proposed for applying FCA to fuzzy relations. First
approach is transformation of the fuzzy context to a Boolean context and then apply regular
(crisp) FCA on the derived relation(s). This can be done using conceptual scaling [32, 52].
So, such existing fuzzy approaches assume that the relationship between a given object and
a given property is a matter of degree in a scale L (generally [0,1]). However, the extent to
which ”object o has property a” may be sometimes hard to assess precisely [26].
Therefore, several new scaling techniques have been proposed to solve the problem of de-
termining the truth value from the scale L. But there are still some problems with the
proposed scaling methods.
In [26], using a sub-interval from the scale L rather than a precise value was proposed.
Such formal contexts naturally lead to Interval-Valued Fuzzy Formal concepts (in short
IVFF context). Also in [16], the representation of a fuzzy formal context using sub-interval
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from the scale L was discussed.
We can find another scaling technique in [13] considering a static set of the fuzzy attribute
to normalize the data. This is a new way of scaling, namely, scaling of general attributes to
fuzzy attributes. The mentioned paper deals with scaling within the framework of formal
concept analysis (FCA) of data with fuzzy attributes. In ordinary FCA, the input is a data
table with yes/no attributes. Scaling is a process of transformation of data tables with gen-
eral attributes, e.g. nominal, ordinal, etc., to data tables with yes/no attributes. This way,
data tables with general attributes can be analyzed by means of FCA. After such a scaling,
the data can be analyzed by means of FCA developed for data with fuzzy attributes.
The most important disadvantage of this proposed scaling method is the arbitrariness of
boundaries of the fuzzy attribute set. Therefore, this technique is very sensitive because of
the user’s selection of scale attributes and results are in a large difference in the generated
concepts lattice with a small change in scale attribute [13].
Most of the existing works published so far have contained unfavorable consequences based
on the conversion of the data from a multi-valued (fuzzy) context to a Boolean context be-
fore applying Formal Concept Analysis. On the other hand, making a decision on the
boundaries between scale attributes is biased by the user intention, since it is impossible to
find a unique rational thought behind selection of attribute boundaries.

Second approach is working with the unit interval [0, 1] and specific t-(co)norm (left

continuous t-norms) operation to define fuzzy implications underlying the fuzzy FCA no-
tions. The reason why several papers used left-continuous t-norm is that this guarantees
that the t-norm has a right adjoint. In these papers, a complete lattice can be formed by
fuzzy formal concepts [41, 46].

Next approach belongs to Radim Bĕlohlávek and others [12, 15, 51] that considered
complete residuated lattices as the domain of potential truth values. This is based on con-
sidering the table entries as truth degrees in fuzzy logic and proceeding by the basic setting
of FCA, just replacing classical logic with fuzzy logic in FCA”. It means that they work
with fuzzy formal concept analysis (FFCA) and fuzzy concept lattices are generated.
Bĕlohlávek et. al. (2005, and then a followed up in 2011) used the same approach as we
do but they did this for concrete L-fuzzy relations only, i.e., relations with a characteristic
function A × B → L where A and B are sets and L is a complete Heyting algebra. In
particular for concrete L-fuzzy relations both theories are the same. However, we do this
also using the abstract theory of arrow / fuzzy categories [1].
In other words, Bĕlohlávek and others used regular first-order logic to formulate every-
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thing. It means that all definitions of operations, relations, and sets are component-wise.
We do this in an algebraic manner, i.e. we treat relations as elements of algebraic structures
such as arrow and fuzzy categories. Also, we define the operations, etc., using the opera-
tions on relations.

A significant benefit of our approach is that the properties and theorems are not refer-
ring to the potential involved elements of the sets. Linear algebra behaves in a similar way
while expresses properties of linear maps. It uses the operations on maps instead of the
component(element)-wise reasoning. An equational first-order theory is the result of this
in which all theorems are defined in an algebraic manner. Such a simple representation can
lead to an attempt to further develop the theory and its use in applications. e.g. RelView
1, so that a simple relation-algebraic term for concrete applications can be calculated to
define the order relation of a concept lattice. Since equational theories are convenient to
be used in (semi) automatic theorem provers, the implementation of the theory developed
in this thesis is very straightforward using any system of type theory such as Coq 2. The
consequence is the presence of the fuzzy concept analysis (FCA) in libraries of proofs. So,
the computing components generated by verified programs can be available in several pro-
gramming languages using FCA implementation. Meanwhile, our algebraic framework is
able to cover fuzzy concept analysis as well as regular (crisp) concept analysis. As another
major advantage of our approach, it is worth mentioning that arrow/fuzzy categories con-
tain some models. Such models are not the same as categories of concrete fuzzy relations,
i.e., our approach is slightly general [9, 12, 15, 51] and can cover both regular and L-Fuzzy
FCA, simultaneously.

1.1 Main Contributions

1. Develop a L-Fuzzy Concept Analysis as a generalization of a regular Concept Anal-
ysis in a way that it should work with the L-Fuzzy data directly (not transforming
the L Fuzzy formal context to a crisp one). This technique is performed without us-
ing data pre-processing (transferring), and then FCA is applied directly on the fuzzy
contexts (relations). Data pre-processing means transformation of the fuzzy context
to a Boolean context and then apply regular (crisp) FCA on the derived relation(s).
So, we work on original data without any preliminary transformation step.

2. Generate a framework of L-fuzzy formal concept analysis with the aim of addressing
1https:\\www.rpe.informatik.uni-kiel.de\en\research\relview (homepage of RelView).
2https:\\coq.inria.fr (homepage of Coq).
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a multi-valued context regardless of the data preprocessing stage using a relational
approach. These relational algebraic formulations are used to generate the concepts
and attribute implications from a given context including a Boolean as well as a
multi-valued contexts. It means that this algebraic framework can cover both regular
and L-Fuzzy FCA simultaneously.

3. Manage the proposed ambiguity found in the object classification process and receive
the final output (attribute implications) extracted from the original input data with
minimal uncertainty.

4. Implement the approach by Java programming language.

1.2 Thesis Structure

The structure of this thesis has been outlined in six following chapters:

• Chapter 1 provides a general introduction and overview of the reason behind the
selection of the subject of the relational approach to L-FCA as well as the way to
implement it.

• Chapter 2 covers the relevant mathematical preliminaries including some illustra-
tive examples from the basic definitions of L-fuzzy relations to various categorical
approaches. The concepts in this chapter are provided for a more accurate under-
standing of the topic presented in this dissertation.
The chapter is organized into four main sections, introducing lattices, relations, L-
fuzzy relations, and categories of relations.

• Chapter 3 mainly includes the definitions of Formal Concept Analysis (FCA) [25]
and Fuzzy Formal Concept Analysis (FFCA) [46]. To rephrase it, the background
theories of the two concept analysis are described in detail using several related ex-
amples in this chapter. Introducing relational algebraic formulas for formulating
formal concept analysis is another focus of this section.

• Chapter 4 concentrates on concept lattices in allegories and attribute implications.
The chapter includes the main contribution of this thesis to extract attribute implica-
tions and prepare them for implementation in the next and final phase.

• Chapter 5 proposes concrete implementation for studies presented in chapters 3 and
4 of this dissertation. In order to enhance understanding of implementation phase,
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two main sections are included in this chapter; basic algebraic formulas in the library
along with their applications and the final framework.

• Chapter 6 expresses the concluding remarks of this thesis study and some potential
avenues for future works.



Chapter 2

Relation-Algebraic Preliminaries

This chapter contains some basic mathematical background used in this thesis. A full
understanding of these concepts and operations is provided using some relevant concrete
examples. All major notations of lattice and set theories are essential to the understanding
of our research work.

2.1 Lattices

A very natural concept is a partially ordered set (or poset). Elements of such a set may be
related to each other by notion of ”being smaller or equal”. Formally, poset, linear, and
non-linear posets are defined as below [61]:

Definition 2.1.1. A poset is a set P with a binary relation ≤ on it so that

(i) reflexive x ≤ x for all x ∈ P,

(ii) transitive if x ≤ y and y ≤ z, then x ≤ z for all x, y, z ∈ P,

(iii) antisymmetric if x ≤ y and y ≤ x, then x = y for all x, y ∈ P.

Definition 2.1.2. A poset P is called linear iff x ≤ y or y ≤ x holds for all x, y ∈ P.

Example 2.1.1.

1. Linear Poset the set of real numbers R with the usual ordering is a linear poset.
Obviously, the unit interval [0, 1] of the real numbers is also a linear poset.

8
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2. Non-linear Poset the power set P(A) of a set A with more than one element together
with set-inclusion ⊆ is a example of a non-linear poset.

The Hasse diagram of the set of all subsets of a three-element set {x, y, z} is shown in
Fig. 2.1. Sets connected by an upward path, like ∅ and {x, y}, are comparable, while
e.g. {x} and {y} are not.

Figure 2.1: Hasse diagram of the powerset of {x, y, z}.

Simply put, when posets are finite, it is possible to represent P as a triangular matrix or
a Hasse diagram. A fuzzy Hasse diagram is a valued, oriented graph whose nodes are the
elements of the poset. The link x → y in a Hasse diagram exists iff µp(x, y) > 0, i.e. each
link is valued by µp(x, y) > 0 (µ shows existence of an element (x, y) in the poset). Owing
to perfect antisymmetry and transitivity, the graph has no cycle. An example (Zadeh, 1971)
is provided in Fig. 2.2 [19].
In other words, the Hasse diagram represents a partial order between the symplectic leaves,

defined by inclusions in their closures. For any two given leaves which can be compared in
this partial order, we have a transverse slice which describes how the smaller leaf looks as
a simple singularity inside the closure of the bigger leaf similar to inclusions [55].

Definition 2.1.3. A preorder ⊆ is said to be a partial order if it is anti-symmetric also. If
⊆ is a partial order on X then the pair (X,⊆) is said to be a poset. Given a set A ⊆ X, x is
said to be an upper bound of A (lower bound) if for every y ∈ A, we have that y ⊆ x (x ⊆ y

respectively).
An element z is said to be a least upper bound of A (greatest lower bound of A) if z is an
upper bound (lower bound respectively) and for every upper bound (lower bound respec-
tively) x of A, we have that x ⊆ z (z ⊆ x respectively) [21]. 1

1The least upper bound and the greatest lower bound may not exist. But, if they exist, they are unique.
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Figure 2.2: A fuzzy Hasse diagram.

Example 2.1.2. As illustrated in Fig. 2.3, if x and y are elements of a partial order, an
upper bound for x and y is simply an element u such that x ≤ u and y ≤ u. u is the least
upper bound of x and y if u is ≤ all upper bounds of x and y.
Also, the set of upper bounds for n and g is {r, s, t, u, d, a}. Obviously, there is a way to get
to each of them from both n and g by travelling upwards in the diagram. On the other hand,
i is not an upper bound for n and g because: n ≤ i, but g ≰ i.
Since r ≤ r, r ≤ s, r ≤ t, r ≤ u, r ≤ d, and r ≤ a, the lowest member of that set is r. That
makes r the least upper bound of n and g.
The elements above j are b, c, e, m, l, a, k, d, i, t, u, and the elements above g are r, d, a, u,
s, t. The elements that are above both j and g are a, d, u, t. So, these four elements are the
upper bounds of j and g. Here, however, there is no least upper bound: d ≤ d, d ≤ a, and
d ≤ u, but d ≰ t (none of a, u, and t is ≤ d).

Definition 2.1.4. A lattice L is a poset such that for all elements a, b ∈ L there exists the
supremum or join a∨b (the least upper bound a∨b of the set {a, b} on P) and the infimum or
meet a∧ b (the greatest lower bound a∧ b of the set {a, b} on P). Note that, for an arbitrary
poset P , a ∨ b and a ∧ b may not exist. [3, 34]

Definition 2.1.5. A complete lattice is a lattice in which any subset A has a least upper
bound and a greatest lower bound [3, 48, 61].
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Figure 2.3: The greatest lower bound and the least upper bound using Hasse diagram of a
partial order.

Definition 2.1.6. We can define the notion of a lattice also algebraically. The binary oper-
ations ∧ and ∨ of the corresponding lattice fulfills the following properties [61]

(i) idempotent x ∧ x = x, x ∨ x = x,

(ii) commutative x ∧ y = y ∧ x, x ∨ y = y ∨ x,

(iii) associative x∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z,

(iv) consistent x ∧ y = x⇔ x ≤ y, x ∨ y = y⇔ x ≤ y,

(v) monotone ∀ y ≤ z : x ∧ y ≤ x ∧ z, x ∨ y ≤ x ∨ z.

Definition 2.1.7. A lattice X is called bounded if there exist two elements 0X, 1X ∈ X such
that [48]

0 ∧ x = 0, 0 ∨ x = x, 1 ∧ x = x, 1 ∨ x = 1.

In basic terms, a bounded lattice is a lattice with least element 0 and greatest element 1.
Given the definition of a bounded lattice, a complemented lattice can be defined as below.

Definition 2.1.8. A lattice X is called complemented if it is bounded and for every x ∈ X

there exists y ∈ X such that [48]
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x ∨ y = 1, x ∧ y = 0.

More detailed explanation of a complemented lattice can be found in [36].

Definition 2.1.9. A lattice X is called distributive [48] if for every x, y, z ∈ X, the meet (∧)
and the join (∨) operations are distributed over each other,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Example 2.1.3. Fig. 2.4 is shown a a non-distributive lattice, since2:

x ∧ (y ∨ z) = x ∧ 1 = x , 0
On the other hand we have:
(x ∧ y) ∨ (x ∧ z) = 0 ∨ 0 = 0

Figure 2.4: A non-distributive diamond lattice.

2.1.1 Complete Heyting Algebra

The language of lattices is Llat = { 0, 1, ∨, ∧ }, where 0 stands for the smallest element,
1 for the greatest one, ∨ and ∧ for the join and meet operations respectively. Of course
the order of the lattice is definable by b ≤ a if and only if a ∨ b = a. The language of
Heyting algebras is LHA = Llat ∪ { → } where the new binary operation symbol (implication
operation) is interpreted as [24]

b→ a = max { c : c ∧ b ≤ a }.
2https://en.wikipedia.org/wiki/Distributive_lattice
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An example of this implication is provided later in this thesis in Example. 2.3.3.
This binary operation can also be referred as relative pseudo-complement. A Heyting al-
gebra is said to be complete if it is a complete lattice. Another way of defining Heyting
Algebra and relative pseudo-complement can be found in the following definition:

Definition 2.1.10. Let L be a bounded lattice and x, y ∈ L. A relative pseudo-complement

x→ y of x in y is an element so that [61]

u ≤ x→ y ⇐⇒ x ∧ u ≤ y

for all u ∈ L. A lattice in which for every pair of elements the relative pseudo-complement
exist is called a Heyting algebra. In the following we will use the abbreviation x↔ y for
(x→ y) ∧ (y→ x).

We used relative pseudo-complement later in this thesis in Example. 2.3.3 to calculate
the implementation matrix, left residual matrix, etc. among fuzzy relations.

2.2 Binary Relations

For the sake of obtaining a clear definition of binary relation R, the concept of Cartesian
product of two sets is a major one. Given two sets of objects, the operation of Cartesian
product forms ordered pairs in mathematics as below:

Definition 2.2.1. The Cartesian product of two sets A and B is the set of all pairs (x,y)
with x ∈ A and y ∈ B, and is denoted by A × B [61].

A × B = { (x, y) : x ∈ A and y ∈ B }

Example 2.2.1. Considering some bodies of water3 including the objects (set of O) and
their attributes (set of A), Cartesian product is derived as:

Objects = { Lagoon, Lake, Maar, Pond, Pool, Sea, Tarn }
Attributes = { Natural, Stagnant, Constant }
O × A = { (Lagoon, Natural), (Lagoon, Stagnant), (Lagoon, Constant), (Lake, Natural),
(Lake, Stagnant), (Lake, Constant), (Maar, Natural), (Maar, Stagnant), (Maar, Constant),
(Pond, Natural), (Pond, Stagnant), (Pond, Constant), (Pool, Natural), (Pool, Stagnant),
(Pool, Constant), (Sea, Natural), (Sea, Stagnant), (Sea, Constant), (Tarn, Natural), (Tarn,
Stagnant), (Tarn, Constant) }

3https://en.wikipedia.org/wiki/Formal_concept_analysis
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A relation R between two arbitrary sets A and B is a set of pairs of elements from A
and B, i.e., R ⊆ A × B, and can be denoted by R: A → B. This implies that binary relation
R between two sets is a subset of the Cartesian product of the two sets. A more accurate
definition of relation R is as follows:

Definition 2.2.2. A binary relation R between two sets A and B is an element of Power set
A × B. A is called the source and B the target of R.
If A = B, the relation R is also called an endorelation or homogeneous. To indicate that a
binary relation R has source A and target B we usually write R ⊆ A × B [10, 61].

Using matrix visualization, a better understanding of finite binary relations between
two finite sets of objects and attributes can be obtained. The dimensions of the matrix
are determined by the number of elements in the object and attribute sets, i.e., the rows
and columns of the matrix represent the objects and attributes, respectively. In order to
obtain a matrix representation, we assume that the elements of the source A and target B

are ordered, i.e., we assume that A = {a1, . . . , an} and B = {b1, . . . , bm}. In such a case, if
there is a relationship between an object and a particular attribute, the associated element
in the matrix is 1, otherwise it is denoted by 0. If we denote the entry in the i-th row and
j-th column of the matrix of the relation R by Mi, j, then we have:

Mi j =

 1 i f (ai, b j) ∈ R

0 i f (ai, b j) < R

Example 2.2.2. Considering bodies of water example again, for two sets of objects and
attributes the associated binary relation in the form of a binary matrix is shown as follows:

Objects = { Canal, Channel, Lagoon, Lake, Reservoir, Torrent }
Attributes = { Running, Natural, Stagnant, Constant, Maritime }

R =



Running Natural S tagnant Constant Maritime

Canal 1 0 0 1 0
Channel 1 0 0 1 0
Lagoon 0 1 1 1 1

Lake 0 1 1 1 0
Reservoir 0 0 1 1 0
Torrent 1 1 0 1 0
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2.2.1 Basic Operations and Properties on Binary Relations

Some primary operations on two relations Q and R are required to be defined. The next
definition provides some of these operations. As previously mentioned in the prior section,
P : X→ Y is a subset of the Cartesian product of X and Y, i.e., P ⊆ X × Y.
In terms of matrices, the basic operations can be generated using the Boolean operations
AND(∧), OR(∨), and NOT(¬) on the corresponding entries in the matrices. An extended
version of the basic relations is used in the following sections on L-fuzzy relations.

Definition 2.2.3. Let Q, R : X → Y be the same relations. Then we may introduce several
operations among these two relations as follows:

1. Union Relation Q ⊔ R := {(x,y) ∈ X × Y | (x,y) ∈ Q ∨ (x,y) ∈ R}

2. Intersection Relation Q ⊓ R := {(x,y) ∈ X × Y | (x,y) ∈ Q ∧ (x,y) ∈ R}

3. Converse Relation Q⌣:= {(y,x) ∈ Y × X | (x,y) ∈ Q}

4. Complement Relation Q := {(x,y) ∈ X × Y | (x, y) < Q}

5. Implication Relation Q→ R := {(x,y) ∈ X × Y | (x,y) < Q ∨ (x,y) ∈ R}

6. Identity Relation IX := {(x,x) ∈ X × X | x ∈ X}

7. Empty relation (Least elements) yXY = ∅
4

8. Universal Relation (Greatest elements) xXY = X × Y5

We will denote the fact that a relation Q is included in another relation R, i.e., a subset of,
by Q ⊑ R.

Example 2.2.3. Taking into consideration of two relations Q and R retrieved from some
bodies of water examples other than the previous ones, a better visualization of basic oper-
ations can be obtained.

Q =



Temporary Running Natural S tagnant

Pool 0 0 1 1
Reservoir 0 0 0 1

River 0 1 1 0
Rivulet 0 1 1 0


4The set with no elements is called the empty set, and is denoted by ∅ [61].
5This relation is also called the top relation, which is the largest relation that connects all the elements of

X to the elements of Y.
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R =



Temporary Running Natural S tagnant

Runnel 0 1 1 0
S ea 0 0 1 1

S tream 0 1 1 0
Tarn 0 0 1 1



1. Union Relation:

Q ⊔ R =



Temporary Running Natural S tagnant

Pool 0 1 1 1
Reservoir 0 0 1 1

River 0 1 1 0
Rivulet 0 1 1 1



2. Intersection Relation:

Q ⊓ R =



Temporary Running Natural S tagnant

Pool 0 0 1 0
Reservoir 0 0 0 1

River 0 1 1 0
Rivulet 0 0 1 0



3. Converse Relation (Transpose):

Q⌣ =



Pool Reservoir River Rivulet

Temporary 0 0 0 0
Running 0 0 1 1
Natural 1 0 1 1

S tagnant 1 1 0 0
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4. Complement Relation:

Q =



Temporary Running Natural S tagnant

Pool 1 1 0 0
Reservoir 1 1 1 0

River 1 0 0 1
Rivulet 1 0 0 1


5. Implication Relation:

Q→ R =



Temporary Running Natural S tagnant

Pool 1 1 1 0
Reservoir 1 1 1 1

River 1 1 1 1
Rivulet 1 0 1 1



2.2.2 Relational Operations and Properties

This section consists of some additional operations on relations. In the previous section, we
started the relation definitions by the concrete boolean-valued relations, i.e., for relations
R between two sets X and Y. Formally such a relation is a subset of the set X × Y of pairs
from X and Y, or, alternatively, a function from X × Y to {True, False}. For the second
version R(x,y) for x ∈ X and y ∈ Y is either True or False saying that either x is related to
y in the relation R or not.
Using this, we get the following constructions for the relational operations. The mentioned
additional relations include relational converse, composition, ϵ (epsilon) relation, right and
left residuals, and symmetric quotient. Also at the end, using Q and R relations used in
example 2.2.3, relational operations and properties are clarified by a few examples.

The operation of converse is exchanging the row and column. This operation is mono-

tone. Just like the negation operator, applying the operation twice results in the original
relation itself:

(R⌣)⌣ = R.

Apart from the set theoretic operations, we consider one further operation on binary
relations as follows.
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Definition 2.2.4. Let P be a relation between A and B and R between B and C. Then we
define composition between P and R as below [61]

P ; R := { (x, z) | ∃ y ∈ B :(x, y) ∈ P ∧ (y, z) ∈ R }.

Due to the definition above, a composition P ◦ R has to be read from the left to the
right, i.e., first P, and then R. We usually write R(x, y) instead of (x,y) ∈ R.
Notice that composition is associative, i.e., for all relation P : A→ B, Q : B→ C and R : C
→ D we have (P ; Q) ; R = P ; (Q ; R) [61].

Example 2.2.4. Considering Q and R relations defined in example 2.2.3, the composition
of Q and R returns the following relation.

Q ; R =



Temporary Running Natural S tagnant

Pool 0 1 1 1
Reservoir 0 0 1 1

River 0 1 1 1
Rivulet 0 1 1 1


The only necessary condition for combining two matrices is that the number of columns of
the first matrix should be equal to the number of rows of the second matrix.

Some important classes of relations and properties are derived by mappings [60].

Lemma 2.2.1. Let Q: A→ B, be a relation. Then we call:

(i) Q is univalent iff Q⌣ ; Q ⊑ IB.

(ii) Q is total iff IA ⊑ Q ; Q⌣ or equivalently iff Q ; xBC = xAC for all objects C.

(iii) Q is a map iff Q is univalent and total.

(iv) Q is injective iff Q⌣ is univalent.

(v) Q is surjective iff Q⌣ is total.

(vi) Q is an isomorphism iff Q and Q⌣ are both mappings.

Notice that if Q is an isomorphism Q⌣ ; Q = IB and Q ; Q⌣ = IA hold.
Proofs of these properties including some more others, can be found in [54, 60].
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2.2.2.1 Projection Operations

The following definition ascertains relational product which is a type of relational construc-
tion given by the Cartesian products of sets. The mentioned relational products are known
as projection operations including Pi (π) and Rho(ρ). We will refer to projection operations
in the Section. 2.4.7 (Relational Product in Dedekind categories) further in this thesis.

Definition 2.2.5. Let A = { a, b } and B = { c }. Then, two relations π and ρ are defined by
((a,b), c)∈ π iff c = a and ((a,b), c) ∈ ρ iff b = c, respectively.

Example 2.2.5. Consider two sets A = { a1, a2 } and B = { b1, b2 }. π and ρ can be generated
as below:

π =



a1 a2

⟨a1,b1⟩ 1 0
⟨a1,b2⟩ 1 0
⟨a2,b1⟩ 0 1
⟨a2,b2⟩ 0 1



ρ =



b1 b2

⟨a1,b1⟩ 1 0
⟨a1,b2⟩ 0 1
⟨a2,b1⟩ 1 0
⟨a2,b2⟩ 0 1



In this example, column-values in matrices correspond to the value of c in the above defi-
nition for Pi and Rho.

The properties represented below on projection operations can be found in [61].

Lemma 2.2.2.

π⌣ ; π ⊑ IA, ρ⌣ ; ρ ⊑ IB, π⌣ ; ρ = xAB, π⌣ ; π ⊓ ρ⌣ ; ρ = IA×B

These properties characterize a product and will be used as the abstract definition later in
this thesis.
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2.2.3 Combined Operations and Properties

This section describes some composite relations derived by some basic boolean operations
such as implication. Our focus in this section is on residuals (Right and Left), and symmet-
ric quotient operations, which are among the most principal ones in this research. Using
two various techniques, the definitions of right and left residuals are released as:

Definition 2.2.6.

1. Left Residual:
Let Q: X→ Y and R: X→ Z, then left Residual is defined by Q \ R: Y→ Z with:

Q \ R =
{
(y, z) | ∀ x: (x, y) ∈ Q→ (x, z) ∈ R

}
.

2. Right Residual:
Let Q: X→ Y and R: Z→ Y, then right Residual is defined by Q / R: X→ Z with:

Q / R =
{
(x, z) | ∀ y: (z, y) ∈ R→ (x, y) ∈ Q

}
.

Example 2.2.6.

Q =



y0 y1 y2 y3

x0 1 0 1 0
x1 1 1 0 1
x2 0 1 1 0
x3 1 0 0 1

, R =



z0 z1 z2 z3

x0 1 1 0 1
x1 0 1 1 1
x2 1 0 0 1
x3 1 1 1 0


Considering the above two relations we have the matrix representation of the left residual

as:

Q\R =



z0 z1 z2 z3

y0 0 1 0 0
y1 0 0 0 1
y2 1 0 0 1
y3 0 1 1 0


In matrix representation of left residual for boolean relations, we get a value of 1 for an
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element (y, z) in the left residual matrix iff the column of y in Q is included in the column
of z in R. Included means every entry 1 in the first column (in Q) must have a 1 in the
second column (in R) at the same place.

Example 2.2.7.

Q =



y0 y1 y2 y3

x0 1 0 0 1
x1 1 1 1 1
x2 0 1 0 0
x3 1 1 0 1
x4 1 0 1 1


, R =



y0 y1 y2 y3

z0 0 0 1 0
z1 1 0 1 0
z2 1 1 0 1
z3 1 1 1 0
z4 1 1 1 0


Considering the above two relations we have the matrix representation of the right residual

as:

Q/R =



z0 z1 z2 z3 z4

x0 0 0 0 0 0
x1 1 1 1 1 1
x2 0 0 0 0 0
x3 0 0 1 0 0
x4 1 1 0 0 0


In matrix representation of right residual for boolean relations, the only difference com-

pared to left residual is that we consider rows instead of columns in two relations, and then
we have to check ”Including” between the two rows.

More details regarding definitions of residuals, the proofs, and their properties can be
found in [53, 54].

Our next focus is on symmetric Quotient among combined operations. This operation
is indicated by abbreviation of syq in the main sources of science. There exist the same two
techniques for Symmetric Quotient just like residuals:

Definition 2.2.7. The symmetric quotient syq(Q, R): Y → Z of two relations Q: X → Y
and R: X→ Z is defined by:

syq(Q, R) = { (y, z) ∈ Y × Z | ∀x ∈ X: (x, y) ∈ Q←→ (x, z) ∈ R }.
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Example 2.2.8.

Q =



y0 y1 y2 y3

x0 1 1 0 1
x1 0 1 0 1
x2 1 0 1 1
x3 0 1 1 0

, R =



z0 z1 z2

x0 1 0 1
x1 1 0 1
x2 0 1 1
x3 0 1 0



syq(Q, R) =



z0 z1 z2

y0 0 0 0
y1 0 0 0
y2 0 1 0
y3 0 0 1



Definition 2.2.8. The relation ϵ: A→ P(A) where P(A) is the power set6 of A, is defined
by (x, M) ∈ ϵ iff x ∈M.

Lemma 2.2.3. Using simple set A = { a1, a2, a3 }, related ϵ relation has 8 members repre-
sented as below:

{ a1, a2, a3 } → { { }, { a1 }, { a2 }, { a3 }, { a1, a2 }, { a1, a3 }, { a2, a3 } { a1, a2, a3 } }

ϵ =


{} {a1} {a2} {a3} {a1,a2} {a1,a3} {a2,a3} {a1,a2,a3}

a1 0 1 0 0 1 1 0 1
a2 0 0 1 0 1 0 1 1
a3 0 0 0 1 0 1 1 1


The proof is an easy exercise. We will add this as a definition in the section of abstract

allegories 2.4.2.
In the next definition, some properties of the ϵ relation on boolean values are discussed
[64].

Definition 2.2.9.
Consider the following two properties:

• syq(ϵ, ϵ) = I

6In mathematics, the power set of a set A is the set of all subsets of A, including the empty set and A itself
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• syq(R, ϵ) is total for every R.

The first assertion means that ϵ is extensional, i.e., two elements of P(A) are equal iff they
contain the same elements, or each column of ϵ (the elements of the set corresponding to
that column) are different. The second property says that every relation R can be trans-
formed into a function syq(R, ϵ) so that this function maps a y to the set {x | (x, y) ∈ R}.
As mentioned in Lemma. 2.2.1 (ii), a relation Q: A −→ B is total iff IA ⊑ Q ; Q⌣ (or
equivalently Q ; xBC = xAC for all objects C). In Boolean matrices this means that there is
at least one element 1 in each row.

2.3 L-Fuzzy Relations

Among relations two types are of interest in this research. First, a relation R is called 0-1
crisp iff R(x, y) = 0 or R(x, y) = 1 holds for all x and y. Crisp relations may be identified
with classical (binary) relations [62]. The second type of relations that are of interest are
fuzzy relations. In this types of relations, there is a weighing in the relationship between
two objects with a degree.
To get more clarification, in the basic setting, attributes are assumed to be binary, i.e. ta-
ble entries are 1 or 0 according to whether an attribute applies to an object or not. If the
attributes under consideration are fuzzy (like ”cheap”, ”expensive”), each table entry con-
tains a truth degree to which an attribute applies to an object. The degrees can be taken
from some appropriate scale containing 0 (does not apply at all) and 1 (fully applies) as
bounds. The most popular choice is some subinterval of [0, 1], but in general, degrees need
not to be numbers [31].

In mathematics, especially in order theory, a complete Heyting algebra is a Heyting
algebra that is complete as a lattice7. We consider L to be always a complete Heyting al-

gebra in this section. An L-fuzzy relation Q: A→ B is a function Q: A × B→ L. Regular
relations are Boolean-valued fuzzy relations since a subset of the Cartesian product A × B
can also be represented by the characteristic function fQ: A × B → B so that B contains
Boolean values.

7A complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an
infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete
lattice. Specifically, every non-empty finite lattice is complete.
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Example 2.3.1. L-Fuzzy Relations: As an example, consider X = {0, . . . , 10} as source
and a similar finite set Y = {0, . . . , 10} as target. For an element u ∈ L, we define the corre-
sponding fuzzy relation (R) by:

R(x, y) :=

 u iff y ≥ x,

0 otherwise.

Similar to the matrix representation for regular relation we can visualize an L-fuzzy re-
lation by an L-valued matrix. In the example above we obtain:



y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x0 u u u u u u u u u u u

x1 0 u u u u u u u u u u

x2 0 0 u u u u u u u u u

x3 0 0 0 u u u u u u u u

x4 0 0 0 0 u u u u u u u

x5 0 0 0 0 0 u u u u u u

x6 0 0 0 0 0 0 u u u u u

x7 0 0 0 0 0 0 0 u u u u

x8 0 0 0 0 0 0 0 0 u u u

x9 0 0 0 0 0 0 0 0 0 u u

x10 0 0 0 0 0 0 0 0 0 0 u


As an example, L = {0.2, 0.4, 0.6, 0.8, 1} which is in the range of (0, 1], or any other
arbitrary decimal number within this scale.

Example 2.3.2. L-Fuzzy Relations: We are going to consider an illustrative example given
in [11, 8]. Our frame is composed of the lattice L = {0, 1

2 , 1}.
In Table 2.1 , the set of objects contains nine elements (Mercury (Me), Venus (V), Earth
(E), Mars (Ma), Jupiter (J), Saturn (S), Uranus (U), Neptune (N), Pluto (P)), and the set of
attributes contains the small size, large size, far from the Sun, and near the Sun.
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Table 2.1: Fuzzy relation R between the objects and the attributes.

Me V E Ma J S U N P

small size 1 1 1 1 0 0 1
2

1
2 1

large size 0 0 0 0 1 1 1
2

1
2 0

far from the Sun 0 0 0 1
2 1 1 1 1 1

near the Sun 1 1 1 1 1
2

1
2 0 0 0

2.3.1 Basic Operations and Properties on L-Fuzzy Relations

This section describes extensions or generalizations of basic operations defined for regu-
lar(crisp) binary relations to the L-Fuzzy Relations, i.e, for L = B. The mentioned opera-
tions are discussed in the Section. 2.2.1.

Definition 2.3.1. Let Q, R: X → Y and S: Y → Z denote some L-Fuzzy relations. Then
we may introduce several primary operations as follows [61]:

1. Union (Q ⊔ R)(x, y) = Q(x, y) ∨ R(x, y),

2. Intersection (Q ⊓ R)(x, y) = Q(x, y) ∧ R(x, y),

3. Conversion 8 Q⌣(x, y) := Q(y, x),

4. Composition
(Q; S )(x, z) =

∨
y∈B

Q(x, y) ∧ S (y, z)

5. Implication:
Please note that → on the right-hand side of the definition below is the implication
operation on L.

(Q→ R)(x, y) = Q(x, y)→ R(x, y)

6. Inclusion:
The inclusion ⊆, which is induced by the intersection or union of L-fuzzy relations,
has to be read as follows [61]:

Q ⊑ R⇔ ∀ x ∈ A ,y ∈ B : Q(x,y) ≤ R(x,y).

Again, this is a generalization of ⊆ defined for regular relations.
8Conversion is known as Transposition as well.
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7. Empty and Universal relations:
The set of all L-fuzzy relations between A and B with least and greatest element are
defined by:

y(x, y) = 0, x(x, y) = 1.

8. Identity relation:
The identity relation on the set A can be shown by:

I(x, y) :=

 1 iff x = y,

0 otherwise.

Some other main combined operations are defined as follows [61]:

Definition 2.3.2.

Left Residual:
Let consider some other principal operations on L-Fuzzy relations Q: X→ Y and M: X→
K, then Q \M: Y→ K:

(
Q \ M

)
(y, k) =

∧
x∈X

Q(x, y) −→ M(x, k)

where the −→ represents the relative pseudocomplement.

Right Residual:
Let consider L-Fuzzy relations Q: X→ Y and T: V→ Y, then Q / T: X→ V:

(
Q/T

)
(x, v) =

∧
y∈Y

T (v, y) −→ Q(x, y)

where the −→ represents the relative pseudocomplement.

The math representation of residuals in fuzzy relations are the same as residuals in boolean
relations. The only difference is that universal quantifier is replaced by meet operation in
both residuals in fuzzy area.

Symmetric Quotient:
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Let consider L-Fuzzy relations T: V→ Y and S: V→ N, then syq(T, S):

syq(T, S )(y, n) =
∧
v∈V

T (v, y)←→ S (v, n)

Comparing ϵ relation in the area of L-fuzzy relations with boolean relations, this time
P(A) is the set of all fuzzy subsets. L-fuzzy subset M of a set A is simply a function M: A
→ L. Now, we have the definition of ϵ as follows:

Definition 2.3.3. The definition of ϵ: A → P(A) in the area of L-fuzzy relations can be
defined by [1]:

ϵ(x,M) =M(x).

In the area of L-fuzzy relations, we also have some properties of ϵ relation. Since two
new operations called support or up-arrow (↑) and kernel or down-arrow (↓) need to be
introduced in such properties, the mentioned properties are represented in Lemma. 2.3.2.

Also, we have a few more properties shown in the following lemma.

Lemma 2.3.1. Let consider L-fuzzy relations Q,Q′: A→ B, R: B→ C, S: C→ D and T:
A→ C, then we have [61]

1. Q ; IB = Q and IB ; R = R,

2. (Q; R); S = Q; (R; S ),

3. (Q ⊓ Q′)⌣ = Q⌣ ⊓ Q′⌣,

4. (Q; R)⌣ = R⌣; Q⌣,

5. (Q⌣)⌣ = Q,

6. Q ; R ⊓ T ⊑ Q ; (R ⊓ Q⌣ ; T),

7. Q;yBC = yAC.

Proofs of all assertions can be found in [61].
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Considering the following L-Fuzzy relations and lattice L, we clarify the most complex
operations defined by using some examples. Examples of the union and intersection oper-
ations are skipped. union(∪) and intersection(∩) operations are performed using meet (∧)
and join(∨) respectively on L-Fuzzy relations and the join and meet between two elements
are simply their maximum and minimum elements.
Identically, on the basis of the meet operation, the implication between two relations can
be fulfilled in a straightforward way.
Also, it is worthwhile to mention that the composition of L-fuzzy relations is similar as
matrix multiplication in linear algebra in terms of implementation. Meet and join are used
instead of addition and multiplication, respectively.

Example 2.3.3. Let Q, M, T, and S be relations with the same dimensions and L = [0,1].
As already mentioned, join and meet are greatest (max) and smallest (min) elements, re-
spectively. Also, implication (→) on L-fuzzy relations is x→y = y iff y < x and x→y = 1
iff x ≤ y.

Q =



y1 y2 y3 y4

x1 0.75 0.25 1 0.75
x2 1 0.50 0.75 0.25
x3 0 1 0.25 0
x4 0.50 0.25 0.50 1

, M =



k1 k2 k3 k4

x1 0 0.75 0.50 0.25
x2 1 1 0.25 0.75
x3 0.25 0.50 0.25 1
x4 0.25 0 0.25 0



T =



y1 y2 y3 y4

v1 1 0 0.25 1
v2 1 0.75 0.75 0.25
v3 1 1 1 0.50
v4 0.50 1 0.50 1

, S =



n1 n2 n3 n4

v1 0.25 0 0.25 1
v2 0.75 0.75 1 0.25
v3 1 1 1 0.50
v4 0.50 1 0.75 1



• Implication

Q→ M =


0 1 0.50 0.25
1 1 0.25 1
1 0.50 1 1

0.25 0 0.25 0
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• Composition

Q; M =


0.25 0.75 0.50 1
0.50 0.75 0.50 0.75

1 1 0.25 0.75
0.25 0.50 0.50 0.50



As I mentioned before, the composition of L-fuzzy relations is similar as matrix

multiplication in linear algebra in terms of implementation. The only difference is
that Meet and join are used instead of multiplication and addition, respectively.

As an example to calculate the value of 0.75 located in the row number 0 and column
number 1 of the composition matrix, we have to consider row number 0 of matrix Q
and column number 1 of matrix M. Then we have:

(0.75
∧

0.75)
∨

(0.25
∧

1)
∨

(1
∧

0.5)
∨

(0.75
∧

0) = 0.75

• Left Residual

Q \ M =



k1 k2 k3 k4

y1 0 0 0.25 0
y2 0 0 0.25 0
y3 0 0 0.25 0
y4 0 0 0.25 0


In calculation of the left residual between two fuzzy relations, the matrix representa-
tion is the same as calculation of left residual between boolean relations. The only
difference is that the entry in the left residual matrix is the largest lattice value L so
that the calculation of meet among the values in the column of the first matrix and L
is smaller and equal to corresponding value in the column of the second matrix. As
an example, the value of element located in row 0 and column 0 in Q\M is calculated
as follows:

0.75 ∧ 0 = 0 ≤ 0, 1 ∧ 1 = 1 ≤ 1, 0 ∧ 1 = 0 ≤ 0.25, and 0.5 ∧ 0.25 = 0.25 ≤ 0.25.

Then we have: 0 ∧ 1 ∧ 1 ∧ 0.25 = 0. So, 0 is the value of the element in row 0 and
column 0 of the left residual matrix.
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• Right Residual

Q/T =



v1 v2 v3 v4

x1 0 0.25 0.50 0.50
x2 0 1 1 0.50
x3 0 0.75 1 1
x4 0 0.25 0.50 1


In calculation of the right residual between two fuzzy relations, the matrix represen-
tation is the same as calculation of left residual between fuzzy relations. The only
difference is that we have to consider rows instead of columns to compute it.

• Symmetric Quotient

syq(T, S) =



n1 n2 n3 n4

y1 0.25 0 1 0.25
y2 0 1 0 0
y3 0.25 0 0.50 0.25
y4 0.25 0 0.25 0.25


2.3.2 T-norm Like (∗-based) Operations on L-Fuzzy Relations

We can define ∗-based operations as:

star: ∗ starImpl: →∗ starResidual: /∗ starComposition: ;∗

Generally, a t-norm like operation on a Heyting algebra L is a straight-forward generaliza-

tion of t-norms on the unit interval [0, 1].

Definition 2.3.4. Let L be a Heyting algebra together with a t-norm like operation ∗ as
the lattice of truth values instead of the unit interval [0, 1], i.e., structure ⟨ L, ∗ ⟩ with an
operation ∗ on L, then we can define the following ∗-based operations on relations [1]:

1. (Q ∗ R)(a, b) = Q(a, b) ∗ R(a, b),

2. (Q→∗ R)(a, b) = Q(a, b)→∗ R(a, b),

3. (Q ;∗ S )(a, c) =
∨
b∈B

Q(a, b) ∗ S(b, c),

4. (T /∗ S)(a, c) =
∧
c∈C

S(b, c)→∗ T(a, c).
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2.3.3 Crispness and Scalar

Among the L-fuzzy relations two subclasses are of interest; Crisp relations and Scalar
relations. A relation R is called 0–1 crisp iff R(x, y) = 0 or R(x, y) = 1 holds for all x and
y. Crisp relations may be identified with classical (binary) relations [62]. Therefore, The
crisp relation can be identified with regular relations that is the regular true and false of B.
Transformation of a fuzzy relation to crisp relation is required to define two operations
called support (↑) and kernel (↓). These operations are also known as the up-arrow and
down-arrow respectively. The up-arrow operation increases the membership degrees which
are greater than 0, whereas the down-arrow operation decreases the membership degrees
which are smaller than 1.

Definition 2.3.5. Suppose Q: X × Y is a fuzzy relation. Then Q↑ and Q↓ can be defined as:

Q↑(x, y) :=

 1 iff Q(x, y) , 0,

0 otherwise.

Q↓(x, y) :=

 1 iff Q(x, y) = 1,

0 otherwise.

Example 2.3.4. Let Q be a fuzzy relation. After applying two fuzzy-crisp transformations
on it, we have:

Q =



y1 y2 y3 y4 y5 y6

x1 0.75 0 0.25 1 0.50 1
x2 0.50 0.25 0.25 1 0.20 0
x3 1 0 0.75 0 1 1
x4 0.25 0.25 0 0.75 1 0.50
x4 1 0.75 0.50 1 0.75 1
x4 0.25 0 0.25 0 1 0


Using support and kernel operations applied on the Q relation, the following crisp relations
are returned respectively:
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Q↑ =



y1 y2 y3 y4 y5 y6

x1 1 0 1 1 1 1
x2 1 1 1 1 1 0
x3 1 0 1 0 1 1
x4 1 1 0 1 1 1
x4 1 1 1 1 1 1
x4 1 0 1 0 1 0



Q↓ =



y1 y2 y3 y4 y5 y6

x1 0 0 0 1 0 1
x2 0 0 0 1 0 0
x3 1 0 0 0 1 1
x4 0 0 0 0 1 0
x4 1 0 0 1 0 1
x4 0 0 0 0 1 0


Lemma 2.3.2. The properties of the boolean relations for ϵ relation change slightly to have
the properties in fuzzy relations [1] as follows:

• syq(ϵ, ϵ)↓ = I

• syq(R, ϵ)↓ is total for every R.

For a comparison of the definitions among properties of ϵ relations for boolean and fuzzy
relations, and also the reason for using the two above assertions presented here in the case
of arrow category including down arrows, we refer to [64].

In the next theorem we have summarized some properties of the operation defined above
[61].

Theorem 2.3.1. Let L be a complete Brouwerian lattice (Heyting algebra), and Q,R: A→
B and S: B→ C be L-fuzzy relations. Then we have

(i) Q is crisp iff Q↑ = Q iff Q↓ = Q,

(ii) (R⌣; S ↓)↑ = (R↑)⌣; S ↓,
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(iii) (Q ⊓ R↓)↑ = Q↑ ⊓ R↓.

All proofs not given in this section are straightforward and can be found in [61].

2.3.3.1 Scalar Relations

There are several possibilities to identify a class of L-fuzzy relations with the lattice L
itself, e.g., one could choose ideal elements. In our approach we will take scalar relations.
The lattice L may also be characterized by sub-identities that use exactly one element from
the lattice L to relate each element to itself. Such a relation is called a scalar.

An L-fuzzy relation αu
A: A→ A is called a scalar on A induced by u ∈ L if [61, 62]:

αu
A(x, y) :=

 u iff x = y,

0 x , y.

In other words, a relation α: A→ A is called a scalar on A [30, 42]:

xAA; α = α ;xAA iff α ⊑ IA.

Therefore, in the matrix form, the scalar (fuzzy) defined above has the form of:
u 0 0 · · ·

0 u 0 · · ·

0 0 u · · ·

...
...
...
. . .


2.4 Types of Categories

The calculus of binary relations plays an important role in the development of logic and
algebra. Furthermore, in computer science categories of binary relations are used to model
programs as well as specifications and properties of programs in the same language. There
have been several attempts [43] to extend the categorical approach from binary to L-fuzzy
relations [62]. In this section, Our purpose is to introduce multiple types of categories and
allegories that are needed to derive our algebraic framework for L-fuzzy relations.

2.4.1 Categories

To be able to make hidden properties of an object exposed to use them for the applications
of new methods, we can use the benefits of categories. Usually a binary relation acts
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between two different sets. Therefore, an algebraic theory for relations should reflect this
kind of typing, i.e., the theory should have a suitable notion of source and target of its
elements. A convenient framework for that is given by category theory [61]. We write
R: A → B to indicate that a morphism R of a category R has source A and target B. The
collection of all morphisms R: A→ B is denoted by R[A,B]. And, the identity morphism
on A is written as IA [66].
Another way of definition for category theory is that it proposes a set of tools to give
legal or formal status to the mathematical concepts and formations. In this approach, it
can take advantage of a directed graph with labels to explain the structure and theories in
mathematics which is called category. The nodes and directed labeled edges of the graph
are called objects and morphisms respectively.
In this chapter, some basic notions of category theory are explained. [6, 61, 62] comprise
comprehensive introductions to this theory. Also, a more formal definition of the category
of L-fuzzy relation can be found in [62] specifically.

Definition 2.4.1. A category C consists of [61]:

1. a class of objects Ob jC,

2. a class of morphisms C[A,B] for every pair of objects A and B,

3. an associative binary (partial) operation; mapping each pair of morphisms f in C[A,B]
and g in C[B,C] to a morphism f;g in C[A,C],

4. for every object A a morphism IA such that for all f in C[A,B] and g in C[C,A] we
have IA; f = f and g;IA = g.

If f is a morphism in C[A,B], we will denote it by f: A→ B.

The following table lists some common categories by specifying their objects and mor-
phisms [61]:
The standard model of these categories is the category Rel of sets and relations, of course.
However, there are many other models. For example, given a complete Heyting algebra
one may form the category Rel(L) of sets and L-valued (or L-fuzzy) relations. Such a
relation R: A→ B is a function from A × B to L assigning to each pair in A × B a degree
of membership in the relation R from Heyting algebra L [63].

To clarify Rel and L-Rel, notice that the category Rel is a special case of the category

9Or it may be indicated by Rel(L).
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Table 2.2: Lists of some common categories by specifying their objects and morphisms.

Category Objects Morphisms

Set sets functions

Rel sets binary relations

[0, 1]-Rel nonempty sets fuzzy relations

L-Rel 9 nonempty sets L-fuzzy relations

PO posets monotone functions
VctF vector spaces over the field F linear functions

L-Rel of L relations if L is the Boolean algebra B of the truth values, i.e., we can use any
of the notations Rel, Rel(B), or Rel({0, 1}) for the category of sets and binary relations
[66]. Obviously, the collection of crisp relations in Rel(L) or L-Rel is equivalent to Rel
[63]. Also, [0, 1]-Rel is the notation to show the the category of sets and fuzzy relations.
As mentioned earlier, a morphism in C[X, Z] can be converted as a relational form of r: X
→ Z. A diagram can illustrate this transformation where nodes and directed labeled arrows
represent objects and morphisms in the category respectively. As an apprehensible exam-
ple, consider morphisms of p: X → Y, q: Y → Z and r: X × Z in category C. Fig. 2.5
illustrates the composition between p and q which is equal to h. i.e. p; q = r.

Figure 2.5: Visual representation of categories.

2.4.2 Allegories

Allegories provide a suitable abstract framework to reason about binary relations [28, 53,
66]. In simple words, allegories are referred to categories fulfilling a certain structural
category Rel of sets and a binary relation between them as morphisms. It is worth noting
that all the basic definitions and properties of allegory are taken from [61] in this section.
The definition of allegory can be generalized as follows:
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Definition 2.4.2. An allegory R is a category satisfying the following:

1. For all objects A and B the class R[A,B] is a lower semilattice. Meet and the in-
duced ordering are denoted by ⊓, ⊑, respectively. The elements in R[A,B] are called
relations.

2. There is a monotone operation ⌣ (called the converse operation) such that for all
relations Q, R: A→ B and S: B→ C the following holds:

(Q; S )⌣ = S⌣ ; Q⌣ and (Q⌣)⌣ = Q.

3. For all relations Q: A→ B and R,S: B→ C we have:

Q ; (R ⊓ S) ⊑ (Q;R) ⊓ (Q;S).

4. For all relations Q: A → B, R: B → C, and S: A → C, the modular law holds as
follows:

Q ; (R ⊓ S) ⊑ Q ; ((R ⊓ Q⌣) ; S).

The category L-Rel of L-fuzzy relations with meet ∩ and conversion ⌣ is an allegory.

Lemma 2.4.1. Let R be an allegory, A,B,C objects of R and Q,R: A→ B, S: B→ C, T: A
→ C, and U,V: A→ A. Then we have:

(1) (IA)⌣ = IA,
(2) (Q ⊓ R); S ⊑ Q; S ⊓ R; S ,
(3) ; is monotone in both arguments,
(4) Q; S ⊓ T ⊑ (Q ⊓ T ; S⌣); S ,
(5) Q; S ⊓ T ⊑ (Q ⊓ T ; S⌣); (S ⊓ Q⌣; T ),
(6) Q ⊑ Q; Q⌣; Q,
(7) IA ⊓ (U ⊓ V); (U ⊓ V)⌣ = IA ⊓ U; V⌣ = IA ⊓ V; U⌣,
(8) Q = (IA ⊓ Q; Q⌣); Q = Q; (IB ⊓ Q⌣; Q).

Definition 2.4.3. Let R be an allegory and Q: A→ B. Then we call:

(1) Q a univalent iff Q⌣ ; Q ⊑ IB,
(2) Q a total iff IA ⊑ Q; Q⌣

(3) Q a map iff Q is univalent and total,
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(4) Q a injective iff Q⌣ is univalent,
(5) Q a surjective iff Q⌣ is total,
(6) Q a bijective iff Q⌣ is a map,
(7) Q a bijection iff Q is a bijective map.

The class of univalent relations, the class of total relations, and, hence, the class of
mappings is closed under composition. For the univalent relations, we have:

(Q; R)⌣; Q; R = R⌣; Q⌣; Q; R

Some other properties of univalent relations are summarized in the next lemma.

Lemma 2.4.2. Let R be an allegory, Q: A→ B be univalent and R, S: B→ C, T: C→ A,
and U: C→ B. Then we have:

(1) Q ;(R ⊓ S) = (Q ; R) ⊓ (Q ; S),
(2) T ; Q ⊓ U = (T ⊓ U ; Q) ; Q.

All properties and proofs, including those not introduced in this section regarding cate-
gories, allegories, and related structures, can be found comprehensively in [28, 61, 62, 63].

2.4.2.1 Distributive Allegories

Consider the collection of binary relations on a fixed set. This structure constitutes a dis-
tributive lattice with a least element [61].
With reference to Table. 2.2, category of L-fuzzy relations which is known as (L-Rel)
combining with meet and converse operations along with the collection of binary relations
on fixed sets generates a distributive lattice including a smallest element. This is our incen-
tive to replace lower semilattices by distributive lattices as the basic order structure.

Definition 2.4.4. A distributive allegory R is an allegory satisfying the following [61]:

1. The classes R[A,B] are distributive lattices with a least element. Union and the least
element are denoted by ⊔, ⊥AB, respectively.

2. For all relations Q: A→ B we have Q ; ⊥BC = ⊥AC.

3. For all relations Q: A→ B and R, S: B→ C, we have Q ; (R ⊔ S) = (Q ; R) ⊔ (Q ;
S).
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Based on the above definition, the allegory L-Rel of L-fuzzy relations with the basic
set operation union is distributive.

Lemma 2.4.3. Let R be a distributive allegory. Then for all Q, R: A→ B and S: B→ C we
have [61]:

1. (⊥AB)⌣ = ⊥BA,

2. ⊥CA; Q = ⊥CB,

3. (Q ⊔ R)⌣ = Q⌣ ⊔ R⌣,

4. (Q ⊔ R) ; S = (Q ; S) ⊔ (R ; S).

As above, all proofs are discussed in [61] clearly.

2.4.2.2 Division Allegories

The next step in the hierarchy of allegories are Division allegories. A Division allegory
can be generated by addition of the residual (also known as division or adjoint) operation
to a Distributive allegory. Division allegories are characterized by the fact that left residual

and right residual are the same as upper left adjoint and upper right adjoint, respectively.
These definitions are detailed more in [28, 61]:

Definition 2.4.5.
A Division allegory R is a Distributive allegory such that ; has an upper left adjoint, i.e.,
for all relations R: B → C and S: A → C there is a relation S/R: A → B (called the left
residual of S and R) such that for all Q: A→ B the following holds:

Q ; R ⊑ S⇔ Q ⊑ S/R. (*)

Considering the above relations, in a Division allegory there is also an upper right adjoint

for ;, which will be denoted by Q\S and called the right residual of S and Q as below:

Q \ S = (S⌣/Q⌣)⌣

Consider the computation:

Q ; R ⊑ S⇔ R⌣ ; Q⌣ ⊑ S⌣

⇔ R⌣ ⊑ S⌣ / Q⌣ (*)

⇔ R ⊑ (S⌣/Q⌣)⌣
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The above computation shows that the operation Q \S satisfies a similar condition than the
other residual.

Another operation can be formed using a combination of both left and right residuals in
the Division allegories. The new operation is called the symmetric version. The symmetric
quotients of the residuals may be defined as [61]

syq (Q, R) := (Q \ R) ⊓ (Q⌣/R⌣).

By definition, this relation is the greatest solution X of the inclusions

Q ; X ⊑ R and X ; R⌣ ⊑ Q⌣.

In the next lemma we have denoted some properties of the residuals [61].

Lemma 2.4.4. Let R be a division allegory and Q, Q1, Q2: A → B, R, R1, R2: B → C,
and S, S1, S2: A→ C. Then we have :

1. Q ⊑ (Q; R)/R and R ⊑ Q \ (Q; R),

2. (S/R); R ⊑ S and Q; (Q \ S ) ⊑ S ,

3. S/(Q \ S ) ⊑ Q and (S/R) \ S ⊑ R,

4. Q2 ⊑ Q1,R2 ⊑ R1 and S 1 ⊑ S 2 implies S 1/R1 ⊑ S 2/R2 and Q1 \ S 1 ⊑ Q2 \ S 2,

5. (S 1 ⊓ S 2)/R = (S 1/R) ⊓ (S 2/R) and Q \ (S 1 ⊓ S 2) = (Q \ S 1) ⊓ (Q \ S 2),

6. S/(R1 ⊔ R2) = (S/R1) ⊓ (S/R2) and (Q1 ⊔ Q2) \ S = (Q1 \ S ) ⊓ (Q2 \ S ).

In the next lemma, we have summarized some basic properties of symmetric quotients

found in both [61, 10].

Lemma 2.4.5. Let R be a division allegory, Q: A→ B, R: A→ C, S: A→ D be relations,
and f: D→ A be a mapping. Then we have:

1. f ; syq (Q , R) = syq (Q ; f⌣ , R),

2. syq(Q,R)⌣ = syq (R , Q),
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3. syq (Q , R) ; syq (R , S) ⊑ syq(Q , S).

As before, all proofs are shown in [61].

Now, we can describe the basic structure in our approach. It consists of three categories:
Heyting, arrow, and fuzzy categories. Detailed explanations are provided in the following
sections for all three categories.

2.4.3 Dedekind Category and Properties (Heyting Category)

There have been several attempts (see [43]) to extend the categorical approach from binary
to L-fuzzy relations. It turned out that all approaches lack a sufficient definition of crisp-
ness, which is fundamental in those theories. In [60] it was shown that the language of
Dedekind categories is too weak to formalize that notion [62]. We will focus on a solution
for this weakness later in the next section.
Among all categorical approaches, we will focus on a crucial one known as Dedekind cat-
egory in this section. Allegories, and Dedekind categories in particular, are a fundamental
tool to reason about relations [49] and are widely used categorical versions of the calculus
of binary relations [62]. Categories of this type are called locally complete division alle-

gories in [28, 65]. It means that a Dedekind category is typically a division allegory which
is a complete distributive allegory or where the distributive lattices are complete Heyting
algebras [28]. We will use the framework of Dedekind categories as a basic theory of
relations [49].

Definition 2.4.6. A Dedekind category D is a division allegory so that every D[A,B] is a
complete Brouwerian lattice. The greatest element in D[A,B] is denoted by xAB [61].

Now, some properties satisfying by a Dedekind category D are summarized as follows
[65]

Definition 2.4.7.

1. For all objects A and B the collection D[A, B] is a complete distributive lattice.
Meet, join, the induced ordering, the least, and the greatest element are denoted by
⊓, ⊔, ⊑, yAB, xAB, respectively.
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2. There is a monotone operation ⌣ (called converse) mapping a relation Q: A→ B to
Q⌣: B→ A such that for all relations Q: A→ B and R: B→ C the following holds:

(Q; R)⌣ = R⌣ ; Q⌣ and (Q⌣)⌣ = Q.

3. For all relations Q: A → B, R: B→ C and S: A → C the following modular law is
satisfies:

(Q; R) ⊓ S ⊑ Q; (R ⊓ (Q⌣; S ))

4. For all relations R: B → C and S: A → C, there is a relation S/R : A → B (called
the left residual of S and R) such that for all X: A→ B the following holds:

X; R ⊑ S ⇔ X ⊑ S/R.

5. Based on the residual operation in the definition above it is possible to define a
right residual by R \ S = (S⌣/R⌣)⌣. This operation is characterized by:

R ; X ⊑ S⇔ X ⊑ R \ S.

For the sake of making the matter more clear, some further properties of Dedekind
categories are indicated as:

Definition 2.4.8. Let D be a Dedekind category, Q: A → B, R: A → D, S: B → C be
relations and U: A→ A be a partial identity, i.e., U ⊑ IA. Then we have [65]:

1. (Q ⊓ R ; xDB) ; S = Q ; S ⊓ R ; xDC,

2. S ; (x ; R ⊓ Q) = x ; R ⊓ S ; Q,

3. U ; Q = U ; xAB ⊓ Q.

All proofs can be found in [53, 54, 61].

It is noteworthy that for every valid universally quantified equation or inclusion its dual
(or opposite) by reversing the direction of composition is also valid. For example, the dual
of the Definition. 2.4.8 (1) which is shown in (2) is also valid for appropriate relations Q,
R, and S.
For further basic properties of relations in a Dedekind category we refer the reader to
[23, 28, 60, 62].
In the following lemma, some basic properties of relations in Dedekind category are col-
lected [60]. We will use such properties throughout the paper and in our implementation.
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Lemma 2.4.6. Let D be a Dedekind category, let A, B, C be objects of D, and for i ∈ I, let
Q1, Q2: A→ B and R1, R2: B→ C be relations. Then:

1. y⌣AB = yBA, x⌣AB = xBA, and I⌣A = IA,

2. xAA ; xAB = xAB ; xBB = xAB ; xBA ; xAB = xAB,

3. Q1 ; yBC = yAB ; R1 = yAC,

4. if Q1 ⊑ Q2 and R1 ⊑ R2 then Q1 ; R1 ⊑ Q2 ; R2,

5. Q1 ⊑ Q1 ; Q⌣1 ; Q1.

All proofs for Lemma. 2.4.6 are described in detail in [61]. Since L–Rel[A, B] is a
complete Heyting algebra, we can obviously consider that L-Rel is a Dedekind category.
Whereas, as mentioned before, crispness is not covered to define as a relation property in
Dedekind category. Therefore, the necessity of introducing another category is felt. This
new form of category is known as Arrow category. To achieve the crispness property of
L-fuzzy relations, up (↑) and down(↓) arrows are defined as new structures in this category
[62].

2.4.4 Arrow category and Properties

As already mentioned, we need an additional concept to define a suitable algebraic theory
of L-fuzzy relations due to the lack of crispness. Now, our focus is on mapping every
relation to its support (↑) and kernel (↓), respectively. In other terms, those operations map
the relation to the greatest 0–1 crisp relation it contains and to the least 0–1 crisp relation it
is included in [61]. We now give an abstract definition [61, 62, 66].

Definition 2.4.9. An arrow category A is a Dedekind category with yAB , xAB for all
objects A and B together with two operations ↑ and ↓ satisfying the following:

1. R↑, R↓: A→ B for all R: A→ B.

2. Q↑ ⊑ R iff Q ⊑ R↓. So, (↑, ↓) is a Galois correspondence.

3. (R⌣ ; S ↓)↑ = R↑⌣ ; S ↓ for all R: B→ A and S: B→ C.

4. (Q ⊓ R↓)↑ = Q↑ ⊓ R↓ for all Q, R: A→ B.

5. if α , yAA is a non-zero scalar then α↑ = IA.
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2.4.4.1 Crispness in Arrow Category

The two new operations ()↑ and ()↓ compute the support and the kernel of a relation, i.e.,
R↑ is the smallest crisp relation that contains R, and R↓ is the largest crisp relation that is
contained in R. We want to explain this fact by using the matrix model below. Axiom (5)
clearly indicates that ()↑ maps all non-zero elements from L to 1 [66].
Relations between finite sets can be represented by matrices [59]. As an example [66],
let us consider two sets of criteria for cars. A person might like (1) or dislike (0) standard
transmission in a specific car. In addition, a person may rate the maximum speed of a car as
insufficient (0), sufficient (s), or superior (1). In other words, we have two Heyting algebras

given by the Hasse diagrams shown as below:

1

0

1

s

0

In the following matrix, we take their Cartesian product (which is again a Heyting algebra)
as L.

Now, given a set of persons P = {Dave, Elizabeth, John} and of cars C = {BMW, Dodge,
Fiat, Ferrari, Mercedes, Porsche} we may define the relation L: P→ C of a person liking a
specific car by the following matrix:

L =


BMW Dodge Fiat Ferrari Mercedes Porsche

Dave (0, s) (1, 0) (0, 0) (0, 1) (1, s) (1, 1)
Elizabeth (0, 1) (1, 1) (0, s) (0, 1) (1, 1) (0, 1)

John (1, s) (0, 0) (0, 0) (1, 1) (1, 1) (1, 1)


Each row and each column of the matrix above corresponds to a person and a car, re-
spectively. For example, the value (0,s) in the second row and third column indicates that
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Elizabeth does not like the transmission of the Fiat but rates its speed as sufficient.

With respect to the explanation of the previous paragraph we obtain:

Example 2.4.1.

L↓ =


BMW Dodge Fiat Ferrari Mercedes Porsche

Dave (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 1)
Elizabeth (0, 0) (1, 1) (0, 0) (0, 0) (1, 1) (0, 0)

John (0, 0) (0, 0) (0, 0) (1, 1) (1, 1) (1, 1)



L↑ =


BMW Dodge Fiat Ferrari Mercedes Porsche

Dave (1, 1) (1, 1) (0, 0) (1, 1) (1, 1) (1, 1)
Elizabeth (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

John (1, 1) (0, 0) (0, 0) (1, 1) (1, 1) (1, 1)


Definition 2.4.10. L-Rel with ↑ and ↓ is an arrow category [61].

Definition 2.4.11. A relation R: A→ B of an arrow category is called crisp iff R↑ = R (or
equivalently R↓ = R) [62].

We now turn to another definition of Arrow category. The following definition and its
proof are presented in [61]:

Definition 2.4.12. Let L be a complete Brouwerian lattice with 0 , 1. Then L-Rel together
with ↑ and ↓ is an arrow category.

2.4.4.2 Properties in Arrow Category

Basic Properties of Relations in Arrow Category In the next lemma, we can found a
comprehensive collection of basic properties of relations in arrow categories used in this
paper [61]. The complete proof for the Lemma. 2.4.7 can also be found in the same paper.

Lemma 2.4.7. Let A be an arrow category and Q,R: A→ B, S: B→ C, T: A→ C.
Then we have:
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1. I
↑

A = IA , yAA,

2. (R↓)↑ = R↓,

3. (R↑)↓ = R↑,

4. ↑ is a closure10 and ↓ is a kernel operation,

5. R = R↑ iff R↓ = R↑ iff R↓ = R,

6. y↑AB = yAB and x↓AB = xAB,

7. (R⌣; S ↑)↑ = (R↑)⌣ ; S ↑,

8. (R⌣)↑ = (R↑)⌣ and (R⌣)↓ = (R↓)⌣

9. (R; S ↓)↑ = R↑ ; S ↓ and (R↓; S )↑ = R↓ ; S ↑,

10. (R; S ↑)↑ = R↑ ; S ↑ and (R↑; S )↑ = R↑ ; S ↑,

11. (Q ⊓ R↑)↑ = Q↑ ⊓ R↑,

12. Q↑ \ T ↓ = (Q↑ \ T )↓ ⊑ (Q \ T )↓ and (Q \ T )↑ ⊑ Q↓ \ T ↑,

13. T ↓ / S ↑ = (T/S ↑)↓ ⊑ (T/S )↓ and (T/S )↑ ⊑ T ↑ / S ↓.

Closure Properties of the Class of Crisp Relations in Arrow Category In the next lemma,
some closure properties of the class of crisp relations in Arrow categories are collected [61]:

Lemma 2.4.8. Let A be an arrow category and Qi, Q: A→ B for i ∈ I, R: A→ C, and S:
B→ C be crisp relations. Then the following holds:

1.
⊔

i∈I Qi and
�

i∈I Qi are crisp,

2. Q⌣ is crisp,

3. Q ; S is crisp,

4. R / S and Q \ R are crisp.
10Also called as support.
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Symmetric Quotient Property in Arrow Category Symmetric quotients in arrow cate-
gories is considered as one of the most important properties in this category.

Definition 2.4.13. Let A be an arrow category with Q: A→ B and R: C→ B to be crisp
relations. if syq(Q,R)↓ is surjective, then the following holds [61]:

Q ; syq(Q,R)↓ = R.

2.4.4.3 Boolean Arrow category

Definition 2.4.14. An arrow category A is said to be a Boolean arrow category if there is
a Boolean algebra B and a mapping F: A → B from objects of A to elements of B, such
that for all objects A and B in A, we have F(A) ≤ F(B) in B iff there is an arrow f : A→ B
in A [2].

Lemma 2.4.9. Let A be a Boolean arrow category and Q, R: A→ B. Then we have [61,
62]:

1. Q↓ = Q
↑

and Q↑ = Q
↓
,

2. Q↑ ⊔ R↓ = (Q↑ ⊔ R)↓,

3. Q↑ → R↓ = (Q→ R↓)↓ and (Q→ R)↑ = Q↓ → R↑.

Proofs of the above properties in boolean arrow categories can be found in [61].

2.4.5 Fuzzy Category

Fuzzy Category F is an Arrow category extended by ∗-based (∗ , ;∗ and →∗ ) operations
[1, 65].

1. if Q, R: A→ B:

◦ Q ∗ R: A→ B,

◦ Q ∗ R↓ = Q ⊓ R↓,

◦ (Q ∗ R)⌣ = Q⌣ ∗ R⌣.

2. if Q: A→ B and R: B→ C:

◦ Q ;∗ R: A→ C,



CHAPTER 2. RELATION-ALGEBRAIC PRELIMINARIES 47

◦ Q ;∗ R↓ = Q; R↓,

◦ (Q ;∗ R)⌣ = R⌣ ;∗ Q⌣.

3. if R : B→ C and S: A→ C, and X: A→ B:

◦ S /∗ R: A→ B,

◦ X ;∗ R ⊑ S⇔ X ⊑ S /∗ R.

L-REL is an example for all Heyting, Arrow, and Fuzzy categories. In REL (regular/Boolean/crisp
relations), the arrow operations are identity and ∗ to be meet.
This means that any theory developed in a fuzzy category applies to both situations.

2.4.6 Relational Powers

The next construction we are interested in is an internal version of a power set, i.e., the
object of all subsets of a given object. As already mentioned, in the case of L-fuzziness,
we are interested in L-fuzzy subsets, of course [1].

Definition 2.4.15. An object P(A) together with a relation ϵ: A→ P(A) is called a relational
power iff

1. syq(ϵ, ϵ)↓ = IP(A),

2. syq(R, ϵ)↓ is total for every R: A→ B.

we will use the abbreviation Λ(R) = syq(R⌣, ϵ)↓ [1].

Now, we obtain the following lemma. A proof can be found in [1].

Lemma 2.4.10. Let LB and LC be a relational power and R : A→ B and S: LB → C be a
relations. Then we have:

• Λ(R) is a map.

• Λ(R); ϵ⌣ = R.

• Λ(R); Λ(S ) = Λ(Λ(R); S ).

Also, we can define Ω = (ϵ \ ϵ)↓ so that we have Ω (M, N) = 1 iffM(a) ⩽ N(a) for all a
∈ A [1].
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2.4.7 Relational Product

Relational product as a type of relational construction in Dedekind categories is discussed
in this section. So far, we represented these properties in Lemma. 2.2.2. Now, we look them
as an abstract definition of relational product. This definition is provided in the context
of arrow categories and requires the projections to be crisp. The definition of relational
product can be found in [61]:

Definition 2.4.16. An object A × B together with two crisp relations π: A × B→ A and ρ:
A × B→ B is called a relational product iff the following holds [61]:

π⌣ ; π ⊑ IA, ρ⌣ ; ρ ⊑ IB, π⌣ ; ρ = xAB, π⌣ ; π ⊓ ρ⌣ ; ρ = IA×B

R has relational products iff for every pair of objects a relational product does exist.



Chapter 3

Formal Concept Analysis

Formal Concept Analysis (Ganter et al., 1999; Wille [57], 1982) is a mathematical frame-
work that underlies many methods of knowledge discovery and data analysis. Over the past
30 years the initial theory has been combined with and enriched by other research domains
in mathematics including description logics and conceptual graphs [50]. In this chapter,
two fundamental definitions including Formal Concept Analysis (FCA) and Fuzzy Formal
Concept Analysis (FFCA) are defined along with some related disciplines.

3.1 Formal Concept Analysis (FCA) and related disciplines

Formal concept analysis (FCA), achieved aims using some formulations in the German
standards on concepts and conceptual systems; these standards are seen as a general aid
in sciences, economy, and administration for a better understanding and use of ”concep-
tual tools.” The standards are based on the philosophical understanding of a concept as a
unit of thoughts consisting of two parts: the extension and the intension (comprehension);
the extension covers all objects (or entities) belonging to the concept while the intension
comprises all attributes (or properties) valid for all those objects. A set-theoretic model for
these relationships is the root of formal concept analysis. This model yields not only an
approach to data analysis, but also methods for formal representation of conceptual knowl-
edge [58].

3.1.1 Overview of the FCA Approach

Formal concept analysis starts with the primitive notion of a formal context and then con-
tinues with the notion of formal concept. Finally, concept Lattice of a formal context is
generated to illustrate the relations. These structures constitute the basis of formal concept

49
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analysis. This is a lattice-based method for the analysis of hierarchies of concepts and has
especially proved to be very useful in many computer science applications, for instance, in
knowledge representation and discovery, information retrieval, data mining, and program
analysis [10].
To put it more simply, in FCA, data is represented as a conceptual hierarchy, organized as
a concept lattice that relates objects and their properties [46]. In other words, two notions
can be derived by FCA: formalisation of concepts and conceptual thinking and also, how
objects can be hierarchically studied together to identify groups of elements or objects with
common sets of attributes as a well-established technique [4].
The processing steps are illustrated in Fig. 3.1 [4]. The initial step to generate FCA is the
source code or input data. Then, formal contexts and concepts are made by finding the
relations among all objects of input data using FCA mapping. The concept lattices can be
formed as the final step in the FCA overall approach as shown in Fig. 3.1.

Figure 3.1: The overall approach of FCA.

In the next section, formal context is discussed including some examples to clarify it com-
prehensively.

3.1.2 Formal Context in FCA

To analyze the hierarchies of concepts, formal context is the first step, which consists of a
non-empty set of objects, a non-empty set of attributes and a relation with the objects as
source and the attributes as target [10].
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Definition 3.1.1. A formal context is a triple K = (G, M, I), where G and M are sets, I
⊆ G ×M is a binary relation from G to M. In a formal context (G, M, I), G is interpreted
as the set of objects, M the set of attributes, and (G, M) ∈ I reads as that the object G has
property M [10, 45].

In the literature on the formal concept analysis (e.g., in [33, 34]), the relation frequently
is denoted with the letter I, called the incidence relation, and typed with G (from the Ger-
man word ”Gegenstande”) as source and M (from the German word ”Merkmale”) as target
1 [10].
Let us illustrate the notion of concept of a formal context using the data in ”bodies of water”
2 table again, which is a very well-known real example. The data in the example is taken
from a semantic field study, where different kinds of bodies of water were systematically
categorized by their attributes. For the purpose here it has been simplified.

Example 3.1.1. In the following table, the data table represents a formal context.

Gob jects = { canal, channel, lagoon, lake, maar, puddle, pond, pool, reservoir, river, rivulet,
runnel, sea, stream, tarn, torrent, trickle }

Mattributes = { temporary, running, natural, stagnant, constant, maritime }

I = { ⟨ canal, running ⟩, ⟨ Lagoon, maritime ⟩, ⟨ maar, natural ⟩, ⟨ puddle, temporary⟩, ⟨
tarn, constant⟩ . . . }

Considering Fig. 3.2, relation I is denoted a subset of G Cartesian product M or simply,
a subset of pairs.
To indicate that a specific object has a specific attribute or not, the table or matrix contents
are filled by 1, 0 or yes, no respectively. Since there are some binary values, I can be called
as a binary relation in FCA.

3.1.2.1 Derivation operators or mappings in Formal Context

The way FCA looks at concepts is that it formulates the following definition: ”A concept
is considered to be a unit of thought constituted of two parts: its extent and its intent.”
The extent consists of all objects belonging to the concept, while the intent comprises all
attributes shared by those objects [50].

1For representing incidence relations frequently so-called cross-tables are used. These are nothing else
than specific representations of Boolean matrices or database tables.

2https:\\en.wikipedia.org\wiki\Formal_concept_analysis
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Figure 3.2: Example for a formal context - Bodies of Water.

Definition 3.1.2. The operations △: P(G)→ P(M) and ▽: P(M)→ P(G) are defined by
[10, 45, 50, 58]:

1. For a set of objects O ⊆ G, the set of common attributes can be defined by:

O△ 3 = { m ∈M | (g, m) ∈ I for all g ∈ O }

2. For a set of objects A ⊆M, the set of common objects can be defined by:

A▽ 4 = { g ∈ G | (g, m) ∈ I for all m ∈ A }

In △ and ▽ definitions, P(G) shows power set of objects and P(M) is power set of at-

tributes.
3Upper bounds in the case of ordered sets [10].
4Lower bounds in the case of ordered sets [10].
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Let us illustrate the notion of concept of a formal context using the data in Fig. 3.2.

Example 3.1.2. Using Example. 3.1.1 we get:

{lagoon, lake,maar, pond, pool, sea, tarn}△ = {natural, stagnant, constant}

{running, natural, constant}▽ = {river, rivulet, runnel, stream, torrent, trickle}

3.1.3 Formal Concept in FCA

Pair (O, A) is a formal concept:

(i) Every object in O has every attribute in A.

(ii) For every object in G that is not in O, there are some attributes in A that the mentioned
object does not have those attributes.

(iii) For every attribute in M that is not in A, there are some objects in O that do not have
that attribute.

Precisely, the definition of formal concept is described as below:

Definition 3.1.3. pair (O, A) is a formal concept of a context (G, M, I) if [10, 50, 58]:

O ⊆ G, A ⊆M, O△ = A, A▽ = O.

Based on the relation I: G→M, a formal concept then is a pair (O, A) from P(G) × P(M)
such that the equations O△ = A and A▽ = O hold [10].

Example 3.1.3. According to Example. 3.1.2 we have:{
lagoon, lake, maar, pond, pool, sea, tarn

}△
=
{
natural, stagnant, constant

}
and also,{

natural, stagnant, constant
}▽
=
{
lagoon, lake, maar, pond, pool, sea, tarn

}
So that the following pair is a formal concept:(

{lagoon, lake, maar, pond, pool, sea, tarn}, {natural, stagnant, constant}
)
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3.1.4 Concept Lattice of a Formal Context in FCA

By trying to join formal concepts in formal concept analysis, a concept lattice can be pro-
duced as follows [12, 10, 58]

Definition 3.1.4. If (O1, A1) and (O2, A2) are two formal concepts, then (O1, A1) is defined
to be less general or equal than (O2, A2), denoted by (O1, A1) ⊑ (O2, A2), if O1 ⊆ O2 or,
equivalently, A1 ⊇ A2. With this relation the set

B(I) :=
{
(O, A) ∈ 2G × 2M | O△ = A ∧ A▽ = O

}
of all concepts constitutes a complete lattice

( B(I), ⊑
)
, in [34] called concept lattice ([7]

speaks of a Galois lattice).

In other words, there is a natural hierarchical ordering relation between the concepts of
a given context that is called the subconcept-superconcept relation [50].
For any two concepts (O1, A1) and (O2, A2):(

O1, A1
)
≤
(

O2, A2
)
⇐⇒ O1 ⊆ O2 ⇐⇒ A2 ⊆ A1.

A concept C1 = (O1, A1) is called a subconcept of a concept C2 = (O2, A2) (or equivalently,
C2 is called a superconcept of a concept C1) if the extent of C1 is a subset of the extent of
C2 (or equivalently, if the intent of C1 is a superset of the intent of C2).

Example 3.1.4. Concept Lattice corresponding to the formal context Bodies of Water in
Fig. 3.2:
Table 3.2 can be derived from the line diagram in Fig. 3.3 by applying the following reading
rule: An object is described by an attribute if and only if there is an ascending path from
the object to the attribute (attributes). Objects are located below and attributes are located
above concept circles. By way of illustration, to retrieve the intent of a formal concept
one traces all paths leading up from the corresponding node in order to collect all attributes
[50].
The extent of a concept consists of those objects from which an ascending path leads to the
circle representing the concept. The intent consists of those attributes to which there is an
ascending path from that concept circle (in the diagram of the Fig. 3.3). In this diagram the
concept immediately to the left of the label reservoir (which is unnamed) has the intent
stagnant and natural and the extent puddle, maar, lake, pond, tarn, pool, lagoon, and sea.
A concept is a subconcept of all concepts that can be reached by travelling upward. This
concept will inherit all attributes associated with these superconcepts [50].
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Figure 3.3: Concept Lattice corresponding to the formal context ”Bodies of Water”.

Given the following example, We clarify these concepts:

Example 3.1.5. A labelled line diagram of the concept lattice of the context given by Fig.
3.4 is shown in Fig. 3.5. The little circles represent the 65 concepts of the context and the
ascending paths of line segments represent the subconcept-superconcept-relation (such a
path may change its direction at a meeting of lines only if there is a little circle or a dot)
[58]. As an example, by following the red arrows from Charlotte (object) in ascending
paths, four code numbers (3, 4, 5, and 7) of social events (attributes) can be read in Fig.
3.5.

3.2 Fuzzy Formal Concept Analysis (FFCA) and related
disciplines

To prepare a brief summary, fuzzy formal concept analysis is an extension of the original
formal concept analysis. In fuzzy formal concept analysis, degrees are taken from a scale
L instead of Boolean values .
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Figure 3.4: Participation of social events by some ladies in Old City.

Figure 3.5: Concept lattice of the formal context in Fig. 3.4.
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3.2.1 Overview of the Fuzzy FCA (FFCA) Approach

Besides the ordinary set, fuzzy set theory permits uncertainty information that is directly
represented by membership value in the range of [0, 1]. The membership value indicates the
grade of membership of set elements. If an element is mapped to the value 0, the element is
not included in the fuzzy set, and 1 describes a fully included element. In order to analyze
vague data set of uncertainty information, Fuzzy Formal Concept Analysis (Fuzzy FCA)
incorporates fuzzy set theory into FCA. It extracts useful information with a unit of fuzzy
concept from given fuzzy formal context with a confidence threshold, and constructs fuzzy
lattice by order relations between the fuzzy concepts [56, 67, 68].

3.2.2 Fuzzy Formal Context in FFCA

A fuzzy formal context is a triple K := (G, M, I f ) where G is a finite set of objects, M is a
finite set of attributes, and I f is a fuzzy set on domain G ×M.
Each relation (g, m) ∈ I f has a membership value in [0, 1] [67, 68].

Simply in FFCA, I f : G × M −→ L means that a fuzzy binary relation assigns a degree
I f (g, m) ∈ L to each g ∈ G and each m ∈ M to show that object g has attribute m with
degree I f .
A fuzzy formal context can also be represented as a cross-table as presented in Table. 3.1.
The context has objects as G = { O1, O2, O3, O4 }. It also has attributes as M = { a, b, c, d }.
Each relation between objects and attributes is represented by a membership value [68].

Table 3.1: Fuzzy Formal Context.

Attribute List
a b c d

O1 0.2 0.1 0.9 0.9
O2 1.0 0.4 0.3 0.1
O3 0.0 0.4 0.2 0.1
O4 0.2 0.1 0.7 0.0

3.2.2.1 Confidence Threshold T in Fuzzy FCA (FFCA)

A confidence threshold T has an interval [t1, t2], where 0 ≤ t1 < t2 ≤ 1. By using the
confidence threshold T, we can eliminate some relations that are out of the interval values
from a given fuzzy context. The confidence threshold T can be set by user according to
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the application or the domain knowledge. For instance, Table. 3.3 shows a fuzzy formal

context with T = [0.3, 1.0] [67, 68].

Table 3.2: Fuzzy formal context with T = [0.3, 1.0].

Attribute List
a b c d

O1 − − 0.9 0.9
O2 1.0 0.4 0.3 −

O3 − 0.4 − −

O4 − − 0.7 −

3.2.2.2 Derivation operators or mappings in Fuzzy Formal Context

Definition 3.2.1. Given two fuzzy sets O ⊆G of objects and a fuzzy set A ⊆M of attributes,
two operator △ and ▽ are defined respectively:

1. O△(m) =
∧

g∈G

(
O(g) −→ I f (g,m)

)
2. A▽(g) =

∧
m∈M

(
A(m) −→ I f (g,m)

)
3.2.3 Fuzzy Formal Concept in FFCA

Definition 3.2.2. Similar to Formal Concept Analysis (FCA), pair (O, A) ∈G ×M is called
a fuzzy formal concept if O△ = A and A▽ = O for O ⊆ G and A ⊆M. The fuzzy sets O and
A are called the extent and intent of the concept, respectively [56, 67, 68].

Example 3.2.1. The following table indicates fuzzy formal concepts of Table. 3.2 [68].

Table 3.3: Fuzzy formal context with T = [0.3, 1.0].

Extents Intents
C1 { } {a(1.0), b(1.0), c(1.0), d(1.0)}
C2 {O2(0.3)} {a(1.0), b(0.4), c(0.3)}
C3 {O1(0.9)} {c(0.9), d(0.9)}
C4 {O2(0.4),O3(0.4)} { b(0.4) }
C5 {O1(0.9),O2(0.3),O4(0.7)} { c(0.7) }
C6 {O1(1.0),O2(1.0),O3(1.0),O4(1.0)} { }
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Example 3.2.2. Let K = (X, Y, R) be an L-fuzzy context where X = { xl, x2, x3 } is a
symptom set, Y = { yl, y2, y3 } an illness set, L = { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1 } and the L-fuzzy relation defined as follows [17]:

Table 3.4: Symptom-Illness L-Fuzzy Relations with L = [0, 1].

symptom List
y1 y2 y3

x1 0.6 0.6 0
x2 0.9 0.5 0.3
x3 1 0.2 0.7

that represents the relationship between the illnesses and the symptoms. Applying the up

and down triangles and generating all fuzzy concepts, we construct the L-fuzzy concept
lattice in the next section formed by following L-fuzzy concepts.

A1 =
{

x1(0.3), x2(0.3), x3(0.3)
}
,

B1 =
{

y1(0.7), y2(0.7), y3(0.7)
}
,

A2 =
{

x1(0.3), x2(0.3), x3(0.4)
}
,

B2 =
{

y1(0.7), y2(0.6), y3(0.7)
}
,

A3 =
{

x1(O.3), x2(O.3), x3(0.5)
}
,

B3 =
{

y1(0.7), y2(0.5), y3(0.7)
}
,

A4 =
{

x1(O.3), x2(O.3), x3(0.6)
}
,

B4 =
{

y1(0.7), y2(0.4), y3(0.7)
}
,

A5 =
{

x1(O.3), x2(O.3), x3(0.7)
}
,

B5 =
{

y1(0.7), y2(0.3), y3(0.7)
}
,

A6 =
{

x1(0.4), x2(0.4), x3(0.4)
}
,
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B6 =
{

y1(0.6), y2(0.6), y3(0.6)
}
,

A7 =
{

x1(O.4), x2(O.4), x3(0.5)
}
,

B7 =
{

y1(0.6), y2(0.5), y3(0.6)
}
,

A8 =
{

x1(O.4), x2(O.4), x3(0.6)
}
,

B8 =
{

y1(0.6), y2(0.4), y3(0.6)
}
,

A9 =
{

x1(0.4), x2(0.4), x3(0.7)
}
,

B9 =
{

y1(0.6), y2(0.3), y3(0.6)
}
,

A10 =
{

x1(0.5), x2(0.5), x3(0.5)
}
,

B10 =
{

y1(0.6), y2(0.5), y3(0.5)
}
,

A11 =
{

x1(O.5), x2(O.5), x3(0.6)
}
,

B11 =
{

y1(0.6), y2(0.4), y3(0.5)
}
,

A12 =
{

x1(O.5), x2(O.5), x3(0.7)
}
,

B12 =
{

y1(0.6), y2(0.3), y3(0.5)
}
,

A13 =
{

x1(0.6), x2(0.5), x3(0.5)
}
,

B13 =
{

y1(0.6), y2(0.5), y3(0.4)
}
,

A14 =
{

x1(O.6), x2(O.6), x3(0.6)
}
,

B14 =
{

y1(0.6), y2(0.4), y3(0.4)
}
,

A15 =
{

x1(O.6), x2(O.6), x3(0.7)
}
,
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B15 =
{

y1(0.6), y2(0.3), y3(0.4)
}
,

A16 =
{

x1(O.6), x2(O.7), x3(0.7)
}
,

B16 =
{

y1(0.6), y2(0.3), y3(0.3)
}
.

For every L-fuzzy concept, the first and the second lines represent the first and second
elements of the pair, respectively. Moreover, to interpret an L-fuzzy concept we look at the
membership of the objects and attributes which stand out from the others. For example, if
we look at the L-fuzzy concept (A8, B8), we can see that three illnesses y1, y2, and y3 have
the degrees 0.6, 0.4, and 0.6, respectively. Likewise, this concept has three symptoms x1,
x2, and x3 with degrees 0.4, 0.4, and 0.6, respectively. Then we can say that the patients
having the illnesses yl and y3 have mainly the symptom x3, and this symptom appears in a
least level in the illness y2.

It is necessary to note that a concept is only given by sets (A, B) that satisfy A△ = B
and B▽ = A. For table. 3.4, in total we have 11 ∧ 3 = 1,331 subsets of G (objects) and 11
∧ 3 = 1,331 subsets of M (attributes). This gives 1,331 ∗ 1,331 = 1,771,561 pairs of such
sets. Only a few of those pairs are concepts.

3.2.4 Concept Lattice of a Fuzzy Formal Context in FFCA

Applying concepts of O△(m) and A▽(g) and using the set of all formal fuzzy concepts, we
can construct the L-fuzzy concept lattice formed by the L-fuzzy concepts.

Example 3.2.3. Considering all concepts in Example. 3.2.2, the related lattice is generated
in Fig. 3.6 [17].

The circles represent the L-fuzzy concepts. We take the objects and attributes of the con-
text the join-irreducible and meet-irreducible elements of L, respectively. We see that the
subset of join-irreducible elements of the lattice {2, 3, 4, 5, 6, 10, 13, 16} is represented
by shaded lower half-circles and the meet-irreducible elements {1, 5, 6, 9, 12, 13, 14, 15},
by shaded upper half-circles. The L-fuzzy concepts 5, 6 and 13 are both join and meet-

irreducible elements.

In the graph of Fig. 3.6, we also look at the hierarchy of concepts through the lines
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Figure 3.6: L-fuzzy concept lattice formed by L-fuzzy concepts in example of symptom-
illness.

between them. In simple words, the graph shows the order between concepts. If there is a
line between two concepts, then the one which is drawn lower is smaller than the one which
is drawn higher. Such a graph is called a Hasse diagram of an ordered set. For example,
the concepts (A11, B11) and (A13, B13) are in no order relationship, i.e., neither (A11, B11) is
smaller than (A13, B13) nor vice versa.

Definition 3.2.3. Similar to Concept lattice in FCA, we have the following hierarchical
ordering in FFCA:

(X1, Y1) ≤ (X2, Y2) when X1 ⊆ X2 or Y1 ⊇ Y2.

Example 3.2.4. Fig. 3.7 illustrates fuzzy concept lattice of the concepts in Table. 3.3.

As an example, considering (A14, B14) and (A15, B15) in Example. 3.2.2, A14 ⊆ A15 or
B15 ⊆ B14:

x1/O.6 ≤ x1/O.6 and x2/O.6 ≤ x2/O.6 and x3/0.6 ≤ x3/0.7
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Figure 3.7: Fuzzy Concept Lattice.

OR
y1/0.6 ≤ y1/0.6 and y2/0.3 ≤ y2/0.4 and y3/0.4 ≤ y3/0.4

For fuzzy sets, the term of subset just means that the degree of each element in the smaller
set is less or equal to the degree of that element in the bigger set.



Chapter 4

Relational Approach

4.1 Relational Concept Analysis

So far, working on two types of boolean and fuzzy forms of the relations has been the core
of our focus in this thesis. Also, we figured out formal and fuzzy formal contexts and sub-
sequently, we derived concepts to be able to generate the related lattices. Now, we look at
all those definitions relation-algebraically getting through adding some arrows and creating
some special changes in the former formulas.

Generally, this chapter is dealing with a relational style of the concept analysis. Ac-
complishing this goal is totally associated with presenting new definitions of Up and Down

triangles (△ and ▽ respectively) using a relational point of view.

Generally, we want to show in the case of L-fuzzy relations and subsets that a formal
concept is completely determined by its extent (or by its intent), i.e., it is determined by
its set of object (or by its set of attributes). First, we define partial identities, which char-
acterize formal concepts as a pair, the object set of a formal concept (called extents), and
the attribute set of a formal concept (called intents) [1]. In other words, it is suggested to
consider a set of objects or a set of attributes rather than pairs of them dealing with formal
concepts. This is the key behind the definition of partial identity. We also take advantage
of visual representations of the new relational approach for better understanding.

We will phrase our approach in terms of abstract arrow resp. fuzzy categories as intro-
duced in Section. 2.4. Since regular relations establish a special case of fuzzy categories,
we cover fuzzy as well as regular concept analysis within the same framework.

64
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Definition 4.1.1. Let I be a relation such that I: G −→ M, i.e., a relation between objects

and attributes, △: PL(G) −→ PL(M), and ϵ1: G −→ 2G (M −→ 2M). Then we have:

△ = syq
(
(ϵ \ I)⌣, ϵ

)↓
= syq

(
I⌣/ϵ⌣, ϵ

)↓
Definition 4.1.2. Let O ∈ G, A ∈M, I be a relation such I: G −→M, i.e., a relation between
objects and attributes, ▽: PL(M) −→ PL(G), and ϵ: G −→ 2G (M −→ 2M). Then we have:

▽ = syq
(
(ϵ \ I⌣)⌣, ϵ

)↓
= syq

(
I/ϵ⌣, ϵ

)↓
△ maps sets of objects to the sets of attributes and conversely, ▽ maps sets of attributes

to the sets of objects. There can be a confusion here between a relation I and the identity

relation I. I here is not I, it is an arbitrary relation between G and M.
Accordingly, the composition of the two above functions is defined as below [10]

Lemma 4.1.1. Consider I: G −→ M be a relation and ϵ: G −→ 2G (M −→ 2M), then we
can derive:

△ ; ▽ = syq
(

I / (ϵ \ I), ϵ
)↓

Proof 4.1.1. Now, we indicate the proof of above equation (△ ; ▽) step by step:

△; ▽ = syq
(
(ϵ \ I)⌣, ϵ

)↓
; syq

(
(ϵ \ I⌣)⌣, ϵ

)↓
= syq

(
(I/ϵ⌣); syq(ϵ, I⌣/ϵ⌣)↓, ϵ

)↓
∗ Lemma. 2.4.5 [1 and 2]

= sqy
(
I/syq(I⌣/ϵ⌣, ϵ)↓; ϵ↓, ϵ

)↓
= syq

(
I/(I⌣/ϵ⌣)⌣, ϵ

)↓
= syq

(
I/(ϵ \ I), ϵ

)↓
.

Based on the relations represented in Definition. 4.1.1, the visual representation of the
above definitions can be illustrated as the following diagram: As previously stated, G and

M represent the sets of objects and attributes, respectively. Also, LG is denoted the rela-

tional power set of objects and LM is denoted the relational power set of attributes.
This diagram is later expanded with other relational concepts.

1Aforementioned, we have also the relation ϵ (epsilon) between a set (for example A) and its powerset
P(A) (set of all subsets of A), i.e., ϵ(a,M) = True if a ∈ M or False otherwise, or simply ϵ(a,M) = (a in M). In
the other words, ϵ: G −→ 2G (M −→ 2M).
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LG LM

G M
I

ε ε

▽

△

Figure 4.1: Visual representation of relational concepts - 1

4.1.1 Partial Identity of Formal Concepts

As mentioned earlier, not all pairs of objects and attributes are included in the concepts and
are not used in creating the lattice.
Using up-triangle and down-triangle, we can check which sets are concepts by generating
the partial identities. Finding concepts can be done by focusing only on the object part (I ⊓
△;▽) or the attribute part (I ⊓ ▽;△). These partial identities based on objects and attributes
are also known as extents and intents, respectively.
So, in this section our focus is on the definitions of partial identities of formal concepts
both on boolean and multi-valued contexts.

Previous work on relation algebraic proceeds toward generating partial identities using
regular relation of identity, up-triangle, and down-triangle. In fuzzy area, a partial identity
iG(I) is characterized on the relational power of G (objects). Correspondingly, iM(I) is
characterized on the relational power of M (attributes) [1, 10]. Now, we can summarize
the partial identities as below [1]:

Definition 4.1.3. We define two relations iG : LG → LG, and iM : LM → LM by

iG = ILG ⊓ △; ▽,

Since iG is a crisp relation, equally we have:

iG(A, A) = 1⇔ A△▽ = A.

iG(A, A) only represents the set of objects that are concepts.

iM = ILM ⊓ ▽; △,

Also since iM is a crisp relation, equally we have:
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iM(B, B) = 1⇔ B▽△ = B.

iM(B, B) only represents the set of attributes that are concepts.

So, using extents or intents (or partial identities), we can say that which sets are con-
cepts.
All partial identities are addressed in the implementation part of this research.

Definition 4.1.4. Before starting the definition of iGM, it is worthy to mention some addi-
tional constructions in Arrow categories that we used throughout the thesis. Considering
the relational product of two objects A and B (A × B) and two crisp relations π: A × B→
A and ρ: A × B→ B, we have:

1. π⌣; π ⊑ IA,

2. ρ⌣; ρ ⊑ IB,

3. ILG×LM = π; π⌣ ⊓ ρ; ρ⌣.

Definition 4.1.5. Operation ⃝< is called pairing or fork. The reason behind this naming is
simple. As an example, considering two relations M and N, (M ⃝< N) relates an element a
∈ A with a pair (b, c) ∈ B × C iff (a, b) ∈ M and (a, c) ∈ N. So, this construction pairs two
elements that are related to a by M resp. N.
So, we have the definition of⃝< as follows:

M⃝< N = M; π⌣ ⊓ N; ρ⌣.

It is worth noting that swap = ρ⃝< π.

Also, we have the definitions of⃝> and ⊗ as below:

• M⃝> N = π; M ⊓ ρ; N,

• M ⊗ N = π; M; π⌣ ⊓ ρ; N; ρ⌣.

Lemma 4.1.2. In addition we have more properties as:

• (M⃝< N)⌣ = M⌣⃝> N⌣,

• (M⃝> N)⌣ = M⌣⃝< N⌣,

• M ⊗ N = π; M⃝< ρ; N,
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• M ⊗ N = M; π⌣⃝> N; ρ⌣

• (M ⊗ N)⌣ = M⌣ ⊗ N⌣,

• IA×B = IA ⊗ IB.

Proofs of properties in Lemma. 4.1.2 can be found in [53].

Definition 4.1.6. Considering I: G −→M be a relation, ϵ: G→ LG (M→ LM), iGM : LG ×

LM −→ LG × LM, and π and ρ are referred to projection relations as π: P(G) × P(M) →
P(G) and ρ: P(G) × P(M)→ P(M).
The relation iGM refers to those pairs of sets (A, B) which are concepts:

iGM = ILG×LM ⊓ (△ ⊗ ▽); swap. [1]

Therefore, using Definition. 4.1.4 iGM equals to:

iGM = I ⊓ π; △; ρ⌣ ⊓ ρ;▽; π⌣.

In the case of concrete relations and since iGM is a crisp relation, we have:

iGM

(
(A, B), (A, B)

)
= 1⇔ A△ = B ∧ B▽ = A.

With consideration of new definitions, the expansion of the diagram in Fig. 4.1 is illus-
trated in the diagram of Fig. 4.2.

It is also noteworthy that by applying three new equations of iG, iM, and iGM, the de-
rived concepts are the same as applying the classic equations defined in the Section. 3.1.3
of Chapter. 3 (which I mentioned again in Definition. 4.1.3 and 4.1.6 as crisp relations). It
means that all derived pairs of objects and attributes in concepts are identically the same,
and then they can be used to draw the corresponding lattice. Remarkably, this further proves
the fact that we can equally use a relational algebraic approach to define the Formal con-

cept analysis (FCA).

So far, we have indicated the assertion of (A1, B1) ⊑ (A2, B2) iff A1 ⊑ A2 or B2 ⊑ B1

for two concepts of (A1, B1) and (A2, B2) in a lattice in Chapter. 3. Consequently, we can
choose one of the A1 ⊑ A2 or B2 ⊑ B1 assertions because of their equivalent derived result.
Next lemma includes a proof of the fact that A1 ⊑ A2 equals to B2 ⊑ B1 in the relational

approach.
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LG × LM

iGM

π ρ

△

▽

LG LM

G

iG

M

iM

I

ε ε

Figure 4.2: Visual representation of relational concepts - 2

Lemma 4.1.3. Considering definitions of 4.1.6 and 4.1.6, for A ⊑ G and B ⊑ M, we have
the algebraic definition of A△ = B iff B▽ = A as below:

iGM ; π ; e ; π⌣ ; iGM = iGM ; ρ ; e⌣ ; ρ⌣ ; iGM (1)

Proof 4.1.2. Now, we have the proof of the equation presented in the Lemma. 4.1.3.
Let R: G→M be a relation.
At the beginning, considering the following equations we show that △⌣ ; e ; △ ⊑ e⌣:

e;△; ϵ⌣ = (ϵ \ ϵ); syq(R⌣/ϵ⌣, ϵ)↓; ϵ⌣

= (ϵ \ ϵ); (R⌣/ϵ⌣)⌣

= (ϵ \ ϵ)(ϵ \ R)

⊑ ϵ \ R.

And we have:
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ϵ \ R = (R⌣/ϵ⌣)⌣

= syq(R⌣/ϵ⌣, ϵ)↓; ϵ⌣

= △; ϵ⌣.

So, we have e ; △ ; ϵ⌣ ⊑ ϵ \ R and ϵ \ R = △ ; ϵ⌣. Then we can conclude that:

e;△; ϵ⌣ ⊑ △; ϵ⌣.

Now, by adding two △⌣ to the both sides (△ is univalent):

△⌣; e;△; ϵ⌣ ⊑ △⌣;△; ϵ⌣.

Then, we have:

△⌣; e;△; ϵ⌣ ⊑ ϵ⌣

So:

△⌣; e;△ ⊑ ϵ⌣ \ ϵ⌣

⊑ (ϵ \ ϵ)⌣

⊑ e⌣.

Finally, we get:

△⌣; e;△ ⊑ e⌣. (2)

Now, using left side of equation (1):

iGM; π; e; π⌣; iGM = iGM; i⌣GM; π; e; π⌣; iGM; iGM add iGM; i⌣GM

⊑ iGM; ρ;△⌣; π⌣; π; e; π⌣; π;△; ρ⌣; iGM definition of iGM

⊑ iGM; ρ;△⌣; e;△; ρ⌣; iGM

⊑ iGM; ρ; e⌣; ρ⌣; iGM (2)

In the same way, the proof of the opposite side of the equation (1) can be concluded.
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4.1.2 Splitting of Partial Identity

Please note that all three partial identities iG, iM and iGM are crisp since they are defined
by using just crisp relations. As a consequence we can form their splitting, i.e., we use the
relation cGM: CGM → LG × LM (resp. cG: CG → LG and cM: CM → LM) characterized by
iGM = c⌣GM ; cGM and cGM ; c⌣GM = ICGM (resp. iG = c⌣G ; cG and cG ; c⌣G = ICG , also, iM = c⌣M
; cM and cM ; c⌣M = ICM ) [1]. So, we can see that cM splits iM, cG splits iG, and cGM splits iGM.

Bijective maps between relations CGM, CG, CM, i.e., between the sets of formal concepts
given as a pair, by their object set, and their attribute set, are defined as below [1].

Definition 4.1.7. We define three relations bGM
G : CG → CGM, bGM

M : CM → CGM, and bM
G :

CG → CM by:

1. bGM
G = cG; (ILG⃝< △); c⌣GM,

2. bGM
M = cM; (▽⃝< ILM ); c⌣GM,

3. bM
G = bGM

G ; (bGM
M )⌣.

It is worthy of note that (▽⃝< ILM ) = (▽; π⌣ ⊓ ρ⌣) and (ILG⃝> △⌣) = π ⊓ ρ;△⌣.

Theorem 4.1.1. The relations bGM
G , bGM

M , and bM
G are bijective maps because each element

in either cM or cG is paired exactly with an element in cGM and vice versa.

PROOF. First of all, we start with the equation bGM
M ;(bGM

M )⌣ = IB which we want to
show that it is total and injective. Using the definition of bM

G , we can derive the third
assertion immediately once we have indicated the first and second assertion.
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So, we have:

IB = bGM
M ; (bGM

M )⌣

= cM; (▽⃝< ILM ); c⌣GM; (cM; (▽⃝< ILM ); c⌣GM)⌣

= cM; (▽⃝< ILM ); c⌣GM; c⌣M ; (▽⃝< ILM )⌣; cGM

= cM; (▽⃝< ILM ); c⌣GM; cGM; (▽⃝< ILM )⌣; c⌣M

= cM; (▽⃝< ILM ); iGM; (▽⃝< ILM )⌣; c⌣M Definition. 4.1.6 and 4.1.7

= cM; (▽; π⌣ ⊓ ρ⌣); (I ⊓ π;△; ρ⌣ ⊓ ρ;▽; π⌣); (π;▽⌣ ⊓ ρ); c⌣M

= cM; (▽; π⌣ ⊓ ρ⌣); (π;△; ρ⌣ ⊓ ρ;▽; π⌣ ⊓ I); (π;▽⌣ ⊓ ρ); c⌣M

= cM; ((▽; π⌣ ⊓ ρ⌣); π;△; ρ⌣ ⊓ (▽; π⌣ ⊓ ρ⌣); ρ;▽; π⌣ ⊓ ▽; π⌣ ⊓ ρ⌣); (π;▽⌣ ⊓ ρ); c⌣M

= cM; (▽;△; ρ⌣ ⊓ ▽; π⌣ ⊓ ▽; π⌣ ⊓ ρ⌣); (π;▽⌣ ⊓ ρ); c⌣M remove the same assertions

= cM; (▽;△; ρ⌣ ⊓ ▽; π⌣ ⊓ ρ⌣); (π;▽⌣ ⊓ ρ); c⌣M distribution

= cM; (▽;△; ρ⌣; (π;▽⌣ ⊓ ρ) ⊓ ▽; π⌣; (π;▽⌣ ⊓ ρ) ⊓ ρ⌣; (π;▽⌣ ⊓ ρ)); c⌣M

= cM; (▽;△ ⊓ ▽;▽⌣ ⊓ I); c⌣M

= cM; (▽;△ ⊓ I); c⌣M

= cM; c⌣M ; cM; c⌣M

= IB.

So, the second assertion in Definition. 4.1.7 is total and injective.

In order to show that the relation is also univalent, we have to show the following
equation:

(cG; (ILG⃝< △); c⌣GM)⌣; cG ; (ILG⃝< △); c⌣GM = ILG×LM

Or equivalently:

(bGM
G )⌣; bGM

G = ILG×LM .



CHAPTER 4. RELATIONAL APPROACH 73

Starting from left-hand side of the equation, we have:

(cM; (ILM⃝< △); c⌣GM)⌣; cM; (ILM⃝< △); c⌣GM

= c⌣M ; (ILM⃝< △)⌣; cGM; cM; (ILM⃝< △); c⌣GM

= cGM; (ILM⃝< △)⌣; c⌣M ; cM; (ILM⃝< △); c⌣GM since c⌣G ; cG=iG

= cGM; (ILM⃝< △)⌣; iM; (ILM⃝< △); c⌣GM Definition. 4.1.7

= cGM; (▽; π⌣ ⊓ ρ⌣)⌣; iM; (▽; π⌣ ⊓ ρ⌣); c⌣GM since iM=ILM ⊓ ▽ ; △

= cGM; (▽⌣; π ⊓ ρ); (▽;△ ⊓ I); (▽; π⌣ ⊓ ρ⌣); c⌣GM

⊑ cGM; (π;▽⌣;▽;△ ⊓ π;▽⌣ ⊓ ρ); (▽; π⌣ ⊓ ρ⌣); c⌣GM

⊑ cGM; (π;▽⌣;▽;△ ⊓ π;▽⌣ ⊓ ρ); (▽; π⌣) ⊓ (π;▽⌣;▽;△ ⊓ π;▽⌣ ⊓ ρ); (ρ⌣); c⌣GM

⊑ cGM; (π;▽⌣;▽;△;▽; π⌣ ⊓ π;▽⌣;▽; π⌣ ⊓ ρ;▽; π⌣ ⊓ π;▽⌣;▽;△; ρ⌣ ⊓ π;▽⌣; ρ⌣ ⊓ ρ; ρ⌣); c⌣GM

⊑ cGM; (π;▽⌣;▽; π⌣ ⊓ ρ;▽; π⌣ ⊓ π;▽⌣;▽;△; ρ⌣ ⊓ ρ; ρ⌣); c⌣GM

⊑ cGM; (π; π⌣ ⊓ ρ;▽; π⌣ ⊓ π;△; ρ⌣ ⊓ ρ; ρ⌣); c⌣GM

= cGM; (π;△; ρ⌣ ⊓ ρ;▽; π⌣ ⊓ I); c⌣GM Definition. 4.1.6

= cGM; iGM; c⌣GM since iGM= cGM; c⌣GM

= cGM; c⌣GM; cGM; c⌣GM

= I

In fact, in the second part of the proof we show that cGM; c⌣GM; cGM; c⌣GM = ILG×LM . Now,
the opposite inclusion

(
ILG×LM = cGM; c⌣GM; cGM; c⌣GM

)
is formed as below, which shows

that this relation is also surjective:

ILG×LM = cGM; c⌣GM; cGM; c⌣GM since c⌣GM; cGM=iGM

= cGM; iGM; c⌣GM Definition. 4.1.6

= cGM; (I ⊓ π;△; ρ⌣ ⊓ ρ;▽; π⌣); c⌣GM

= cGM; (π; π⌣ ⊓ ρ; ρ⌣ ⊓ π;△; ρ⌣ ⊓ ρ;▽; π⌣); c⌣GM

= cGM; (ρ; (▽; π⌣ ⊓ ρ⌣) ⊓ π; π⌣ ⊓ π;△; ρ⌣); c⌣GM
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⊑ cGM; ((π; π⌣ ⊓ π;△; ρ⌣); (π;▽⌣ ⊓ ρ) ⊓ ρ); (▽; π⌣ ⊓ ρ⌣); c⌣GM since (▽ ⃝< ILM )= ▽; π⌣ ⊓ ρ⌣

= cGM; (π;△ ⊓ π;▽⌣ ⊓ ρ); (▽⃝< ILM ); c⌣GM

⊑ cGM; (π;▽⌣ ⊓ ρ); ((▽; π⌣; ρ⌣); π;△ ⊓ ILM ); (▽⃝< ILM ); c⌣GM since (▽ ⃝< ILM )= ▽; π⌣ ⊓ ρ⌣

= cGM; (▽⃝< ILM )⌣; ((▽; π⌣; ρ⌣); π;△ ⊓ ILM ); (▽⃝< ILM ); c⌣GM

= cGM; (▽⃝< ILM )⌣; (▽;△; ILM ); (▽⃝< ILM ); c⌣GM since (▽; △; ILM ) = iM

= cGM; (▽⃝< ILM )⌣; iM; (▽⃝< ILM ); c⌣GM

= cGM; iM; c⌣GM since iM = c⌣M ; cM

= cGM; c⌣M ; cM; c⌣GM

The second assertion follows analogously.

Taking into consideration the ordering between concepts to generate the lattice, in the
next lemma we define some order relations. Now, based on these relations, we can distin-
guish between pairs that are concepts or those that form only attribute or object pairs. The
definition of the order relations can be found as below [1].

Definition 4.1.8. Considering Ω = (ϵ \ ϵ)↓, we define three relations EGM: CGM → CGM,
EG: CG → CG, and EM: CM → CM on LG × LM, LG, and LG respectively by

1. EGM = cGM ; (π ; Ω ; π⌣ ⊓ ρ ; Ω⌣ ; ρ⌣); c⌣GM,

2. EG = cG ; Ω ; c⌣G ,

3. EM = cM ; Ω ; c⌣M .

It is easy to verify that the three relations defined above are indeed orderings.

Visualization of the defined objects and relations is illustrated in the Fig. 4.3. As a summary
of the graph in a few sentences, iGM shows the pairs G and M giving all pairs on LG × LM.
The partial identities iG and iM only contain objects and attributes of all pairs, respectively.
Regarding split functions, cGM shows the only pairs that are concepts. Similarly, cG and cM

only contain objects and attributes of all those pairs that are concepts, respectively. So, we
can see that cGM, cG, and cM only split those pairs that are concepts.
About order relations, EGM is the strict order relation of those pairs that are concepts, in-
cluding objects and attributes. As a matter of fact, they are in relation iff the object sets are



CHAPTER 4. RELATIONAL APPROACH 75

LG × LM

iGM

IG ⃝< △
▽ ⃝< IM

EG EM

LGiG LM iM

CG

bGM
G

CM

bGM
M

CGM

△

▽

EGM

π ρ
cG c

M

c G
M

bM
G

Figure 4.3: Extensive visualization of the new relations
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included π ; Ω ; π⌣ and the attribute sets are in the opposite inclusion ρ ; Ω⌣ ; ρ⌣. EG is
the strict order relation of the objects of all the pairs that are concepts and similarly, EM is
the strict order relation of the attributes of all the pairs that are concepts.

As we mentioned before, split functions including cGM, cG, and cM take only those pairs
that are concepts. The same applies to order relations (Ω) which only gives us the order on
those pairs that are concepts. In other words, all concepts formed by the context are in or-
der using a hierarchical relation which is called concept lattice. Now, we define the lattice
order on concepts based on the object and attribute sets in the Definition. 4.1.8(1). Lemma.
4.1.4 describes this ordering which is determined by the order on one of its components
only i.e., object part (cGM ; π ; Ω ; π⌣ ; c⌣GM) or attribute part (cGM ; ρ ; Ω⌣ ; ρ⌣ ; c⌣GM) for
the order relation EGM generates the same result.

Lemma 4.1.4.

EGM = cGM; π;Ω; π⌣; c⌣GM = cGM; ρ;Ω⌣; ρ⌣; c⌣GM

Proof 4.1.3. For the proof of Lemma. 4.1.4, we already had:

EGM = cGM; (π;Ω; π⌣ ⊓ ρ;Ω⌣; ρ⌣); c⌣GM distribution

= (cGM; π;Ω; π⌣ ⊓ cGM; ρ;Ω⌣; ρ⌣); c⌣GM distribution

= cGM; π;Ω; π⌣; c⌣GM ⊓ cGM; ρ;Ω⌣; ρ⌣; c⌣GM add c⌣GM ; cGM

= cGM; c⌣GM; cGM; c⌣GM; cGM; π;Ω; π⌣; c⌣GM ⊓ cGM; ρ;Ω⌣; ρ⌣; c⌣GM

= cGM; c⌣GM; cGM; π;Ω; π⌣; c⌣GM; cGM; c⌣GM ⊓ cGM; ρ;Ω⌣; ρ⌣; c⌣GM

= cGM; c⌣GM; cGM; ρ;Ω⌣; ρ⌣; c⌣GM; cGM; c⌣GM ⊓ cGM; ρ;Ω⌣; ρ⌣; c⌣GM

= cGM; ρ;Ω⌣; ρ⌣; c⌣GM.

Now, starting from left assertion, we proved the right assertion. Also, we used ICGM =

cGM;c⌣GM and also π; Ω; π⌣ = ρ; Ω⌣; ρ⌣ equations in the middle of the proof.
Correspondingly, the other side of the equation follows analogously.

In the following lemma, we show that the maps represented in the Definition. 4.1.7 are
all monotonic.
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Lemma 4.1.5. Let EF and EM are two order relations. The bijective relation cM ; (▽ ⃝< IM)
; c⌣GM (or CM → CGM in Fig. 4.3) is called monotone iff:

cM ; (▽ ⃝< IM) ; c⌣GM ; EGM ⊑ EM ; cM ; (▽ ⃝< IM); c⌣GM

or equivalently:

EM ⊑ cM ; (▽ ⃝< IM) ; c⌣GM ; EGM ;
(
cM; (▽⃝< IM); c⌣GM

)⌣
.

Proof 4.1.4. Now, we have the proof of the Lemma. 4.1.5.
We already mentioned that:

cM; (▽⃝< IM); c⌣GM; EGM;
(
cM; (▽⃝< IM); c⌣GM

)⌣
= cM; (▽⃝< IM); c⌣GM; EGM; c⌣M ; (▽⃝< IM)⌣; cGM

= cM; (▽⃝< IM); c⌣GM; EGM; cGM; (▽⃝< IM)⌣; c⌣M Lemma. 4.1.4

= cM; (▽⃝< IM); c⌣GM; cGM; ρ;Ω⌣; ρ⌣; c⌣GM; cGM; (▽⃝< IM)⌣; c⌣M

⊑ cM; (▽⃝< IM); ρ;Ω⌣; ρ⌣; (▽⃝< IM)⌣; c⌣M

⊑ cM; (▽⃝< IM); ρ; ρ⌣;Ω⌣; (▽⃝< IM)⌣; c⌣M

= cM;
(
(▽⃝< IM); ρ

)
;Ω⌣;

(
(▽⃝< IM); ρ

)⌣
; c⌣M

= cM;Ω⌣; c⌣M Definition. 4.1.8

= EM.

We can have the same proof to show that the map cG; (IG⃝< △); c⌣GM is monotonic.

Now, we demonstrate our work using an example derived from the implementation
part of this research. Before we generate attribute implications, we have to form pairs
of concepts using provided i and c versions of partial identities and splittings of them,
respectively.

Example 4.1.1. A lattice of the truth values containing three elements 1, u, and 0 is con-
sidered in this example. As shown in the below diagrams, we have operation→∗ which is a
∗ operation along with its adjoint.
The generated context (relation I which is I: Persons → Sports) is created using two sets
Persons = {Duro, Fero, Jano, Miso, Palo} and Sports = {Hockey, Football, Volleyball, Bas-
ketball, Frisbee}:
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∗ 0 u 1
0 0 0 0
u 0 0 1
1 0 1 2

→∗ 0 u 1
0 2 2 2
u 1 2 2
1 0 1 2

1

u

0

I =



Hockey Football Volleyball Basketball Frisbee

Duro 0 1 0 1 0
Fero 1 0 u 0 1
Jano 1 0 0 0 1
Miso 0 1 0 1 0
Palo 0 0 1 0 0


Also, above relation I is shown in our implementation part (first tab) using Java pro-

gramming language given as 2-dimensional arrays of L-values similar to the above matrix.
It is worthy to note that only the first letter referring to a person or sport can be used here as
an abbreviation. For example V/u indicates that ”Volleyball” is in a certain fuzzy set with
degree u. We used the whole name of sports (last tab) in our implementation for a better
understanding.

For example in our implementation we have {Hockey 7→ 0, Football 7→ 1, Volleyball 7→
u, Basketball 7→ 0, Frisbee 7→ 0} denotes the fuzzy set of sports that contains ”Volleyball”
with the degree u, ”Football” with the full degree 1, and ”Hockey” with the degree 0 (i.e.,
not at all), etc.

Some obtained concepts are indicated as below:(
{Hockey 7→ 0, Football 7→ 0, Volleyball 7→ 0, Basketball 7→ 0, Frisbee 7→ 0},

{ Hockey 7→ 0, Football 7→ 0, Volleyball 7→ 0, Basketball 7→ u, Frisbee 7→ 0 }
)
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{Hockey 7→ 0, Football 7→ 0, Volleyball 7→ 0, Basketball 7→ u, Frisbee 7→ 1},

{ Hockey 7→ 0, Football 7→ 0, Volleyball 7→ 0, Basketball 7→ u, Frisbee 7→ u }
)

(
{Hockey 7→ 0, Football 7→ u, Volleyball 7→ u, Basketball 7→ 1, Frisbee 7→ 1},

{ Hockey 7→ u, Football 7→ 1, Volleyball 7→ u, Basketball 7→ 1, Frisbee 7→ 1 }
)

4.2 Attribute Implications

Let us now focus on only attributes on a Boolean context as well as a multi-valued context.
In this section, our purpose is to generate some algebraic formulas to construct a set of
all attribute implications. Following this, a relational algebraic formula is proposed by
the implication basis. Using the mentioned relational approach, a valid implication set is
generated that satisfies certain rules of all implications.
An attribute implication is an expression P→ Q that relates two sets P and Q of attributes
and expresses that every object possessing each attribute from P also has each attribute
from Q. When (G, M, I) is a formal context and P, Q are subsets of the set M of attributes
(i.e., P, Q ⊑M), then the implication P→ Q is true (or valid).
Also, we can define attribute implication formally and relation-algebraically as below [1]:

Definition 4.2.1. Formally attribute implication is defined as: P→ Q holds in a context I:
G→M if P ⊑ A implies Q ⊑ A for all intents A.

Definition 4.2.2. Relation-algebraically, we can define a relation AI: LM → LM so that we
have (P, Q) ∈ AI iff P→ Q holds in a context I: G→M.

More precisely, we can define attribute implication (AI) algebraically using 5 various
alternative formulations using the definition of Ω in Section. 2.4.4.2 on the relation AI [1].
The purpose of the attribute implication formulas is generating all valid implications from
the context.
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Theorem 4.2.1. Let consider Ω = (ϵ \ ϵ)↓ 2, then:

1. AI = (iM;Ω⌣) \Ω⌣,

2. AI = ▽;△;Ω⌣,

3. AI =
(
(I/∗ ϵ⌣) \ (I/∗ ϵ⌣)

)↓
,

4. AI = ▽;Ω;▽⌣,

5. AI = (cM;Ω⌣) \ (cM;Ω⌣).

It is worthy to note that the operations of right residuals in the formulation of the num-
ber 3 are all star-based. It is the only formulation where the star-based operations are used
directly. In all other formulations, the star-based operations are used in the definition of the
triangle operations.
All these formulations are implemented using Java programming and for all these 5 ver-
sions of formulas, we got the same results or relations in implementation.

Now, we show the proof of the second and third formulations, as well as the fifth one.
You can find other proofs in [1].

Proof 4.2.3 (2) To prove formulation of number 2, we assume that formulation of num-
ber 1 is approved and can be used. Then we have, AI = ▽;△;Ω⌣ = (iM;Ω⌣) \Ω⌣. So that
we first show iM;Ω⌣;▽;△;Ω⌣; ϵ⌣ ⊑ ϵ⌣:

iM;Ω⌣;▽;△;Ω⌣; ϵ⌣ ⊑ iM;Ω⌣;▽;△; ϵ⌣,

⊑ iM;▽;△;Ω⌣; ϵ⌣,

⊑ iM;▽;△; ϵ⌣ = i⌣M ;▽;△; ϵ⌣,

⊑ (▽;△)⌣;▽;△; ϵ⌣ = i⌣M ; ϵ⌣,

⊑ ϵ⌣.

So, we have:

iM;Ω⌣;▽;△;Ω⌣; ϵ⌣ ⊑ ϵ⌣

2Ω is the order on the power set object.
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Then we can conclude:

iM;Ω⌣;▽;△;Ω⌣ ⊑ ϵ⌣/ϵ⌣

Since we have:

iM;Ω⌣;▽;△;Ω⌣ = (iM;Ω⌣;▽;△;Ω⌣)↓

And, also:

(ϵ⌣/ϵ⌣)↓ = Ω⌣

Briefly, we can show this by:

iM;Ω⌣;▽;△;Ω⌣ = (iM;Ω⌣;▽;△;Ω⌣)↓ ⊑ (ϵ⌣/ϵ⌣)↓ = Ω⌣

Since the right side of the above equation is crisp, then we can conclude:

iM;Ω⌣;▽;△;Ω⌣ ⊑ Ω⌣

And, therefore:

▽;△;Ω⌣ ⊑ (iM;Ω⌣) \Ω⌣.

Also, consider the following computation:

(▽;△)⌣;
(
(iM;Ω⌣) \Ω⌣

)
= (▽;△)⌣; (▽;△); (▽;△)⌣;

(
(iM;Ω⌣) \Ω⌣

)
= iM; (▽;△)⌣;

(
(iM;Ω⌣) \Ω⌣

)
▽ ; △ is a map

⊑ iM;Ω↓;
(
(iM;Ω⌣) \Ω⌣

)
⊑ Ω⌣

So that we have: (▽;△)⌣;
(
(iM;Ω⌣) \Ω⌣

)
⊑ Ω⌣. Then, we have:
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(
(iM;Ω⌣) \Ω⌣

)
⊑ ▽;△;Ω⌣.

Proof 4.2.3 (3) Using the formulation number 2, we can prove the formulation number 3.
So, starting from left side, we can conclude the right side in equation

(
(I/ϵ⌣) \ (I/ϵ⌣)

)↓
=

▽;△;Ω⌣. This proof is straightforward. The whole detail can be found in [1].

Proof 4.2.3 (5) To prove the formulation number 5, considering K ⊑ AI we have:

K ⊑ AI ⇔ K ⊑ (iM;Ω⌣) \Ω⌣ by formulation (1)

⇔ iM;Ω⌣; K ⊑ Ω⌣ since iM = c⌣M ; cM

⇔ c⌣M ; cM;Ω⌣; K ⊑ Ω⌣

⇔ cM;Ω⌣; K ⊑ cM;Ω⌣

⇔ K ⊑ (cM;Ω⌣) \ (cM;Ω⌣)

And, finally we can derive:

AI = (cM;Ω⌣) \ (cM;Ω⌣).

The relation AI in the formulation number 5 is an embedding between all attribute subsets
from the context. For a better understanding, we refer to the implementation part of this
research (operation emd in Relation). This operation deletes all 0 rows from intents or
extents so that it will be easier to read them.

All the five represented versions of the formulations are used in our implementation for
classical (2-valued) and 3-valued examples to generate attribute implications. The details
are described in Chapter. 5. As mentioned earlier, the final relations generated by all five
versions of the formulas are the same.

Example 4.2.1. Since the number of the attribute implications is too big (the actual number
is 31,566 attribute implications) to list them all, this example just focus on one of them
generated by Example. 4.1.1 [1].
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It is worth mentioning that we used the same example in the implementation section of this
research.{

H 7→ 0, F 7→ 0,V 7→ 0, B 7→ 1, Fr 7→ u
}
7−→

{
H 7→ 0, F 7→ 0,V 7→ u, B 7→ 1, Fr 7→ 0

}
As a simplified representation for easier understanding, a more comprehensible form of
implication is shown below:

Hockey Football Volleyball Basketball Frisbee

0 0 0 1 u

0 0 u 1 0

This implication indicates that if it is unknown that a person likes Frisbee, but definitely
likes Basketball, then it is also unknown whether the person likes Volleyball.

As already mentioned in the Example. 4.2.1, the set of all valid attribute implications
of a given context is usually huge. Therefore, we are usually interested in a basis of im-
plications, i.e., a small set of implications from which we can generate the whole set of
implications naturally. In order to do so, we use so-called Duquenne-Guigues or canoni-

cal basis [1, 34]. As a prerequisite to define Duquenne-Guigues basis, we need to define
pseudo-closed concept.

Definition 4.2.3. In Duquenne-Guigues basis, the elements are generated by pseudo-closed

sets of attributes [1], i.e., using a set A so that A , A▽△ and B▽△ ⊑ A for all pseudo-closed
B ⊊ A.

We simply assume that the set of pseudo-closed sets exists . The relational modelling
of pseudo-closed set is presented in the below definition. More details can be found in [1].

Definition 4.2.4. Consider a crisp relation p: LM → LM. This relation is called the set of
pseudo-closed sets if:

p = ILM ⊓
(
(p;Ωs) \ (▽;△;Ω)

)
⊓ (▽;△)s ; xLM LM .
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In this definition, if M =N, p(M, N) = 1 can be the only case. This is because of the identity

relation on the right-hand side of the definition of p. Therefore, p(M) = 1 is written instead
of p(M, N) = 1 and M = N.

Therefore, Duquenne-Guigues basis can be provided by { P→ P▽△ | P is pseudo-closed
}, i.e., by the relation p ; ▽ ; △ [1].

Definition 4.2.5. Our example has 227 pseudo-closed sets [1]. One of these pseudo-closed
sets is the set { H 7→ 0, F 7→ 0, V 7→ 0, B 7→ u, C 7→ u}. This leads to the implication

{
H 7→ 0, F 7→ 0, V 7→ 0, B 7→ u, C 7→ u

}
7→
{

H 7→ u, F 7→u, V 7→ u, B 7→ u, C 7→ u
}
.

as one of the 227 elements of the Duquenne-Guigues basis that is a part of all 31,566
attribute implications of our example.



Chapter 5

Implementation

This chapter is discussed the implementation phase of the algebraic framework for L-fuzzy
relations. Among all programming languages, Java is more suited with our purpose as
a high-level, class-based, object-oriented programming language. Starting with why we
choose Java for our implementation, we go into more detail about our classes to gain a
deeper understanding of the implementation phase of this research. Meanwhile, all the
methods are fully explained along with their applications and possible outputs.

5.1 Java Language Selection

Java is a general purpose programming language that was developed and released in 1995.
It is influenced by C++. The main motivation behind Java was to make a programming
language that allows its users to ”write once, run everywhere”. The difference between
the way Java worked, and other programming languages at that time was revolutionary.
Instead of being compiled into a specific machine code, the Java compiler turns code into
something called Bytecode, which is then interpreted by a software called the Java Runtime
Environment (JRE), or the Java Virtual Machine (JVM). The JRE acts as a virtual computer
that interprets Bytecode and translates it for the host computer. Because of this, Java code
can be written the same way for many platforms [40].
Along with other important functional features of Java programming like type safety and
functional capabilities, being an Object Oriented Programming (OOP) is a very significant
feature for us in our implementation. OOP languages model the world by classes. Ev-
ery class has its own attributes, also known as fields, and a number of methods that might
change the state of those fields, also known as behavior. An object is a real instance of a
certain class. Similarly to the real world, classes can be part of other classes that are usu-
ally less restricted. Therefore, they can inherit their certain fields and methods from their

85
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parent class i.e., superclass. Actually every class defined in Java’s API or the programmer
defines themselves inherits directly or indirectly from the foundation class Object, that is
the common superclass of every other class written in Java [40]. In our implementation we
focus on classifying our work by generating some classes such as Relation, RelationDis-

play or FuzzyAlgebra classes. This is one of the most significant reasons for choosing the
Java language to implement our work.

So far we have discussed mostly the features of Java programming language. Now, we
will go through a brief summary of Java strengths again. Java strengths rely on an OOP
language that is supported by a huge class library API that has almost everything the de-
veloper needs. In addition to that, Java is secure and it prevents potential malicious code
to have access to certain platform features and APIs which could be exploited by malware,
such as accessing the local filesystem, running arbitrary commands, or accessing commu-
nication networks. Java has been there for around 25 years and that makes it adopted by a
big community of developers [40].

5.2 Implementation Details

5.2.1 System Overall Description

This implementation is generated to prove and indicate the accuracy and correctness of
the mentioned five algebraic formulas in Section. 4.2 of the Chapter. 4 to L-fuzzy formal
concept analysis. It consists of several different classes and an interface to properly display
the results to users. To put it in more detail, classes of Main, Relation, and FuzzyAlge-
bra are the core of this implementation containing all main creator methods for the GUI

(Graphical User Interface). It is also worth mentioning that two classes RelationDisplay

and OperationDisplay are generated to assist the representations of relations and FuzzyAl-

gebra (operations), respectively.

We dive deeper into some major classes and their methods of our implementation in
detail in the following sections.
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5.2.2 Classes

5.2.2.1 Class of ”Relation”

The class ”Relation” is the core of the implementation in our work. It consists of all pri-
mary methods such as meet, join, composition, transpose, residuals, symmetricQuotient

which are explained in the second chapter of this thesis. Moreover, All methods associated
with the fuzzy idea are included in this class.
It is worthwhile to note that each of the methods in fuzzy idea work exactly the same
as meet, impl, composition, leftResidual, rightResidual, symmetricQuotient by just replac-
ing meet with star, impl with starImpl, composition with starComposition, leftResidual

with starLeftResidual, rightResidual with starRightResidual, and symmetricQuotient with
starSymmtricQuotient to correspond to the fuzzy idea.

An overview of some main methods in the class ”Relation” are provided as below:

1. identity (algebra, dom) :

• Type: Relation.

• Method Description: returns a square relation with 1 on the main diagonal and
0 elsewhere.

• Return Value: identity relation with specified dimensions.

2. scalar (algebra, dom, n) :

• Type: Relation.

• Method Description: is the same as identity() with one difference; the diagonal
elements can be any int value (n) and other elements should be 0 too.

• Return Value: scalar relation with specified dimensions.

3. top (algebra, dom, cod) :

• Type: Relation.

• Method Description: returns a matrix with greatest value of elements (1).

• Return Value: top relation with specified dimensions.

4. bot (algebra, dom, cod) :

• Type: Relation.
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• Method Description: returns a matrix with smallest value of elements (0).

• Return Value: bottom relation with specified dimensions.

5. ideal (algebra, dom, cod, n) :

• Type: Relation.

• Method Description: returns a matrix with the ideal constant value (n) for all
elements. In other words, all elements can be constant n.

• Return Value: ideal relation with specified dimensions.

6. pi (algebra, a, b) :

• Type: Relation.

• Method Description: this method creates a matrix (a*b) as rows and a as
columns (a*b→ a) using the a and b parameters. The returned matrix consists
only elements of 0 and 1, so that it contains 1 as element for those indexes
which represents a as their columns and 0 elsewhere.

• Return Value: pi relation consists values of 0 and 1. The dimensions of the
returned relation depend on the input parameters of a and b using ProductSe-

tObject class.

7. rho (algebra, a, b) :

• Type: Relation.

• Method Description: this method creates a matrix (a*b) as rows and b as
columns (a*b→ b) using the a and b parameters. The returned matrix consists
only elements of 0 and 1, so that it contains 1 as element for those indexes
which represents b as their columns and 0 elsewhere.

• Return Value: rho relation consists values of 0 and 1. The dimensions of the
returned relation depend on the input parameters of a and b using ProductSe-

tObject class.

8. iota (algebra, a, b) :

• Type: Relation.

• Method Description: this method creates a matrix a as rows and a+b as columns
(a→ a+b) using the a and b parameters. The returned matrix consists only el-
ements of 0 and 1, so that it contains 1 as element for those indexes where row
and column represents same element from a and 0 elsewhere.
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• Return Value: iota relation consists values of 0 and 1. The dimensions of the
returned relation depend on the input parameters of a and b using SumSetObject

class.

9. kappa (algebra, a, b) :

• Type: Relation.

• Method Description: this method creates a matrix b as rows and a+b as columns
(b→ a+b) using the a and b parameters. The returned matrix consists only el-
ements of 0 and 1, so that it contains 1 as element for those indexes where row
and column represents same element from b and 0 elsewhere.

• Return Value: kappa relation consists values of 0 and 1. The dimensions of the
returned relation depend on the input parameters of a and b using SumSetObject

class.

10. epsilon (algebra, dom) :

• Type: Relation.

• Method Description: this method establishes a relation between dom and the
power set of dom (all subsets derived from dom), such that if a particular dom

is in a particular subset of dom, the epsilon relation contains 1 and 0 otherwise.
Therefore, the dimension of the epsilon relation is size of dom to the 2S ize o f dom.

• Return Value: epsilon relation consists values of 0 and 1. The dimensions of
the returned relation depend on the input parameter of dom using PowerSetOb-

ject class.

11. composition (relation) :

• Type: Relation.

• Method Description: the relative multiplication of two relations is calculated
by this method in a way that the (x,z) element would be true in the final relation
if and only if there exists one element y such that (x, y) is true in the first relation
and (y, z) is true in the other one.

• Return Value: composition relation of two relations.

12. transpose ( ) :

• Type: Relation.
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• Method Description: switches rows and columns (dom and cod or objects and
attributes) of the relation and generates a new relation.

• Return Value: transposed relation of a relation.

13. leftResidual (relation) :

• Type: Relation.

• Method Description: considering two relations R and S, this method calculates
R \ S which is the left residual. In other words, it shows the greatest of all
relations X such that (X.R) is the subset of S.

• Return Value: leftResidual relation of two relations.

14. rightResidual (relation) :

• Type: Relation.

• Method Description: considering two relations R and S, this method calculates
R / S which is the right residual. In other words, it shows the greatest of all
relations X such that (R.X) is the subset of S.

• Return Value: rightResidual relation of two relations.

15. symmetricQuotient (relation) :

• Type: Relation.

• Method Description: generates the intersection of the left and right residual
relations to two relations R and S. Considering R: X→ Y and S: X→ Z. Then
this method relates an element y from Y to an element z from Z when y and z
have the same set of inverse image.

• Return Value: symmetricQuotient relation of two relations.

Also, an overview of some main methods in the class of ”FuzzyAlgebra” are provided as
below:

1. up (int m) :

• Type: int.

• Method Description: if the element does not equal to 0 (or in other words,
bigger than 0), this method returns 1, otherwise it returns 0.
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• Return Value: an integer consists values of only 0 or 1, and finally the created
relation only contains the values 0 and 1.

2. down (int m) :

• Type: int.

• Method Description: if the element equals to 1, this method returns 1, other-
wise it returns 0.

• Return Value: an integer consists values of only 0 or 1, and finally the created
relation only contains the values 0 and 1.

3. intersection (set1, set2) :

• Type: set.

• Method Description: this method generates the meet of the elements belonging
to two sets.

4. union (set1, set2) :

• Type: set.

• Method Description: this method generates the join of the elements belonging
to two sets.

5. impl (set1, set2, list) :

• Type: set.

• Method Description: this method determines the greatest element (x) such that
the meet of x and element1 from set1 is less or equal to element2 from set2. X
can be any element from lattice.

5.3 Interface General Overview

The implementation is also included a GUI as a clearer view for a better understanding of
our work. This interface is generated by a JFrame to display the main results. The main
area of the JFrame has multiple tabs which are made using JTabbedPane class of Java to
be able to switch between tabs by clicking on the specific given titles of mentioned tabs.
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The interface in the implementation is included three dominant groups of data consists
of Context, FuzzyAlgebra, and Attribute Implications which have to be shown in several
tabs. To make our work more comprehensible, two sets of Persons and Sports are consid-
ered as the object and attribute sets (named them cod and dom in coding), respectively.

5.3.1 ”Context” tab

The first tab of the GUI represents the 2-valued (regular) and 3-valued (fuzzy) relations with
elements names of { ”0”, ”1” } and { ”0”, ”U”, ”1” }, respectively. So, the first tab generates
the context of persons, sports, and their likings for both the regular and fuzzy ideas. This
work is done by two sets of input data naming table and table-F to help creation of regular
and fuzzy contexts, respectively. As I mentioned earlier, data entries in table-F contains
ambiguity. This is because any entry that is not 0 or 1 is considered ambiguous data.

table = { {0, 1, 0, 1, 0}, {1, 0, 1, 0, 1}, {1, 0, 0, 0, 1}, {0, 1, 0, 1, 0}, {0, 0, 1, 0, 0} },

table-F = { {0, 2, 0, 2, 0}, {2, 0, 1, 0, 2}, {2, 0, 0, 0, 2}, {0, 2, 0, 2, 0}, {0, 0, 2, 0, 0} }.

Using RelationDisplay class, Context tab displays two relations of I and I-F (F refers to the
Fuzzy idea) are formed in the Main class of implementation and shown in 2-valued (Figure.
5.1) and 3-valued (Figure. 5.2) tabs, respectively.

Also, we have two sets of truthHA = { ”0”, ”1” } and chain3HA = { ”0”, ”u”, ”1”
} as truth degrees for Heyting algebra of regular (2-valued) and fuzzy (3-valued) ideas,
respectively. This means that all values in the tables in the Context tab come from these
two sets, depending on whether regular or fuzzy ideas are represented.

5.3.2 ”Fuzzy Algebra” tab

This tab shows the Heyting Algebra or the same Fuzzy Algebra (including Fuzzy idea). As
shown in Figure. 5.3, five operations of meet, join, impl, star, and starImpl are used to
indicate the results in separate tables for the second tab of the interface. The elements of
the mentioned table on which operations are applied come from FuzzyAlgebra class. We
implemented this part by OperationDisplay class which is very similar to RelationDisplay

class.
It is worth mentioning that star and starImpl operations are only applied on Fuzzy idea.
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Figure 5.1: Context tab representing 2-valued (I) relation - GUI
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Figure 5.2: Context tab representing 3-valued (I-F) relation - GUI



CHAPTER 5. IMPLEMENTATION 95

Figure 5.3: FuzzyAlgebra tab representing 5 different operations in both regular and fuzzy
ideas on FuzzyAlgebra elements - GUI

5.3.3 ”Attribute Implications (2-valued example)” tab

Using 5 various versions of the attribute implication formulas presented in Definition.
4.2.1, this tab shows all attribute implications only for 2-valued or regular example. As
the 5 tables display, we have exactly the same results (tables) by using the mentioned for-
mulations.
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Figure 5.4: Attribute Implications (2-valued example) tab - GUI
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5.3.4 ”Attribute Implications (3-valued example)” tab

Similar to the tab expressed in the Section. 5.3.3, this tab displays the attribute implications
for 3-valued (fuzzy) example created by 5 versions of attribute implication formulas. Also,
same as attribute implications for 2-valued example, we have exactly the same tables for
3-valued example.

Figure 5.5: Attribute Implications (3-valued example) tab - GUI

As shown in Figures. 5.4 and 5.5, we do not get rid of the uncertainty available in the
input data. We just try to handle it so that we can extract patterns of the attribute implica-
tions from the ambiguous data.
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5.4 UML Diagram

At the end of this thesis, a UML diagram including whole classes, methods, fields, proper-
ties, and constructors is illustrated in the Figure. 5.6. As it is clear in the UML diagram, the
classes of Relation and FuzzyAlgebra have the most significant roles in the implementation
containing several fundamental methods. Then using the mentioned fundamental methods,
the contexts, attribute implications, etc., are generated in the class of Main. Two classes of
RelationDisplay and OperationDisplay are used for representation purposes in the interface
as already explained in the Section. 5.2.1.

5.5 Using the Framework

Considering the input data of different users, the final output of attribute implications can
be different. In the first step, the input data including persons (objects), sports (attribute),
and also table-F sets must be defined according to users’ opinions. Even users can choose
any other data instead of the values represented in chain3HA set as the L values. Using
the mentioned input data, contexts of both regular and fuzzy ideas can be generated. These
contexts show the relations between objects and attributes that users already specified.
Next step is creation of Heyting (Fuzzy) algebra. As already explained, in this phase, all
operations of Meet, Join, Implication, Star, and starImpl are made using the provided con-
texts. We need to have all these operations to generate constitutive relations of attribute
implications, i.e., leftResidual or symmetricQuotient (syq).
In the final stage, all L-valued table of attribute implications related to specific inputs are
made.

Now, we want to generate patterns or attribute implications according to the users’ de-
sired data by this framework. This section can make a clear understanding of the use of this
framework with users’ own examples. This action starts from star-based example in the
implementation which belongs to the Fuzzy idea of our approach. Therefore, some parts of
coding need be replaced by user data starting this section of the main program. First step
is to add the lattice L. For example, we would like to use a lattice consisting of 6 elements
as explained below.

Draw the lattice: In order to generate the lattice we only need to provide a set of sets
that has the same order structure than the irreducible elements (an element is irreducible iff



CHAPTER 5. IMPLEMENTATION 99

Figure 5.6: UML Diagram
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18
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Figure 5.7: Visual representation of the lattice for divisors 18

it is different from 0 and is not the join of two other elements) of the lattice. For example,
lattice of divisors of 18 is chosen. This lattice can be generated using the set method by the
sets of {1}, {2}, and {2,3}. In this lattice, an element is smaller than another iff the smaller
one divides the greater one, evenly. The mentioned lattice contains 6 elements, i.e., 1, 2, 3,
6, 9, and 18. The mentioned lattice is drawn in Figure. 5.7. This can be implemented by:

Set<Set<Integer>> generators = new HashSet();

generators.add(Set.of(1));

generators.add(Set.of(2));

generators.add(Set.of(2, 3));

in the program. Now we generate the set of those sets in Java and call the corresponding
constructor of FuzzyAlgebra as below:

FuzzyAlgebra chain6HA = new FuzzyAlgebra(generatorsF, "6-valued");

It is noteworthy that F refers to Fuzzy idea of our approach in all parts of the coding.
Next we can provide names for the elements of the generated lattice by:

chain6HA.setElementNames(Arrays.asList(new String[]

{ "0", "1", "2", "3", "4", "5" }));

Define star and starImpl matrices: In the next step, two matrices of star and starImpl

should be defined. For example, we can define them as below:

int[][] star_divisor18 =

{{ 0, 0, 0, 3, 4, 5 }, { 0, 0, 1, 2, 4, 5 }, { 0, 1, 2, 3, 4, 5 }};
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int[][] starImpl_divisor18 =

{{ 2, 2, 2, 4, 4, 4 }, { 1, 2, 2, 4, 5, 5 }, { 0, 1, 2, 3, 3, 5 }};

Now we can relate elements of star−divisor18 and starImpl−divisor18 matrices to the
elements of chain6HA using setStar and setStarImpl methods of FuzzyAlgebra as shown
below:

chain6HA.setStar(star_divisor18);

chain6HA.setStarImpl(starImpl_divisor18);

Define object and attribute sets: Following step generates the context of object and at-
tribute. All these values can be chosen arbitrarily in this example:

BasicSetObject obj_divisor18 = new BasicSetObject("obj_divisor18",

Arrays.asList(new String[] { "18", "90", "36", "72", "81" }));

BasicSetObject attr_divisor18 = new BasicSetObject("attr_divisor18",

Arrays.asList(new String[] { "36", "18", "6", "72", "18" }));

Define input data: Now is the time to define our desired input data in table−divisor18
matrix as follows:

int[][] table_divisor18 =

{{ 1, 2, 4, 2, 0 }, { 2, 0, 5, 0, 2 }, { 2, 3, 1, 5, 2 },

{ 4, 2, 1, 2, 3 }, { 0, 5, 2, 3, 0 }};

Generate context: Using the class of ”Relation”, a relation among the object, attribute,
using input data and chain6HA can be generated as I−divisor18:

Relation I_divisor18 =

new Relation(chain6HA, obj_divisor18, attr_divisor18, table_divisor18);

Generate some relations based on objects and attributes: epsilon and omega relations
are made in this step using both objects (extents) and attributes (intents):

Relation epsilon1_divisor18 = Relation.epsilon(chain6HA, obj_divisor18);

Relation epsilon2_divisor18 = Relation.epsilon(chain6HA, attr_divisor18);

And, then using epsilon relation defined above:
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Relation omega1_divisor18 =

epsilon1_divisor18.leftResidual(epsilon1_divisor18).down();

Relation omega2_divisor18 =

epsilon2_divisor18.leftResidual(epsilon2_divisor18).down();

Generate the triangle operations: Two triangle operations of Up and Down can be de-
fined for this example as below:

Relation upTriangle_divisor18 =

epsilon1_divisor18.starLeftResidual(I_divisor18).lambda();

Relation downTriangle_divisor18 =

epsilon2_divisor18.starLeftResidual(I_divisor18.transpose()).lambda();

Generate i and c versions: As already mentioned in the Chapters. 4. and 5., we can make
all relations of i and c versions only based on objects (extents) or attributes (intents). We
used only extents to generate all the mentioned relations in our implementation, i.g., partial

identities.

Relation extents_divisor18 =

Relation.identity(chain6HA, epsilon2_divisor18.getCod())

.meet(downTriangle_divisor18.composition(upTriangle_divisor18));

Relation embExt_divisor18 =

extents_divisor18.emb("extents_divisor18");

i and c versions are used in generating attribute implication formulas described in Chapter.
4.
It is noteworthy that c versions display the relation that maps an intent to the corresponding
extent (or display both Intents and Extents).

Generate attribute implications: As already mentioned in Chapters. 5.3.3 and 5.3.4,
using 5 various versions of formulas all attribute implications can be generated (in this
specific example only by extents). All formulas are built based on the generated relations
defined in the previous steps.

Formula 1: AI = (iM ; Ω⌣) \ Ω⌣
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Relation AI1_divisor18 =

(extents_divisor18.composition(omega2_divisor18.transpose()))

.leftResidual(omega2_divisor18.transpose());

Formula 2: AI = ▽ ; △ ; Ω⌣

Relation AI2_divisor18 =

(downTriangle_divisor18.composition(upTriangle_divisor18))

.composition(omega2_divisor18.transpose());

Formula 3: AI = ((I / ϵ⌣) \ (I/ϵ⌣))↓

Relation AI3_divisor18 =

(I_divisor18.starRightResidual(epsilon2_divisor18.transpose()))

.leftResidual(I_divisor18.starRightResidual(epsilon2_divisor18

.transpose())).down();

Formula 4: AI = ▽ ; Ω ; ▽⌣

Relation AI4_divisor18 =

(downTriangle_divisor18.composition(omega1_divisor18))

.composition(downTriangle_divisor18.transpose());

Formula 5: AI = (cM; Ω⌣) \ (cM; Ω⌣)

Relation AI5_divisor18 =

(embExt_divisor18.composition(omega2_divisor18.transpose()))

.leftResidual(embExt_divisor18.composition(omega2_divisor1

.transpose()));

Show relations in the interface: following steps show how we can display our results (AI
formulas) in a tab of our interface.

1. RelationDisplay class is generated to display all relations in our coding, i.e., attribute
implications.

RelationDisplay displayAI1_divisor18 = new RelationDisplay();

displayAI1_divisor18.setRelation(AI1_divisor18);

RelationDisplay displayAI2_divisor18 = new RelationDisplay();
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displayAI2_divisor18.setRelation(AI2_divisor18);

RelationDisplay displayAI3_divisor18 = new RelationDisplay();

displayAI3_divisor18.setRelation(AI3_divisor18);

RelationDisplay displayAI4_divisor18 = new RelationDisplay();

displayAI4_divisor18.setRelation(AI4_divisor18);

RelationDisplay displayAI5_divisor18 = new RelationDisplay();

displayAI5_divisor18.setRelation(AI5_divisor18);

2. A new JTabbedPane is created to be displayed inside the Attribute Implications tab
of the interface.

JTabbedPane tabbedPanel_divisor18 = new JTabbedPane();

3. A JPanel is created and added to the (tabbedPane−divisor18).

JPanel panel_divisor18 = new JPanel();

panel_divisor18.add(tabbedPanel_divisor18);

4. Since we prefer to show the attribute implications made by 5 different versions of AI
formulas in various tabs of the interface, we have to add 5 JPanel for each tab.

JPanel panelAITab1_divisor18 = new JPanel();

panelAITab1_divisor18.add(displayAI1_divisor18);

JPanel panelAITab2_divisor18 = new JPanel();

panelAITab2_divisor18.add(displayAI2_divisor18);

JPanel panelAITab3_divisor18 = new JPanel();

panelAITab3_divisor18.add(displayAI3_divisor18);

JPanel panelAITab4_divisor18 = new JPanel();

panelAITab4_divisor18.add(displayAI4_divisor18);

JPanel panelAITab5_divisor18 = new JPanel();

panelAITab5_divisor18.add(displayAI5_divisor18);
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5. Create and set up the main JFrame.

JFrame frame_Main = new JFrame("GUI");

frame_Main.setPreferredSize(new Dimension(1200, 600));

frame_Main.pack();

frame_Main.setLocationRelativeTo(null);

frame_Main.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame_Main.setVisible(true);

6. Add a JTabbedPane to the main JFrame to display several tabs vertically.

JTabbedPane tabbedPane_Main = new JTabbedPane();

tabbedPane_Main.setTabPlacement(JTabbedPane.LEFT);

frame_Main.add(tabbedPane_Main);

7. And finally, add panel−divisor18 to the tabbedPane−Main to display the attribute
implications.

tabbedPane_Main.addTab(

"<html> <body leftmargin=15 topmargin=8 marginwidth=15

marginheight=5 color=\#348781> Attribute Implications

(star-based (3-valued) example) </body> </html>", panel_divisor18);

It is important to note that all other results shown in other tabs of the interface such as
context and HeytingAlgebra can be shown easily using OperationDisply class. As we gen-
erated all these relations during this section, we only skip any explanations on their displays
for their simplicity.



Chapter 6

Main Contributions Revisited

The principal purpose of this chapter is to go over the 4 main contributions represented
in the Section. 1.1 and investigate how and where these contributions are achieved in this
thesis. In the remainder of this chapter, we have used the same numbering as in Section.
1.1 so that comparison is straightforward.

1. As already mentioned in the Section. 4.1, Chapter. 4 introduces a relational alge-

braic approach to L-fuzzy Concept Analysis. It is a generalization of regular Con-
cept Analysis in the sense that for the category Rel, our approach is exactly the same
as described in Chapter. 3. This is a proof of our claim about first main contribution.
We expanded or generalized a regular Concept Analysis to generate L-Fuzzy Con-
cept Analysis using some new operations and terms relationally.
In addition, our approach never tried to transfer the original input data into the crisp
ones to reach this goal. It means that we worked with L-Fuzzy Formal contexts
directly. As previously stated in the Section. 5.3.1, we used some fuzzy contexts
directly to proceed our work and generate our attribute implications.

2. In continuation of the first contribution of this thesis, our relational-algebraic frame-
work generates in the Chapter. 5 using all preliminary and relational formulas and
also FCA terms represented in the Chapters. 2, 4, and 3, respectively. Since all sec-
tions in the fifth chapter cover both regular and L-Fuzzy ideas, it can be claimed that
the second contribution of this thesis is also fulfilled. Its initial work started from the
fourth chapter.

3. In the Figures. 5.4 and 5.5, all patterns or attribute implications are extracted from
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the original input data. These attribute implications are calculated by 5 various ver-
sions of attribute implication formulas that we already obtained in Theorem. 4.2.1.
As it is indicated by the mentioned figured, we tried to handle the ambiguity or un-
certainty in the input data. i.e., the element values of matrices in these two figures
are still values of L in Fuzzy idea. So, the third contribution of this thesis is covered
as well.

4. All parts of our framework including main classes to define operations and classes
for only representation purposes such as RelationDisplay are implemented by Java

programming language. The consequences are shown in the figures of Chapter. 5.
The most significant reason for choosing Java to implement our work is that it is a
OOP (Object Oriented Programming) language.



Chapter 7

Conclusion and Future Work

This is the concluding chapter of the thesis as well as the future further works that can be
applied to improve the process and result of this research.
This thesis is summarized in 5 main chapters that investigate the relational approach of
L-fuzzy Concept Analysis for the purpose of object classification based on the relation to
their attributes. This procedure is fulfilled by considering the values in scale L. These
object-attribute classifications are performed to pursue the goal of limiting the ambiguity
of object-attribute relationships in real data.

It is worthy to note that we considered both regular (2-valued) and fuzzy (3-valued)
ideas in the implementation part of this research. This goes on further to prove that the
proposed relation formulas in our framework can process both boolean and fuzzy context.
So, the advantage of our approach is that we can work on some vague data without any
need of manipulation to transform it to the non-vague data. To proof this, we started our
implication with some L-valued (not crisp) data as the data entry of our tables in the im-
plementation.

The overall structure of the thesis and the general introduction of our work are reviewed
in the first chapter. Later in other chapters, a detailed explanation of our approach is pro-
vided. Starting with a relation-algebraic representations of some helpful preliminaries for
our research in the second chapter, in the chapter 3 we continue our work by FCA and
Fuzzy-FCA (FFCA) definitions. Using a relational approach, we go further and deeper
into the formulas we have covered so far in previous chapters and it leads to the creation
of the attribute implications. In other words, the attribute implications are some patterns
extracted from the data source. As we discussed earlier, in the case of fuzzy formal context
there can be a large number of implications, which reduces the chance of exploring all im-
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plications. So, we focus on only 5 versions of the attribute implications having the power
to generate all other attribute implications.
Using this relation style, we implement our research by Java programming language and
represent the goal visually in the final chapter.

Generally, time complexity is one of the most important factors in every research at-
tempt. As a future extension of our research, a detailed investigation of the relations and
formulas should be conducted to reduce the calculation time. This can be accomplished
by optimizing formulas or perhaps initial classification of objects along with their related
properties as input to save time. Also, another feature that can be added to our approach
is to have input data without format restrictions such as image or text. It may add an-
other phase to this work which is the proper format conversion to the relation before any
performance.
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