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Abstract

In this work, we aim to examine the activity of one of the most efficient and commonly
used lipases, Candida Antarctica Lipase B (CalB), from the perspective of multiple
computational techniques. To this end, we first conduct a series of Molecular Dynam-
ics Simulations on CalB in different conditions to analyze the conformational changes
of the protein and probe its unusual high-temperature activity. Next, we build the
protein interaction network of amino acids for CalB to study pairwise interactions
between amino acids (nodes) and probe the protein in terms of statistical features of
links’ distribution. Finally, we employ an algebraic topology-based method to study
the protein interaction network from a broader perspective. The ”Persistent Homol-
ogy (PH) method” is then presented as a way to exceed pairwise interactions and
examine protein networks in terms of patterns of interaction between the nodes. Per-
sistent Homology studies the evolution of the protein interaction network’s topologi-
cal features (homology groups) in different states. Employing topological analysis, we
compare the active form of CalB at high temperatures to its inactive states to account
for possible topological contributions to the protein functionality. By discovering a
prominent 1-dimensional hole in the active form of the protein, we highlight the role
of higher-order interaction patterns in the network. Moreover, using the evolution of
topological features, we study topological changes in protein networks and show the
decline in the total number of 1-dimensional features as the protein loses activity and
compactness over time. Accordingly, we propose that the protein’s general conforma-
tional changes and three-dimensional structure are not the only facets contributing
to its active state. Instead, we suggest examining the topology of the protein inter-
action network, referred to as different dimensional holes of the networks, as a higher
dimensional analysis should be used to account for protein functionality. Hence, in
this work, we desire to present that one needs to consider topological features acting
as patterns of interaction between the components to study, examine or predict the
folding of polypeptide chains into active structures.
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Chapter 1

Introduction: Background of the
Research

1.1 Proteins : Building Blocks of Life

Lipids, proteins, and carbohydrates are the primary constituents of the architecture
of a living organism. Billions of microscopic molecular machines are working inside
every cell in our body, allowing our eyes to detect light, our neurons to fire, and the
‘instructions’ in our DNA to be read. These tiny machines or major components of
all living systems are proteins. Proteins are found in all living systems, from bacteria
and viruses to the unicellular organisms and higher mammals, underpinning not just
the biological procedures in our body but every biological procedure in every living
thing. They’re the building blocks of life.

Proteins are biological macromolecules that are involved intimately in the biologi-
cal process for all the chemical reactions occurring in cells, and hence, can function as
enzymes, hormones, receptors, channels, transporters, antibodies, and support struc-
tures inside and outside cells. Based on their sequence in the polypeptide chain,
protein is unique in fulfilling its role. Properly folded proteins consisting of a precise
sequence of amino acids, folds into a particular 3D structure required to function cor-
rectly. Attraction and repulsion between 20 different amino acids yield these strings
to fold and form curls, loops, and pleats.

Levels of Protein Folding

There are several levels of protein folding, each with a particular type of bonding, turn-
ing the amino acid sequence (primary structure) into its final 3D structure- the ter-
tiary structure and quaternary structure of various chains. Protein secondary struc-
ture refers to the protein’s backbone’s local conformation, stabilized by intramolecu-
lar and intermolecular (hydrogen bonding) interactions, and contains two prevalent
types: Alpha Helices and Beta Sheets (see Fig 1.1), which are the initial state of the
folding process. The alpha helix (α-helix) retains a right-handed spiral conformation,
with every backbone N-H group hydrogen bonds to the backbone C=O group of the
amino acid located four residues earlier along the protein sequence. Beta sheets made



Chapter 1. Introduction: Background of the Research 2

(a)

Figure 1.1: a. Protein Secondary Structure consisting alpha helices coloured
in purple and beta strands coloured in blue [7]. b. Different levels of protein
structure from primary structure of amino acid sequence, secondary structure of he-
lices and sheets, and tertiary structure of 3D structure. Protein quaternary structure
refers to proteins that themselves are composed of multiple protein chains [2]

of two or more parallel or anti-parallel adjacent beta-strands (β-strand) is a stretch
of polypeptide chains, typically 3 to 10 amino acids long, with almost fully extended
backbones[18].

Therefore, we need to focus on their three-dimensional structure and correspond-
ing structural characteristics to study protein function. Although prediction of the
precise configuration of proteins and resolving how these long-chain peptides have
folded into their stable configuration is still a controversial problem in science, any
improperly folded, unfolded, or denatured protein will lose its functionality. For ex-
ample, a very recent study by a team of Stanford University researchers[13] revealed
the relationship between aging and protein aggregation, suggesting that by perturb-
ing the machinery that preserves the stability of some proteins, animals tend to age
quickly, and if the quality control pathways are enhanced genetically, they tend to
live longer. While no one knows how to predict the folding of these long peptides into
their ultimate 3D structure, these harmful effects of perturbing the stable conforma-
tions and disturbing the function of different proteins has been the subject of many
recent studies[45, 8].
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1.2 Candida Antarctica Lipase B (CalB)

Enzymes are a type of proteins that perform as biological catalysts, increasing the
rate of a reaction by lowering the reaction’s activation energy, and lipases are versatile
enzymes hydrolyzing fat distributed throughout living organisms. Among lipases,
Candida Antarctica lipase B(CalB) is a widely studied lipase with numerous registered
patents and applications in the pharmaceutical, chemical, and food industries [9, 23].
CalB is a significantly efficient catalyst for hydrolysis of carboxyl ester bonds at low
temperature in water and esterification in organic solvents with high thermal stability
[23, 45].

Figure 1.2: Hydrolysis Reaction Mechanism [1]

CalB is a α/β-hydrolase type protein composed of 317 amino acids and a secondary
structure of seven β-sheets and 10 α-helices [38] is used in a variety of industries due
to its compatibility with a wide range of substrates, thermal stability, and stability
in organic solvents[52].

1.3 Protein Active Site and Catalytic Triad of

CalB

The part of the enzyme where the substrate molecules (substance on which an enzyme
acts) bind and undergo a chemical reaction is called the active site of proteins. If
the shape of the active site were changed by an external agent, like a change in
temperature or pH, the enzyme would not be able to catalyze the reaction. The 3D
structure of each protein molecule provides a framework to confirm that the active
site, containing multiple amino acids, is precisely in the proper orientation and all of
these active site residues are in the appropriate configuration relative to one another.
Hence, the interaction between a substrate and enzyme depends on both the active
site’s physical shape and the active site’s chemistry, including the performance of
hydrogen bond donors and acceptors. CalB as a member of the α/β hydrolase fold
family is known to utilize the serine (Ser)- histidine (His)- aspartate (Asp) triad as its
catalytic site [49, 38], and the analysis of the CalB catalytic triad consisting of S105,
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D187, and H224 is one of the essential ways to examine the activity of the protein
under different conditions.

1.4 Experimental Background of Thermal

Stability of CalB

Critical operational considerations, such as preventing denaturation at high tempera-
tures being of significant concerns to overcome when generalizing the use of enzymes
on an industrial scale, have made CalB one of the most used lipases. According to
different studies, the immobilized form of CalB is quite thermostable, particularly
under nonaqueous conditions where the catalyst remains active for many hours in the
presence of high concentration of reactants. In aqueous solutions, however, the lipase
becomes inactive quickly at temperatures as low as 40◦C. Explaining the thermosta-
bility of CalB in the non-aqueous environment and improving the thermal stability
of the enzyme without negatively affecting its activity has been the subject of many
recent studies [58]. In previous study by Frampton et al.[20], where the immobi-
lized form of CalB (commercially available under Novozyme 435-N435) was proven to
be quite thermostable under non-aqueous conditions, CalB esterification proceeded
without bulk solvent, and the reaction rate increased with increasing temperature up
to more than 130◦C. The protein was active up to 150◦C, as shown in Fig. 1.3b.

(a) (b)

Figure 1.3: a. Lewatit beads where CalB is immobilized on the surface. b. Es-
terification reaction rate as a function of temperature measured by Frampton et
al [20].

The authors could not account for the high thermal stability of the enzyme as
the reactions proceeded well over 100◦C, and this was our initial motivation to adopt
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multiple computational methods to examine the protein at the structural level to
uncover possible contributing factors to this unusual behavior. To examine its activity
at temperatures that would destroy most proteins, we used molecular simulation
techniques to analyze the structural behaviors and microstructural properties. We
also probed the protein topologically at the network level to reveal its topology-
function relationship.

1.5 Layout of the Thesis and Computational

Approaches to Study the Protein

In this study, through multiple computational techniques, we attempt to uncover what
is unique about this protein allowing it to be active in temperatures that destroy most
other proteins. Our discussions, results, and analysis using different methods are in
the following direction:

• Chapter 2: Through a series of Molecular Dynamics Simulations, we first
study CalB on the molecular scale, demonstrate its unfolding process in extreme
conditions and highlight its stable and active state and conformation at high
temperatures. We also probe the active site of the protein and examine the
possibility of active site shielding to explore the contributing factors in high-
temperature activity of CalB.

• Chapter 3: In chapter 3, we introduce the Theory of Complex Systems
and Complex Networks, and from the three-dimensional configuration, we
build the Protein Residue Network of CalB (Protein Interaction Network). We
compare some statistical features of the complex network of CalB in different
states and look at its active form in high temperatures from a new approach.
The protein interaction network uses amino acids as nodes and studies pairwise
interaction between the pairs. The statistical analysis of pairwise interactions in
different states studies and compares the distribution of bonds between residues
in the active and inactive states of the protein. These networks provide input
for further analysis in the later sections.

• Chapter 4: In chapter 4 of the thesis, we introduce a new computational tech-
nique based on Algebraic Topology to study the protein interaction network of
CalB. Using Topological Data Analysis with Persistent Homology Ap-
proach, we search for the global and local effects of topological fingerprints on
the unusual activity of CalB in high temperatures. Topological features (finger-
prints) examine the evolution of homology generators in different dimensions
(connected components, holes, and voids) and compare the general topology of
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the protein in different states. By topological analysis, we go beyond pairwise
interaction between amino acids and probe the patterns of interactions of the
network. We believe that these higher-order interactions between amino acids
(pattern of interactions) play an essential role in studying the protein folding
process to the final 3D configuration of proteins. Hence, in exploring the pro-
tein interaction networks of proteins, other than pairwise interactions, one must
consider the interaction pathways between the nodes representing themselves
in the network’s topological features.

• Chapter 5: Chapter 5 contains conclusion and future works suggestions.
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Chapter 2

Method of Molecular Dynamics
Simulation and Results

2.1 Basics of Molecular Dynamics Simulation

Most of the computer simulations are based on the assumption that the motions of
atoms and molecules (particles) can be explained by the laws of classical mechanics[21].
Molecular Dynamics (MD) simulation is a well-established computational method
that aims to compute the equilibrium and transport properties of classical many-
body systems. In recent years MD simulation is used to describe the dynamical
properties of proteins and other macromolecules to provide structural interpretations
of experimental data [21]. The basic strategy of MD simulation is to numerically
solve Newtonian equations of motion in a Laplacian framework. Noting that in a de-
terministic universe, knowing the precise location and momentum of any particle (or
mass) in the universe, their past and future position and momentum for any given
time can be determined from the laws of classical mechanics. MD simulations in
many aspects function very similarly to real experiments. In MD simulation a model
system consisting of N atoms will be chosen, for which the Newtonian equations of
motion will be solved for the system until it reaches its equilibrium state. For many
classical systems, the equations of motion for a system of N interacting atoms with
positions ri and masses mi take the following form:

mi
∂2ri
∂t2

= Fi, i = 1...N, : (2.1)

in which the forces acting on the atoms are derived from:

Fi = −∂V
∂ri

, (2.2)

where V is the potential function, including non-bonded pairwise interaction terms:

V (r1, ...rN) =
∑
i<j

Vij(rij)
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such as Lennard-Jones, and Coulombic and also intramolecular bonding interactions.
For a Lennard-Jones system the non-bonded part of the potential function is defined
by:

V (LJ)(rij) = 4ϵ

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (2.3)

where rij is the distance between two interacting particles, σ is a measure of the
range of the potential and ϵ is the strength (depth of the potential well, also known
as dispersion energy). The LJ potential is positive (repulsion) for small values of
r, and negative (attraction) for large values, with a minimum of −ϵ at 21/6σ. If
electrostatic charges exist we need to add the appropriate Coulomb potential term.

V (Coulomb)(rij) =
QiQj

4πϵ0rij
, (2.4)

where Qi and Qj are the charges and ϵ0 is the permittivity of free space. To overcome
computational difficulties, program always uses a cut-off radius for LJ and sometimes
for Coulomb interaction such that they become zero beyond a certain cut-off distance
rc. To define the value for cut-off, MD simulation softwares such as Gromacs [34]
defines the minimum-image convention technique, which considers only one image of
each particle in the periodic boundary conditions for a pair interaction, so the cut-off
radius cannot exceed half the box size. For simulation of molecules program also
needs to consider the intramolecular bonding interactions defined as:

Vintramolecular =
1

2

∑
bonds

Kr
ijk(rij − req)

2 +
1

2

∑
bendangles

Kθ
ijk(θijk − θeq)

2 + (2.5)

+
1

2

∑
torsionangles

∑
m

Kϕ,m
ijkl (1 + cos(mϕijkl − γm)).

As it can be noted from the equation, each “bond”, taking a harmonic form
(quadratic) with a defined equilibrium separation, considers the separation between
adjacent pairs of atoms, and each “bend angle” is constructed between successive
bonds, considering three atom coordinates. The “torsion angles” then are defined in
terms of three connected bonds and four atomic coordinates. In order to conduct
Molecular Dynamics Simulation we used GROMACS [34] Molecular Dynamics Sim-
ulation Package which is mainly designed for simulations of proteins. In order to
simulate the dynamics of proteins GROMACS defines variety of ”Forcefields” which
are computational methods that can be used to estimate the forces between atoms
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within molecules and also between molecules. A forcefield of any simulation pack-
age will specify the strength parameters, intramolecular potentials and all the other
necessary constants such as parameters needed for any solvent that is used in the
simulation. When a force acting on each particle has been acquired at a specific time
t, numerical integration of the equations of motion, employing several algorithms
yields a new particle position at a time t + δt. Where δt will be dictated by the
algorithm of the program. To begin the simulation, one should set initial positions
and velocities for all particles in the system. These conditions are chosen consistent
with the structure that is being simulated. For MD simulation the coordinates are
usually extracted from an experimentally determined crystal structure deposited in a
public database. If the initial velocities are not known the program generates initial
atomic velocities vi, i = 1..3N from Maxwell-Boltzman velocity distribution:

ρ(vi) =

√
mi

2πkT
exp

(
−miv

2
i

2kT

)
. (2.6)

Note that since the system is equilibrated in the canonical ensemble and will natu-
rally tend to its equilibrium state, this choice of initial velocity does not affect the
result of the simulation. The temperature of the simulation is found by the total
kinetic energy of the N -particle system, and can be controlled using the method
of temperature coupling to an external heat bath. If the resulting total energy will
not correspond exactly to the required temperature T , a correction is made through
scaling all velocities so that the total energy corresponds exactly to T .

Algorithm and Application

We require a good algorithm in order to integrate Newtonian equations of motion and
obtain the system trajectory. For a proper MD simulation, an acceptable accuracy
for relatively larger time steps is important since a longer time step is equivalent
to fewer evaluations of the forces and a more efficient simulation. The default MD
integrator in GROMACS the so-called leap-frog algorithm uses positions os atoms at
time t and velocities at time t− 1

2
δt, and updates positions and velocities, using F (t).

When extremely accurate integration with temperature and/or pressure coupling is
needed, the preferred method is velocity Verlet integrators[34]. In our simulation we
used Verlet method as for most MD applications, Verlet-like algorithms are adequate;
however, occasionally it is convenient to employ higher-order algorithms. In velocity
Verlet method, positions r and velocities v at time t are used to integrate the equations
of motion:

r(t+ δt) = r(t) + δtv +
δt2

2m
F (t) (2.7)
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v(t+ δt) = v(t) +
δt

2m
[F (t) + F (t+ δt)]. (2.8)

Provided that the potential range is cut-off, the program then applies periodic bound-
ary condition which allows each atom to interact with their nearest image in a periodic
array. Hence, the procedure to build and simulate our system and analyze its dynam-
ics contained:

• Obtaining the initial structure.

• Selecting the preferred forcefield based on experimental data and generating the
starting topology of the system.

• Choosing the appropriate solvent and neutralizing the system, this step contains
adding ions to the system to cancel the extra charge.

• Relaxing the system at its minimized energy and equilibrating it to the desired
temperature and pressure using NVT and NPT ensembles.

• Conducting the time evolution simulation and analyzing the results.

Candida Antarctica Lipase B (CalB) crystal structure used in our Molecular Dy-
namics simulation is obtained from the protein data bank [53] under PDB accession
code: 1TCA which the experimental crystal structure was obtained by X-RAY diffrac-
tion and the 50 ns simulations are carried out using GROMACS software [34] using
CHARMM36m forcefield, which is known to be an enhanced forcefield for folded and
disordered proteins [26]. The protein is centred in a simple cubic box with 0.1nm
from the box edges as the unit cell, and solvated using GROMACS TIP3P water
model, 8M urea, and glycerol as different solvents. After neutralization and energy
minimization using the steepest-descent algorithm the system equilibration and heat-
ing to the desired temperature of 300K, 323K, 423K in water, 350K and 423K in
glycerol and 423K and 480K in urea and pressure of 1 bar was through an NVT and
NPT ensemble respectively.

2.2 Results and Analysis of Molecular Dynamics

Simulations of CalB

In order to analyze the results and quantify the final topology and conformational
changes of the structure, after the 50 ns simulation is carried out, we examine the
snapshots of the protein in time schematically, calculate the root-mean-square de-
viation (RMSD), which quantifies the structural stability concerning the starting
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Figure 2.1: 1TCA, LIPASE B FROM CANDIDA ANTARCTICA, downloaded from
Protein Data Bank [53].

structure of the protein and radius of gyration (Rg) values of CalB structure in differ-
ent temperatures and plot these quantities as a function of time. We also study the
active site of CalB in terms of the distances between active site residues to account
for the activity of CalB in different states.

The root mean square deviation RMSD of certain atoms in a molecule relative to
a reference structure (usually the backbone atoms), can be calculated as:

RMSD(t) =

[
1

M

N∑
i=1

mi

∣∣ri(t)− rrefi
∣∣2]1/2 , (2.9)

whereM =
∑

imi, r
ref is the reference structure and ri(t) shows the position of atom

i at time t. As proteins can be fitted on the backbone atoms and accordingly RMSD
will follow to be computed for the backbone, in our calculations we have plotted the
RMSD and analyzed its deviation with respect to the backbone of CalB.

Furthermore, in order to have an estimate for the compactness of a structure, one
can compute the radius of gyration, which is defined as:

R2
g =

(∑N
i |(ri −Rcm)|2mi∑

imi

)
, (2.10)

where mi is the mass of atom i and ri stands for the positions of atoms with respect to
the center of mass of the molecule Rcm = N−1

∑N
i=1 ri. If a protein is stably folded,
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PDB Structure Urea 480KUrea 423K

Figure 2.2: Starting structure and snapshots of overall CalB, after 50 ns
simulation in Urea at 423 K and 480 K.

and compact the Rg value will likely maintain a relatively steady value, and as it
starts to unfold, the corresponding Rg value is expected to increase as a function of
time, and to decrease during protein folding. In the following sections we are going
to use RMSD and Rg analysis together with an examination of the active site of CalB
to account for its conformational stability and activity in different conditions.

2.2.1 Results of MD Simulation of CalB in Urea

Regarding the analysis of the molecular dynamics simulation of protein, our first
step was to show how denaturation looks like in computer simulation. In the 1930s,
urea became the most typically used denaturant agent in protein folding - unfolding
studies. It has been suggested that by forming hydrogen bonds with protein amino
acid side chains, urea induces protein denaturation [3]. To simulate the unfolding
process of CalB, we followed a paper by Monhemi and colleagues where the protein
was placed in a box of 8M urea and water [38], and conducted a series of 50ns MD
simulations, subjecting CalB to high-temperature simulations at 423K and 480K.
In order to schematically represent the final and unfolded state of CalB snapshots
of the overall CalB structure after the 50ns simulation at both high temperatures
are depicted in Fig 2.2. The figure confirm that the protein unfolds and accordingly
loses most of its secondary structure in Urea. For CalB in Urea at 480K the overall
structure of CalB is further lost due to complete unfolding at this high temperature
in the presence of urea.

Fig. 2.3 shows the evolution of the RMSD in time, as a good quantitative measure
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Figure 2.3: Root Mean Square Deviation RMSD, of CalB in urea after 50 ns
simulation at 423K and 480K.

Figure 2.4: Radius of Gyration Rg, of CalB in urea after 50 ns simulation at 423K
and 480K.
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(a) (b)

Figure 2.5: RMSD and Rg of CalB , after 50 ns simulation in pure water at different
temperatures.

for protein unfolding and losing its compactness in both 423K and 480K. As shown,
the value of RMSD gradually increased and reached its highest values after 50 ns,
in both temperatures. For CalB in urea at 480K as expected, this increase was
dramatically larger as the protein loses more of its secondary and tertiary structure.
For further studying the compactness of CalB, we then analyzed the radius of gyration
for CalB in our simulations, and plotted it as a function of time in Fig 2.4. The value
of Rg increases from about 1.8nm to 2.05nm and 4.0nm for CalB in urea at 423K
and 480K respectively. The high deviation value for RMSD, and Rg, together with
the schematic representation of CalB in urea, confirmed the denaturation of CalB in
urea both at 423K and at 480K. Please note that the unfolding process doesn’t stop,
and we expect further unfolding of protein as time exceeds 50ns.

2.2.2 Results of MD simulation of CalB in Water

The hypothesis of high-temperature stability and activity of CalB is then tested
by placing the protein in a box of pure water. We used TIP3P water model of
the GROMACS package[34], and conducted another set of 50ns MD simulations at
various temperatures of 300K, 373K, 423K, and 480K. The RMSD and Rg values
are plotted in Fig 2.5. RMSD values of CalB during the simulation in water for a
series of temperatures are shown in Fig 2.5a. Likewise, equilibrium conformation of
the system in water is also examined for protein structure compactness using the Rg

value, which for a range of temperatures are plotted as a function of time for CalB
in Fig 2.5b. As expected, the results of MD simulation in water show protein is more
compact in water as compared to urea. In water at 300K, protein remained compact
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with steady RMSD and Rg values. At 373K protein partially unfolds and RMSD
and Rg values increase slightly to 0.3nm and 1.89nm respectively. In water at 423K
protein seems to unfold by a large deviation and will further lose its compactness and
stability as the values of RMSD and Rg increase to about 0.6nm and from 1.8nm to
2nm respectively.

2.2.3 High Temperature Activity of CalB in glycerol

Our next step was to choose a non-aqueous environment for high-temperature MD
simulation. Glycerol was chosen for its alcohol groups, high boiling point, and the
availability of trusted force-field parameters. Glycerol has three hydroxyl groups
and can be efficiently used as solvent and acyl acceptor in the transesterification to
produce the corresponding alcohol [56]. Immobilized CalB was previously used as
a catalyst for transesterification where glycerol is utilized as both the solvent and
the acyl acceptor in the kinetic resolution of ester racemates [15]. Accordingly, we
repeated our high temperature 50ns simulations in this solvent and examined the
conformational changes, stability, and compactness of the protein using the schematic
snapshots representation, RMSD and Rg respectively. Fig 2.6 compares every 10ns
snapshots of the protein in water and glycerol during the 50ns simulations in terms of
protein secondary and tertiary structural loss and conformational change. As noted,
protein remains folded both in water at 300K and in glycerol 423K and start losing
its 3D structure in water at 423K. In Fig 2.7 we have plotted the result of RMSD
and Rg analysis in glycerol at two different temperatures. As we can compare the
structure to the protein dynamics in water, we find that the overall structure of the
protein remains compact and stable in glycerol even at high temperatures as the
protein RMSD and Rg values follow same patterns for both water 300K and glycerol
at 423K. Hence, our results of RMSD and Rg, together with schematic representation
of the protein confirmed that CalB is stable and compact in water at 300K and in
glycerol both at 350K and remains active up to 423K.

2.2.4 Active Site Residues and Analysis

As discussed previously in chapter 1, the active site of CalB is the conserved cat-
alytic triad consists of Ser (S105), Asp (D187), and His (H224). In Fig2.8 we show
the crystal structure of CalB in grey with active site residues coloured in red(His),
yellow(Asp) and green(Ser). In the next step in order to analyze the bonding lengths
of the triad, and study the activity of CalB in both solvents in different tempera-
tures, we examined the minimum pairwise distances between the triad residues and
plotted these quantities as a function of time. In the Ser His Asp catalytic triad, the
three residues form a charge-transfer relay network, with His playing the central role
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10 ns

20 ns

30 ns

40 ns

50 ns

Figure 2.6: Snapshots of CalB in different solvents. From left to right: in
glycerol at 423K, in water at 300K and in water at 423K



Chapter 2. Method of Molecular Dynamics Simulation and Results 17

Figure 2.7: RMSD and Rg of CalB, after 50 ns simulation in glycerol at two different
temperatures

and serine being hydrogen-bonded to Histidine, which is further hydrogen-bonded to
Aspartate. Hence, in order to account for the activity of the protein, we will probe
the pairwise distances between His to Ser and His to Asp to ensure that the triad is
at the proper reach from one another and confirm the existence of hydrogen bonds
between them.

As it can be noted from Fig 2.9, the active site residues of the protein seem to be
moving away from one another in all three simulations of CalB in water in different
temperatures. In water at low temperatures 300K, even though the structure looks
relatively compact, and stable according to RMSD and Rg values, additional exam-
ination of the active site shows that the catalytic triad minimum distances start to
increase at the beginning of the simulation. To further analyze the high-temperature
activity of CalB in glycerol in terms of active site we also studied the minimum dis-
tance between active site residues as a function of time for protein in glycerol at
423K and the corresponding results are plotted in Fig 2.10. As it can be noted from
the figure the active site analysis of CalB in glycerol at high temperatures shows the
distances between active site components in this solvent is stable even at high tem-
perature which further confirms the protein activity in this condition. Accordingly,
we conclude that in glycerol solvent, the conformation of the active site maintains its
stability, whereas, in the polar solvents, even in lower temperatures (300K) despite
the compactness of the overall conformation, the interaction between water molecules
and active site residues destroys the hydrogen bonding between catalytic triad as the
distances are not remained stable.
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Figure 2.8: Active Site Residues of CalB, consisting His224 (red), Asp187 (yel-
low), Ser105 (Green)

Figure 2.9: Minimum Distance Between Active Site Residues, after 50 ns
simulation in pure water at different temperatures.
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Figure 2.10: Minimum Distance Between the Active Site, after 50 ns simulation
in glycerol at 350K and 423K.
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2.2.5 CalB Lid and the Effect of Alpha-5 on the Activity of
the Protein

Figure 2.11: Active state of the protein in glycerol at 423K (top left). The active
site residues are represented in the sphere with His in red, Asp in yellow-orange, and
Ser in light green. The top right panel shows the folded state of CalB in water at
300K with active residues moved away, and the bottom panel represents the inactive
and unfolded state of CalB in water at 423K. The Alpha-5 helix is colored in pink

Previous studies on the activity of CalB have shown that this enzyme has not
shown any significant interfacial activation in prior experiments, and the further ob-
servations led to the determination that this behavior may stem from the absence of a
lid. The lid of any enzyme controls the enzyme activity and is known to be responsi-
ble for protecting the active site. For CalB, this regulation of the access to the active
site is still is a matter of controversy. However, it was also reported that CalB has
two α-helixes α 5 and α 10 surrounding the active site, whose movement could play
the role of the lid of the lipase. Their motions which is diminished in aqueous media
significantly affect the catalytic properties of the enzyme ([48]). In another study by
Kumaresan [33], the substantial role played by the flexible α5-helix in CalB is noted,
where their results imply that the α5 helix in the native protein seems to unwind,
and its movement allows it to partially cover the active site region. The study shows
α5 and α10 helices, having a hydrophobic nature, present themselves in the path to
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the active site of the enzyme. Fig 2.11 shows 3 conformations of CalB in water in two
temperatures and glycerol together with the position of active site residues (His224
in red, Asp187 in yellow, and Ser105 in green), and α5 helix colored in pink. The top
left panel of the figure shows the folded (according to RMSD, and Rg results), and
active state of the CalB in glycerol at 423K, the catalytic triad is depicted in spheres
with His colored in red, Asp in yellow-orange, and Ser in light green. The top right
panel displays the folded state of CalB in water at 300K with active residues dragged
away, and the bottom panel illustrates the inactive and unfolded state of CalB in wa-
ter at 423K. The schematic representation of our MD simulations results (Fig.2.11),
showed that α5 unfolds in glycerol at 423K, where the protein appears to be folded
and active, with active site residues held tight together, does not unfold in water at
300K and unfolds in water at 423K. As mentioned earlier, the existence of a lid and its
role in the activity of CalB in high temperatures is still controversial. In the following
chapters, we employ the method of complex system and topological analysis to look
further into the underlying structure and topology-function relationship of CalB.

2.3 Chapter Conclusion and Remarks

To summarize this chapter, we want to highlight how the Molecular Dynamics sim-
ulation technique provided us with the starting point of our analysis and how its
deficiencies instructed us to proceed to other approaches. Using MD simulation, af-
ter reproducing CalB unfolding process through simulation in urea, we analyzed the
3D structure and activity of the protein in water and glycerol. We used the results
of RMSD and Rg to verify the folded state of CalB in water at 300K and glycerol
at 423K. Furthermore, we analyzed the protein in terms of its active site residues’
minimum distances from one another to probe the activity of the protein. Hence, we
demonstrated the high-temperature activity of CalB in glycerol solvent and confirmed
that despite the folded general configuration, protein becomes inactive in water even
at lower temperatures around 300K. Consequently, we inferred that to examine the
activity of the protein at high temperatures, account for its unusual behavior, and
distinguish between folded-active (glycerol 423K) and folded-inactive (water300K)
structures of CalB, we require a more suitable measure. Finally, after testing mul-
tiple computational methods, we employed the complex network analysis approach,
which maps the protein system to a network of nodes and edges and examines it using
pairwise interactions between the nodes.
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Chapter 3

Complex System Theory and
Protein Residue Network

3.1 Introduction to The Theory of Complex

Systems

The science of complex systems is a remarkable mix of various subjects such as
physics, biology, and social sciences. Complex system theory studies systems that
contain many interacting elements from which various properties or functionality can
emerge[50]. As we noticed earlier in MD simulation, forces are derivative of poten-
tials, and classical systems trajectories can be fully understood and predicted using
classical mechanics.

Contrary to physical methods where we don’t specify which particle is interacting
with which, interactions are particular in complex systems. If more than two elements
interact, interactions will be described by time-dependent networks: Mα

ij(t), where
i and j label the elements in the system and α is the interaction type. Networks
characterize the strength and type of the interaction between elements of the system
through correlation or interaction matrix elements [50]. The theory of complex net-
works at the heart of complex system theory uses these connected networks to track
which elements interact with others in which ways. Complex network theory lies in
the intersection between graph theory and statistical mechanics, employing networks
to study the properties and dynamics of complex systems. In the following section, we
introduce some important concepts and definitions used in complex network theory
(based on [19, 42, 14]) to calculate some significant statistical features of the protein
residue network of CalB in different states.

Statistical Features of Networks

In the simplest layout, a network is a set of points in space, joined together by some
lines, which in the language of graph theory, are referred to as nodes (or vertices) and
links (or edges) of the graphs. In the mathematical representation of graph theory,
we define a network as: M = (V,E, f), where V is a finite set of nodes, E ⊆ V ⊗ V
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is a set of edges, and f is a mapping 1 that associates elements of E to the binary set
Z2 = {0, 1}:

f : E → Z2 (3.1)

The above definition for networks works well when we have “unweighted” networks.
For any weighted network, in which the weights of the links take a range of values, we
replace the map f by the weight function ω, and for a weighted network, we define
M = (V,E, ω).

There are multiple different ways to represent networks of complex systems mathe-
matically. In matrix representation for an undirected network (no direction is defined
for edges) with N nodes, one creates a so-called Adjacency Matrix based on the list of
all the edges between paired nodes (edge list). If we denote an edge between vertices
i and j by eij = (i, j), then one can determine the complete network by giving the
value of N and a list of all edges.

Definition 3.1.1 (The Adjacency Matrix). The adjacency matrix A of a simple
graph is the matrix with elements Aij such that:

Aij =

{
1 if there is an edge between vertices,
0 otherwise.

(3.2)

Complex Network Theory classifies networks based on the nature of nodes and
links. One of the most famous classes of networks that is the subject of our study
is the one whose links between pairs of nodes represent interactions determined by
physical forces based on distances, called geometric graphs. In this context, protein
residue networks are among the most notable examples.

3.2 Protein Residue Network

Protein residue network (also referred to as protein interaction network) for any pro-
tein can be constructed by considering each Cα atom of each amino acid as nodes.
Two nodes then connect, and one builds a link between them provided that the cor-
responding Cα atoms are separated by at most a certain specified distance. Hence,
a cut-off is defined for the system under which an edge exists between two nodes.
This model maps the protein’s all-atom conformation to a graph with amino acid
residues as vertices, and all (covalent and non-covalent) interactions between them as
edges [37, 29]. Fig 3.1 represents three dimensional conformation of the protein in all-
atom representation on the left and the network representation of CalB on the right,
in which the set of 3-dimensional coordinates of the location of the residues provides

1See Definition A.1 in Chapter 4
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a point cloud data (PCD), each amino acid residue represented by its Cα atom is a
node, and each edge between two nodes is constructed if the distance between a pair
of C-alpha atoms is within the cut-off value defined according to bond lengths. This
network model of protein networks usually has the cut-off of about 7Å.

As mentioned earlier, a widespread statistical method to analyze a protein is
through protein interaction network and analyzing the network obtained by thresh-
olding the distances (sparse network). However, in this work, instead of the binary
adjacency matrix, we define and use the weighted adjacency matrix to examine the
CalB system as a fully connected network to prevent any information loss for our
further analysis. The adjacency matrix A of a weighted network is the matrix with
elementsAij such that: Aij = 0, when there’s no edge between vertices i and j, and the
Aij value is equal to the weights of the corresponding connections Aij = ω(eij) = ωij if
the edge between them exist. One method to define the adjacency matrix for a point
cloud is from the corresponding distances between the nodes by having the weights
defined as: ω = dij where d is a metric defined on the space, e.g., the Euclidean dis-
tance on the Euclidean space. One can use other definitions for adjacency matrices
based on various correlations between the nodes of the system. For example, another
widespread way to define weights for point cloud is ω = 1/dij.

3.2.1 Protein Residue Network of CalB

To create the protein residue network of CalB we first take the protein structure’s
dynamic model (since the system changes over time) and define dynamical distances
between the 317 points. Thus a protein now will be represented by a 317×317 distance
matrix, representing our adjacency matrix for each snapshot, which will provide the
input of our further analysis. In Fig. 3.2a we first plotted the distance matrix for
the crystal structure of CalB. As it can be noted from the figure, the value of the
distances between the nodes in the crystal structure varies from 0 to about 50Å.
The resulting tabulation of distances can be presented graphically in the form of a
frequency histogram. In Fig. 3.2b we have plotted the frequency histogram of the
distances between the nodes. In this representation rectangles are constructed over
each interval with their height being proportional to the number of class frequencies of
weights in the crystal structure which better represents how the links of the network
are distributed among 0 to 50Å. The total number of nodes (the size) of the protein
network is (N = 317), giving us the corresponding frequency histogram for N2 edges.
There are 317 links at class zero which correspond to the diagonal of the distance
matrix (ωii = ωjj = 0). We can see from the figure that in the crystal structure, most
of the nodes are within 20 to 30Å from one another, where the peak of the graph is
located.
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Figure 3.1: All atom representation of CalB downloaded from Protein Data Bank
(1TCA) on the left, and Protein Interaction Network of CalB on the right using
cut-off of 0.7nm, where the black dots represent alpha carbons and provide the nodes
of the graph. We set the cutoff distance to 7Å, and edges connect the nodes with
black solid lines if the nodes are within this distance.

(a) (b)

Figure 3.2: (a) The adjacency matrix (distance matrix) for the crystal structure
of CalB (1TCA), and (b) the histogram of the distance matrix values. The
adjacency matrix has 317 × 317 elements and the distances between these elements
can be compared using the colorbar. Since ωii = ωij = 0 all the distances on diagonal
are set to zeros, and accordingly there exist 317 links in class zero.
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3.2.2 Statistical Analysis of CalB Interaction Network in
Different States

To analyze the complex network of protein statistically, we choose three different
states of CalB according to our previous RMSD and Rg and active site analysis:

• Glycerol 423K: Folded and active state of CalB

• Water 300K: Folded and inactive state of CalB

• Water 423K: Unfolded and the inactive state of CalB

In the following sections we compare some statistical features for protein network
in these states. In Fig .3.3, we first plotted the graph representation of the final
snapshot(after 50 ns) of protein interaction networks. Black dots represent the nodes
of the graph (α-carbons of each amino acids) and red dots highlight the active site
residues. From this figure we can see the position of active site residues embedded in
the framework of the overall network for each case. These figures also represent how
the active site residues seem to be held closer in glycerol. In 3.3c we noticed that
a segment of the protein has drifted away from the rest of the structure during the
unfolding process.

Since the adjacency matrix (distance matrix), is time dependent with elements
for each protein interaction network changing in time (A(t)), we need to calculate
and compare the time averaged adjacency matrix in different states. Therefore, for
each time dependent element of the matrix, Aij = ωij, we need to consider the 50 ns
time-averaged value and build the time-averaged adjacency matrix (Ā) accordingly.
If we denote the size of the network (number of nodes) by N , for ZN = {1, 2, ..., N},
we have:

∀(i, j) ∈ Z2
N : ωij(t) = d(x⃗i(t), x⃗j(t)) ≡

[
3∑
δ=1

(xδi (t)− xδj(t))
2

]1/2
, (3.3)

where d is the Euclidean distance between the nodes. Hence, for each trajectory of
protein from the MD simulation result we have obtained time series:

{ωij(t)}Tt=1 , (3.4)

where T is the number of time frames. Therefore, our system of protein network
evolving in time can be described by a collection of time series of the above form
(NP2 number of time series). Now taking average in time yields:
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(a) Glycerol 423K (b) Water 300K

(c) Water 423K

Figure 3.3: Schematic Representation of Protein Interaction Network of
CalB in three different states. a. In glycerol at 423K, b. In water at 300K and c. In
water at 423K. The black dots represent the nodes of the graph which are the Cα of
each amino acid and the red dots represent active site nodes.
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ω̄ij = ⟨ωij(t)⟩t =
1

T

T∑
t=1

ωij(t), (3.5)
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Figure 3.4: Time averaged adjacency matrices for protein in glycerol at 423K,
Water at 300K, and Water at 423K. The color bar shows the ranges of dis-
tances(weights) in nm for each matrix. The elements of the matrices present the
distances between each pair of residues in different states.

which can be used to plot the weighted adjacency matrix(Ā) for each protein
network with having ω̄ij as the elements. In Fig 3.4 we represented time averaged
adjacency matrices for protein residue network of amino acids in these three states.
As we can note from the heat maps in different states, the protein network includes
the most extensive ranges for matrix elements for Water at 423K, where the structure
unfolds, and amino acid residues take considerable distances from one another. The
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large amount of deviation from the rest of the network in water 423K is highlighted
in bright yellow for some residues near 99 and 25 for instance. Which emphasize
that these residues are far from all the others and remind us about how protein
unfolds in water at 423K. As expected for protein in glycerol at 423K and water at
300K where the 3D structure is folded (according to RMSD and Rg) all the distances
between the nodes of the network are within the same range compared to the crystal
structure and are smaller compared to the unfolded case (water423K). Darker spots
on the adjacency matrices are those residues that are close to each other in space
and are assumed to interact with one another (diagonal represents the distances from
themselves). Hence, the adjacency matrices of the protein interaction network of CalB
in different states can provide a good starting point to study the pairwise interaction
between the nodes (amino acids) and will be discussed in the next section. Moreover,
we are very interested in exploring the observed patterns of these darker dots on the
plots. Therefore, in the later chapter, we utilize the method of Topological Data
Analysis to detect these interaction patterns and analyze them.

3.2.3 Probability Distribution Functions

The probability distribution function of the time-averaged distance matrix provides
a mathematical model for the population histogram and is obtained by normalizing
the frequency curve2. Fig 3.5 shows the 50 ns time averaged probability distribution
function (PDF) for protein in different states. As we can see, the density starts to
increase, has a peak and decreases at higher thresholds. It goes to zero as the values of
weights go beyond around 5nm in glycerol, confirming that our network doesn’t have
any distance between pair of nodes at these distances, and the amino acid residues
are always within 5 nm. This number goes up slightly for the protein network in
water at 300K and, as expected, takes its maximum value of above 6 nm for protein
in water at 423K. Protein Network has different distribution function in different
states in terms of the order of mean, the spread of distances and the measure of the
symmetry. As we can see from this plot, for protein in glycerol the probability of
finding distances between amino acid residues is maximum at around 2 nm. The
spread peak has dropped in value and also has taken a notable shift to higher weights
in water, representing that, in water, we detect higher distances between the nodes,
which on average caused the peak to shift to higher weights, which in water at 423K
it increases to about 5 nm.

2The statistical analysis of each state is also plotted separately in Appendix B
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Figure 3.5: Time Averaged Probability Distribution of links for protein residue net-
work in glycerol(green), water 300K(orange) and water 423K(blue) calculated from
eq 3.5. Horizontal axis shows the time averaged weights (distances) and the vertical
axis shows the normalizes frequency histogram for each class representing the proba-
bility of corresponding ω between the nodes.
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3.2.4 Standard Deviation

The variance of a set of measurements y1, y2, y3, ..., yn is defined as the average of the
square of the deviations of the measurements about their mean [36]. The standard
deviation is equal to the positive square root of the variance. Generally, the standard
deviation is a measure of the spread of a distribution. However, since the value of
weights(ωij) is changing in time, one should note that the standard deviation for our
time-dependent distribution is not a measure of the spread of the previous distribution
function, but the deviation that the distribution of links has in time (range of motion).
Hence, to perform the calculation for standard deviation and mean we need to refer
to the time series, introduced in 3.4. This deviation for each matrix element (weight)
can be calculated using δωij where:

(δωij)
2 =

〈
(ωij(t)− ω̄ij)

2
〉
t
=

1

T

T∑
i=1

(ωij(t)− ω̄ij)
2. (3.6)

In Fig 3.6 we showed the Standard Deviation of the distribution for the network
in three different states. The value of standard deviation reveals that for protein in
glycerol, almost all of the distances between the pairs fluctuate within 0.5nm interval.
For protein in water at 300K, however, we note the number of bright dots has changed
dramatically as can be seen from Fig 3.6b and this number increases to 3nm. This
confirms the existence of a broad spatial distribution for the protein network in water
300K and, accordingly, more scattered distance fluctuations between the nodes. In
that state the lower right area of the matrix (where the active site is located) has
the least fluctuation and seems frozen compared to the rest of the molecule. Hence,
we concluded that although protein does not unfold in water at 300K, according to
RMSD and Rg, the distances from amino acid residues go through high deviation
and despite the folded general configuration of the protein, links between the nodes
on average fluctuate highly compared to the active state in glycerol. For water at
423K, the number of pairs with high standard deviation increases, and we notice
higher fluctuations throughout the whole system. In this state we also see many
bright spots close to the diagonal (about80 to 90, 110 to 120 for instance), which
shows that the alpha carbons despite being close to their neighbours on the chain,
go through pairwise fluctuations. For protein in glycerol, we observed that even
though the whole structure doesn’t fluctuate in time, some residues around residue
150 seem to have a very high fluctuation compared to the whole system, causing
two symmetric bright yellow lines to stand out in Fig 3.6a. We hypothesized that
this can be due to the movement and unfolding of α5 where residues 142 to 146 are
moving a lot with respect to all other amino acids, contributing to the activity of the
protein. In Fig 3.7, we plotted the distribution function for the standard deviation
of the weighted network. The horizontal axis shows the value of standard deviation,
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Figure 3.6: Standard Deviation of probability density function of distances for protein
network in different states
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Figure 3.7: Figure shows the histogram of standard deviation, calculated from eq 3.6
for network in different states. Standard deviation highlight the changes that adja-
cency matrix go through during the simulation.For glycerol other than some residues
most of the others go through minimal fluctuation. This number has increased dra-
matically in water.
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and the vertical axis stands for the frequency of the number of pairwise distances.
As we can deduce from the figure, the peak of the distribution locates in a smaller
standard deviation for glycerol. Since the standard deviation is averaged in time, we
can conclude that, on average, the number of pairs with a very small (close to zero)
standard deviation is maximum in glycerol. Having a minimum frequency for the tail
of the distribution implies that a tiny number of residues tend to fluctuate higher
from others in time. Thus in glycerol, on average, we can claim that the oscillations
of the pairwise distances in time are almost constant; nevertheless, the distributions
of standard deviation in water at both temperatures look flatter.

3.2.5 Mean Probability Distribution
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Figure 3.8: Figure shows the distribution of mean for network in different states. The
horizontal axis represents weights and the vertical axis is the probability distribution.
The larger error bars implies the greater fluctuations of distances in time.

To emphasize the dynamics of the protein in time, we also plotted the probability
distribution of the mean of the time series with error bars representing each time
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frame in Fig 3.8. The vertical axis is the probability distribution of the weights,
and the horizontal axis represents the value of weights ω in nm. For protein in
glycerol, we marked only one peak at smaller weights around 2 nm, indicating that
most amino acids are located at that distance. The tiny error bar also emphasizes
that these minimum distances are kept throughout the whole simulation in time.
For water at 300K we detect a small number of residues in a higher weights with a
relatively larger error bar indicating the fluctuations in time. The error bar has its
most significant value for protein in water at 423K, and the value of the second peak
at around ω = 7nm has increased as the protein unfolds. Our analysis confirms that
even though the protein in water at 300K maintains its folded state, the distances
between amino acid pairs show another tiny peak at a higher threshold. For water
at 423K as the number of distances in higher threshold increases, the value of this
second peak increases, giving the previous shift in the average distribution function
of Fig 3.5.

3.3 Chapter Conclusion and Remarks

To summarize this chapter, we want to emphasize how complex system theory helped
us analyze the protein’s dynamics in different temperatures using pairwise interac-
tion between amino acids and how it will provide us with the input to look into the
general topology of the protein. We used the theory of complex networks to map the
three-dimensional protein structure composed of more than 2000 atoms (2325) to a
network of 317 nodes in position space (R), with each node representing amino acid
residues and weighted edges illustrating the distances between them. We used sta-
tistical features of the network, such as probability distribution of lengths, standard
deviation, and the mean of distance distribution in time to highlight the differences
between the folded-active and the folded-inactive state of CalB. We showed that CalB
dynamics in high temperature (423K) in glycerol solvent have a small links’ distri-
bution variance in time. Hence, we concluded that the protein network in its active
state at high temperatures holds structures that are persistent in time. In order to
examine these persistent structures throughout the whole network, one can go be-
yond pairwise interactions between the nodes and employ methods based on patterns
of interaction and accordingly obtain a global measure for the network. In the next
chapter, we present how we utilized a new computational method based on analyzing
the network’s topology to characterize these persistent structures. Intuitively, looking
at a network from a topological point of view is like describing a building through its
floors, bedrooms, and hallways instead of its building blocks. In the most straightfor-
ward wording, using the mathematical tool of topology, we explore ”empty spaces”
in the topological spaces built for the data sets to characterize them.
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Chapter 4

Topological Data Analysis of
Protein Interaction Network

4.1 Topological Background

This subject mainly concerns a brief introduction to algebraic topology concepts
that we will use to analyze the networks from a new perspective. Provided that a
thorough learning of the subject can be found in references like [41] and [25]. Topology
is a branch of mathematics that is mainly involved in studying spaces (topological
spaces) to compare them and categorize them. Algebraic Topology, employs algebra
to examine “shapes” and their properties in topological space. These properties
are mostly independent of continuous transformation and remain invariant under
stretching and shrinking.

To a non-mathematician, Topology is the “rubber-sheet” or “squishy” version of
Geometry, as it focuses on features of space that stay intact under continuous defor-
mation, and squares and circles will become equivalent. In this context, homology
helps us understand whether two things are the same topologically, and to examine
their topological differences by counting how many fundamental holes they have. In
Fig 4.1, we show different dimensional topological spaces together with their equiva-
lent geometrical spaces and network representation. To analyze a shape topologically,
we explore 0-2-dimensional fundamental holes of the topological spaces created for
different data sets. For example, in one dimension, we refer to 1-dimensional holes as
rings, and in the 2-dimension, as voids (or cavities).

As we will see in the later sections, we use so-called Betti numbers to count the
number of fundamental holes of different dimensions. Bear in mind that not all the
features of topological spaces can be detected by eyes, and we will further see how
the concept of simplices and simplicial complexes has become very helpful when it
comes to more complicated objects. The algebra that is utilized in the theory of
Algebraic Topology is mostly from the language of group theory. Here, we review
some important concepts and definitions to build a necessary foundation for our
research and analysis.
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Figure 4.1: Figure shows a simple example for topological spaces in terms of simple
geometrical spaces and network representation. We used β0, β1 and β2 to count num-
ber of fundamental holes of each representation.
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Topological spaces and Topological Invariant

Even though physicists usually assume all the spaces they deal with to be equipped
with some metrics, this is not always true, since in fact, metric spaces form a subset
of manifolds, where manifolds themselves form a subset of topological spaces [41].
The concept of topological spaces mostly originated from the generalization of the
study of the real line and Euclidian space[40]. Touching base with the mathematical
foundation required for understanding the method of topological amalysis, we define
a few more basic concepts such as topology, topological spaces, simplicial complexes
and topological invariants which will become important in the following sections. We
begin by defining a topology.

Definition 4.1.1 (Topology). For any subset X of D-dimensional Euclidean space:
RD, a topology on X is a collection T of subsets of X with following properties:

• ∅ and X ∈ T .

• The union of elements of any subcollection of T is in T .

• The intersection of elements of any subcollection of T is also in T .

Definition 4.1.2 (Topological Spaces). A topological space is an ordered pair (X,
T ) that consists of a set X and a topology T on X.

Remark. We call sets that belong to collection T open sets of X.

Remark. A subset A of X is closed if its complement in X is an open set.

Definition 4.1.3 (Continuous map). For topological spaces (X, TX) and (Y, TY) a
map f : X → Y is a continuous map if the inverse image (see def.A.1.3) of any
element in TY is an element in TX .

Definition 4.1.4 (Homeomorphism). For two topological spaces (X, TX) and (Y, TY)
(we will use short notation X and Y for topological spaces moving forward) a map
f : X → Y is a homeomorphism if it is continuous and bijective with its inverse
f−1 : Y → X also being continuous.

Remark. If there exist a homeomorphism between X and Y , X is said to be home-
omorphic to Y and vise versa.

Intuitively speaking, from the perspective of topology, two topological spaces are
said to be homeomorphic to one another, if using continuous deformation we can
transform one into the other; that is without tearing them or pasting [41]. Consider
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Figure 4.2: A coffee cup is homeomorphic to a doughnut. Reproduced from the
concepts explained in [41]

a coffee cup that is said to be homeomorphic to a donut(see Fig 4.2), in this con-
text, topology allows an enormous group of homeomorphism, deforming one object
by stretching and shrinking, and it is only through cutting the curve that we convert
its topology from a closed loop to a path. Fig 4.3 shows some examples of homeo-
morphisms. Topology with the main object of its study “topological spaces” as the
most general form of space, categorizes a shape based on its connectivity, which can
be thought of as its number of pieces, loops, or the presence of a boundary. Topology
then examines these topological spaces based on whether they still retain a notion of
connectivity[60]. Hence, homeomorphism is an equivalence relation that divides all
topological spaces into equivalence classes.1

Definition 4.1.5 (Topological Invariant). Topological invariants are those quan-
tities which are conserved under homeomorphism.

Remark. If two spaces have different topological invariants they are not homeomor-
phic to each other.

Examples of topological invariants could be a number such as the number of
connected components of the space, an algebraic structure such as a group or ring,
constructed out of the space. Topological invariants of spaces could also be a property
like connectedness and compactness, Euler characteristics, or homology groups (Betti
numbers).

1See Definition A.1.6 and Definition A.1.7 in the AppendixA.
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Figure 4.3: Examples of homeomorphic spaces. Reproduced from concepts explained
in [41].

4.2 Homology Groups of a Simplicial Complex

We begin our discussion of the topological analysis of data by introducing the ho-
mology theory and homology groups. One should bear in mind that one of the most
helpful guides in categorizing spaces, and topologically analyzing their characteristics,
mathematically elaborated into the theory of homology groups, is to “find an area
without boundaries within the space, that is not a boundary of any area itself”[41].
In other words, to analyze our data using Algebraic Topology, we search for the ex-
istence of a loop of any dimension that is not a boundary of some area itself. In this
concept, we look for the existence of a “hole of some dimension” within the loop to
classify different spaces. Analyzing a complex topological space and trying to under-
stand it, mathematicians have developed a technique of imagining it built up from
smaller pieces called simplices. For example, for a surface like a torus (donut), one
can triangulate that surface and track how they are connected. Furthermore, using
the idea of simplices and simplicial complexes, one can detect the loops and holes of
topological spaces. This section will see how the concept of simplices has helped us
understand the topological structures of complicated spaces.

4.2.1 Simplices and Simplicial Complex

Before describing (simplicial) homology groups, we introduce the class of spaces
that defines them: class of polyhedra. A polyhedron is a space that can be built
from “building blocks” such as line segments, triangles, tetrahedra, and their higher-
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dimensional analogs by “gluing them together” along with their faces [40]. In this
section, we first define simplexes as the building blocks of polyhedra to build the
basics of homology groups.

Definition 4.2.1 (Simplexes (Simplices)). A k simplex σk spanned by c0, c1, ..., ck is
a set of all point x in RD (D ≥ k) such that:

σk =

{
x ∈ RD | x =

k∑
i=0

cixi, ci ≥ 0,
k∑
i=0

ci = 1

}
≡< x0, x1, ..., xk >⊆ RD (4.1)

Remark. The set of parameters (c0, ..., cr) is called barycentric coordinate of x. Note
that for any k-simplex representing a k-dimensional object the vertices xi must be
geometrically independent.2

Illustrations of simplexes, building blocks of a polyhedron, are in 0-dimension (0-
simplex σ0 =< x0 >) a point or a vertex, a 1-simplex σ1 =< x0, x1 > being a line
segment or an edge, a 2-simplex σ2 =< x0, x1, x2 > defined to be a triangle with its
interior included and a 3-simplex σ3 =< x0, x1, x2 > is a solid tetrahedron. Fig 4.4
demonstrate 0-, 1-, 2- and 3-simplexes.

Definition 4.2.2 (Simplicial Complex). A collection ψ of simplexes “nicely” fitted
together is a simplicial complex. Such that:

• Every face of a simplex of ψ is in ψ

• The intersection of any two simplexes of ψ is a face of each of them.

Remark. The dimension of a simplicial complex is defined to be the largest dimension
of simplexes in it (All graphs are simplicial complexes of dimension 1).

We will soon notice the basics of simplicial homology theory concerns assigning
to each simplicial complex a chain complex followed by its homology group. This ap-
proach will be used to characterize topological spaces, which will look like polyhedra,
to cover a manifold by a process called triangulation.

4.2.2 Homology Groups, and Betti numbers

Homology with the help of so-called Homology groups and Betti numbers quantita-
tively detects loops and holes in various dimensions of the simplicial complex to give
insights into the way a topological space is connected. In this section, we are going

2See Definition A.1.8 in the Appendix
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Figure 4.4: Low dimensional simplices: A vertex, An edge, Triangle, and a a solid
tetrahedron

Figure 4.5: An example of a simplicial complex
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to define Homology groups, detecting holes and loops indirectly by looking at the
space surrounding them, and Betti numbers as a way to count them. We begin our
discussion by describing chains, chain groups, and cycles of any simplicial complex to
establish the necessary background.

Definition 4.2.3 (k-chain). For a simplicial complex ψ, a k-dimensional chain
(or k-chain) is a formal sum of k-simplices in ψ such that:

ck =
∑
i∈I

aiσ
i
k, (4.2)

where ai are coefficient and σik are k-simplices and I is an index set.

Figure 4.6: 1-chain c1 (colored in pink), 2-chain c2 (colored in yellow), 3-chain c3
(colored in red).

Fig 4.6 shows some of the k-chains of simplicial complex example in Fig 4.5.
The commutative group generated by all the k-chains of ψ is called a k-dimensional
chain group, denoted by Ck(ψ) For example, regarding a simple graph of vertices and
edges 0-dimensional chains C0 elements are integral linear combination of vertices and
C1 elements are linear combinations of edges. Here, in order to see what cycles of a
simplicial complex are and how they can be detected using homology, we will consider
the relationship between chains of different dimensions and define the boundary of
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chains in the following section. We will notice how the concept of the boundary has
become significant in homology theory and how it has enabled us to relate different
k-chain groups to detect the cycles of a simplicial complex.

Definition 4.2.4 (Boundary operator of a simplicial complex). The k-dimensional
boundary operator denoted by ∂k is a topological operator that upon acting on
any simplex σk gives a k − 1 chain of σk. We write:

∂k(σk) ≡
k∑
i=0

(−1)i[x0, x1, ..., xi−1, xi+1, ..., xk]. (4.3)

Boundary operator is a homomorphism that maps k-simplices to their boundaries
and consequently k-dimensional chain group Ck to (k − 1)-dimensional chain group
Ck−1:

...
∂k+2−−→ Ck+1

∂k+1−−→ Ck
∂k−→ Ck−1

∂k−1−−→ ... −→ C2
∂2−→ C1

∂1−→ C0
∂0−→ ∅, (4.4)

where we call the sequence 4.4 of chains and homomorphism a chain complex. Fig 4.7
represents boundary operator acting on different dimensional simplices. Accordingly,
one can define a k-dimensional cycle (k-cycle) Zk as a k-chain ck that is mapped to
empty set by boundary operator, ∂k(ck) = ∅. This leads to create a subspace Zk,
so-called k-dimensional cycle group (k-cycle group), of vector space Ck.

Figure 4.7: Results of boundary operation on simplices of different dimensions.
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Definition 4.2.5 (k-cycle). A k-chain ck that has no boundary is a k-cycle Zk which
satisfies the following relation:

∂k(ck) = ∅. (4.5)

The set of all k-cycles is a subgroup of Ck(ψ) and is called the k-cycle group. Note
that Zk(ψ) = Ker∂k, and for k = 0, ∂0c0 vanishes.

Definition 4.2.6 (k-boundary). k-dimensional chain ck is called k-dimensional
boundary or k-boundary bk if it represents the boundary of (k + 1) chain.

The set of k-boundaries Bk(ψ) is a subgroup of Ck(ψ) and is called k-dimensional
boundary group (or k-boundary group). Note that Bk(ψ) = Im ∂k+1. Since
“boundaries have no boundary”, we can write:

∂k(bk) = ∂k(∂k+1(ck+1)) = ∅ (4.6)

Definition 4.2.7 (k-th homology group). k-th homology group Hk of a simplicial
complex psi is the quotient group of k-cycles Zk modulo the group of boundaries Bk.
We write:

Hk = Zk/Bk. (4.7)

The set defined by 4.2.7 basically represents the set of all k-chains of a simplicial
complex that have no boundaries and are not themselves a boundary of any spaces.
Consider expression 4.7 in 1 dimension, we have H1 = Z1/B1, taking the quotient in-
tuitively means looking for cosets of B1 in Z1, which in one dimension, implies finding
the 1-cycles (loops) and disregarding the boundaries (cycles that are boundaries of
some 2d cells), and those are the H1 of the simplicial complex. Note that homology
groups are topological invariants.

Definition 4.2.8 (k-th Betti number). The k-th Betti number of a simplicial
complex βk is defined by:

βk(ψ) = dim(Hk(ψ)) (4.8)

Betti number as a topological invariant of the complex is the dimension of the k-
homology group of the complex and represents the number of k-dimensional holes in
any ψ. Hence, β0 counts the number of connected components, β1 counts the number
of loops, and β2 counts the number of voids of any simplicial complex and so on.
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4.3 Method of Topological Data Analysis

Topological Data Analysis (TDA) is a subarea of computational topology, utilizing
the language of algebraic topology, to develop novel topological techniques for robust
analysis of various categories of scientific data [60]. To do so, TDA, employing a
collection of powerful tools, represents characteristics and properties of data structures
in topological fingerprints to quantify the “shapes” of these data sets [39]. In the
previous section, we introduced homology as a tool from algebraic topology that
identifies different features of a topological space such as annulus, sphere, torus, or
more complicated manifolds and defined homology groups and Betti numbers as a
way for homology theory to characterize these spaces from one another by quantifying
their homological features.

When can TDA become useful?

In switching from network to topological analysis, the first question one should ask
is if the system of interest is the right fit for the method and how topology can
help with analyzing this system. To address this question, one should first consider
if higher-order interactions (more than pairwise) can become important and if the
global patterns of interactions between elements can affect any functionality in the
scale of the whole system. For such systems, one can apply TDA methods to acquire a
vision of the global topology of the system to disclose the system’s inherent structure
and function. Moreover, one should consider if the topological loops or cavities of the
structure can have any significance, and how these features can be interpreted.

In network science, we translate data into a graph of nodes and edges and proceed
with statistical techniques to analyze the pairwise interactions. However, for topolog-
ical data analysis, we translate data into a simplicial complex and employ topological
schemes (such as Persistent Homology) to examine the global patterns of interactions
as an example of higher-order interaction analysis. In the following section, we present
various types of inputs for TDA, describe how simplicial complexes are created and
“filtered,” and how the pattern of interactions are quantitatively examined through
topological fingerprints.

Possible Inputs for Persistent Homology Analysis:

• Point Cloud

• Networks

• Scalar Fields

• Time Series
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Vietoris-Rips complex

In order to form the desired simplicial complex from a complex network, or a point
cloud, Vietoris-Rips(VR) complex (the Rips complex) method is one of the most
common approaches. To build a Rips complex, we first define a distance metric
(symmetric N × N matrix) of pairwise distances between data points and define a
proximity parameter ϵ. Then, for each ϵ > 0, we construct a simplicial complex
ψϵ based on the condition that every collection of k + 1 data points is a k-simplex
provided that the pairwise distance between points is less than ϵ [51]. Hence, the 0-
simplices are the vertices or data points themselves. Two points form an edge between
them (1-simplex) whenever they are within distance ϵ of one another. Likewise,
three vertices can form a triangle (2-simplex) whenever they are pairwise within that
distance ϵ; correspondingly, a 3-simplex (a tetrahedron) is formed whenever four
points are pairwise within ϵ of one another. Fig 4.8 shows an example of a VR
complex, in which the grey circles represent ϵ/2 balls so that an edge connects two
vertices if their balls intersect.

Figure 4.8: Point cloud data (vertices) form 0-simplices, and if their surrounded area
(grey filled circle) intersect, they create a 1-simplex (an edge). Three vertices then
form a 2-simplex (a triangle) if edges pairwise connect them, and four vertices form
a 3-simplex (a tetrahedron) if edges pairwise connect them.
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4.4 Persistent Homology

Homological analysis of a simplicial complex created for a scientific data set D means
finding the homology groups of the simplicial complex ψ(D), {Hk(ψ(D))}dim(ψ(D))

k=0 to
topologically comprehend the simplicial complex ψ(D) of the shape of the data. In
this section, we will see how scientific data could be viewed as a model of a topological
space to quantify its homology by creating connections between their elements, vary-
ing the scale over which these connections are made, and looking for characteristics
that persist across scales. This method is called Persistent Homology(PH). Persistent
Homology has been employed in a wide range of applications to uncover the topo-
logical features of data, including neuroscience, Natural Language Processing(NLP),
biological and medical studies, computer vision, and sensor networks [46, 59, 12, 31].
In Persistent Homology approach we explain how to use Betti numbers defined in
Eq 4.8 of a simplicial complex ψ for the analysis of graphs. We base our discussion
and definitions on [55, 17, 28, 51, 16, 24, 35].

4.4.1 Filtration

After creating a Rips complex ψ as a global object from a set of discrete N data
points. In this section we demonstrate how we can apply Persistent Homology to
extract topological fingerprints of the desired simplicial complex to characterize our
scientific data. We start by giving a definition for subcomplexes as:

Definition 4.4.1 (Subcomplex of a simplicial complex). A subcomplex of a sim-
plicial complex is a subset of simplices that satisfy the properties of a simplicial
complex.

We expect the choice of ϵ to highly affect the formation of the consequent Rips
subcomplexes and their homology. For example, considering Fig 4.8, one can pre-
dict that with small values of ϵ, the Rips subcomplex will mainly consist of isolated
vertices. In contrast, the whole data set will become a single connected component
for larger values. Hence, upon varying the threshold, we can now build sequences of
simplicial complexes that form subcomplexes of one another, resulting in a family of
subcomplexes ranging from small ϵ into those for larger values. We have obtained
an inclusion map of simplicial complexes for ϵ1 ≤ ϵ2 ≤ ... ≤ ϵk, along which we can
define filtration:

Definition 4.4.2 (Filtration). A filtration of a simplicial complex ψ is a nested
sequence of subcomplexes starting with the empty complex ∅ and ending with the
full simplicial complex:

∅ ≡ ψϵ1 ⊆ ψϵ2 ⊆ ... ⊆ ψϵk−1
⊆ ψϵk ≡ ψ. (4.9)
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Figure 4.9: Example of a simple filtration process of a Vietoris-Rips complex where
upon increasing the threshold from a to d (the radius of yellow circles) 0 to 1, the
Rips complex undergoes through some topological changes. Betti numbers are used
to keep track of these topological features. Betti0 β0 counts the number of connected
components, Betti1 β1 counts the number of 1-dimensional holes(loops).

4.4.2 Persistence: Birth and Death of a Homology Class

For any simplicial complex ψD(ω) formed over proximity parameter ω where ω ∈
{0, 1, 2, ..., n}, we can find homology groups in every step i ∈ {0, 1, 2, ..., n} of the
filtered simplicial complex Φ(ψD(ω)). Where there exist only one proximity parameter
ωi for each filtration step as:

∀i ∈ {0, 1, 2, ..., n} ∃ ωi ∈ [ωmin, ωmax] ;

{
ω0 = ωmin
ωn = ωmax.

(4.10)

Persistence of homology groups Hk of the simplicial complex ψD(ω), or the k-
homology group is defined as the collection of maps such that:{

ϕi |ϕi : Hk(ψ
D(ωi)) → {0, i}

}n
i=0

, (4.11)

and for each homology class hk of the k-homology group Hk(ψ
D(ωi)), we can define

the persistence homology as:
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∀h(i)k ∈ Hk(ψ
D(ωi))) : ϕi(h

(i)
k ) =

{
i ; ∃hi+1

k ∈ Hk(ψ
D(ωi+1))) : h

(i)
k

∼= h
(i+1)
k

0 ; otherwise
(4.12)

Thus, from the persistent homology perspective, during filtration process, different
topological possibilities will appear and disappear for the Rips complex. Which using
the persistence we follow when a prominent topological feature, such as a homology
class, of the simplicial complex ψD(ω) first arises in the filtration process and when
it vanishes. In another words birth and death of a homology class follow as:

Definition 4.4.3 (Birth and Death of a homology class). A homology class hik ∈
Hk(ψ

D(ω)) is born at ψD(ωi) if hik is an element of Hk(ψ
D(ωi)) but is not in the

image of the inclusion map ψD(ωi−1) ↪−→ ψD(ωi), and the homology class hik dies
entering ψD(ωj+1) if hik in an element of Hk(ψ(ωj)) but is not in the image of the
inclusion map ψD(ωj) ↪−→ ψD(ωj+1),

where we denote the filtration step in which hik is born with ωb = ωi, and the
filtration step in which hik dies as ωd = ω(j+1). Hence the lifetime (persistence) of
each homology class can be found using:

l(hik) = ωd − ωb. (4.13)

Persistent Homology uses Betti numbers, birth and death step of each k-homology
to detect and study these topological fingerprints of the data sets. The topological
features we examine in the simplicial complex, include connected components de-
noted by β0, 1-dimensional holes (loops: β1), and 2-dimensional holes (voids: β2).
Regarding connected components of the complex, for instance, PH keeps track of the
threshold at which each connected component appeared (born) and the threshold at
which two separate components merged (died). Likewise, we track the threshold that
each hole(one or two dimensional) is formed (born) and when it is filled (dies) [4].
Fig 4.9 shows a simple example of a filtration process. The filtration starts with 11
nodes(0-simplices), and accordingly eleven Betti0, β0 = 11. In the second filtration we
have vertices (0-simplices) connected through (1-simplices) and the subcomplex has
2 connected components (β0 = 2, no loop detected). Upon increasing the threshold
(the radius of disks) we get a loop in the third stage of filtration (β1 = 1) which later
disappears in the last stage where the complex has become one component (β0 = 1).
Using the evolution of these Betti numbers now we can examine different topological
features in data, appearing and disappearing.
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4.4.3 Persistence Barcode and Persistence Diagram

Persistent Barcodes(PB) and Persistent Diagrams(PD) are the most common way
to visualize persistent homology through a graphical representation. These plots
are being used in topological data analysis as representations of PH to summarize
topological information of the data-set.

Barcodes

Persistence Barcode for the persistence of a k-homology (k-Persistence Barcode) is
a way to visually represent the lifetime of a k-homology in R2. Where the hori-
zontal axis shows ωi ∈ [ω0, ωn], and the vertical axis presents homology classes of
k-homology groups hik. Please note that the ordering is arbitrary. Each homology
class in represented using the corresponding persistence interval:

Definition 4.4.4 (Persistence interval). The persistence interval for a homology class
hik ∈ Hk(ψ

D(ωi)) is given by [ωb(h
i
k), ωd(h

i
k)).

Persistence Barcode, thus, can be thought of as a version of Betti numbers defined
in Eq.4.8 to depict persistence intervals of homology classes.

Definition 4.4.5 (Barcode). A k-dimensional barcode for a filtered simplicial com-
plex PBk(ψ

D
ω ) is a collection of horizontal line segments on a plane representing the

persistentce intervals of homology generators of the k−th homology group arbitrarily
ordered along the vertical axis.

PBk(ψ
D
ω ) =

{[
ωb(h

i
k), ωd(h

i
k)
)

| i = 0, 1, 2, .., n
}

(4.14)

Fig 4.10 shows an example of the process of tracking topological fingerprints and
filtration of a Vietoris-Rips complex over proximity parameter ϵ. The top four figures
indicate the Rips complex of 18 points for different values of ϵ. As we can note from
the figure, we can draw the life spans of these topological features as life bars, the
length of which reveals how persistent a component or hole is before it merges or is
filled [51]. The horizontal axis of the bottom plots of Fig 4.10 tracks the radius of the
circle or the threshold of proximity parameter, and the vertical lines correspond to
these four levels of ϵ. The number of horizontal bars gives the number of topological
features at their starting threshold (birth) and death, which arranging them together
for any complex provides us with the corresponding Persistence Barcode (PB) being
trcked on the vertical axis, with the x-axis showing the varying threshold, and each
bar corresponding to a topological feature for that Rips complex [47].
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Figure 4.10: Example of a Vietoris-Rips complex together with the persistent barcode
for the birth and death of 1-dimensional holes of the complex [51].

Persistence Diagram

Persistence Diagrams (PD) are another practical presentation of the persistence of
topological features in different network weight. In the PD plot of the kth dimen-
sion for weighted complex ψ, PDk(ψ

D
ω ), any topological feature is represented by a

point (persistence pair) in a 2-dimensional Euclidean space. Therefore, persistent
diagrams(PD), as another representation of homology groups over filtration, yields as
a set of points scheming topological features of the data in terms of persistent pairs
represented by P hk(wb, wd) in Euclidean space R2. Since for any k-homology group
hik we always have ωd(h

i
k) > ωb(h

i
k), all the persistence pairs of the k-dimensional

Persistence Diagram PDk(ψ) will appear above the main diagonal. As the distance
from the main diagonal increases we have a feature with a longer lifetime, and more
persistence. To obtain a persistence diagram from a persistence barcode plot, we
transform the birth beginning point and the death endpoint of all the bars as x-y
coordinates in a death-vs-birth plane. In Fig 4.11 using a schematic representation,
we generated an example of persistence diagram obtained from the corresponding
persistence barcode. Hence, in this context, using PB and PD of different dimension,
Persistent Homology tracks these topological fingerprints that persist across a range
of ω, and one could use the “lifetime” of these features to analyze characteristics of
the data-set.
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or

iM-ogo-fd@ÑY→b

:
Figure 4.11: Persistence diagram (planar display) obtained from corresponding persis-
tence barcode through translating each bar to a (birth, death) pair as x-y coordinates
on the plane.
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4.4.4 Betti Curves

Betti curve βk is the frequency distribution function of persistence homology for k-
homology groups ϕi(h

i
k) of a filtered simplicial complex ψD

ω . Betti curves track the
evolution of k-dimensional holes in different dimensions over varying thresholds. For
example, β0 counts the number of connected components, where growing the number
of 0-holes (β0) implies the lack of links (1-simplices) connecting them. β1 tracks the
evolution of 1-holes (loops), where a rise in their number indicates the absence of
triangles (2-simplices) to connect the nodes (agents) of a subnetwork, and β2 tracks
the evolution of 2-dimensional holes (voids, or cavities) of the data-set.

4.5 Overview of Previous Topological Studies On

Proteins

Figure 4.12: Topological Analysis of an alpha helix using slicing method for the coarse-
grain representation. Every four Cα builds a one-dimensional loop in the filtration
process, and by adding one more Cα atom, one more β1 will be generated as shown
in b, c, d, and e. For alpha Helix with PDB accession code: 1C26 with 19 residues,
the figure shows 16 short-lived bars in the β1 panel [57]

.

In recent decades, employing Topological Data Analysis(TDA) to study different
aspects of protein has been the subject of novel studies [5, 10, 11, 27, 54]. In 2014,
for the first time, Xia and Wei [57] introduced the application of TDA and, more
precisely, persistent homology to extract molecular topological fingerprints. They
proposed the slicing method to track the geometric origin of protein topological in-
variants for all-atom and coarse-grained representations of alpha helices and beta
sheets. Regarding topological features of helices, using slicing method, they proposed
that for coarse grained model, each α-helix the first four Cα atoms of any helix in
the starting crystal structure contribute to a one-dimensional loop, where adding one
more Cα generates one additional loop and, therefore, one more short-lived bar in
the PB diagram (see Fig 4.12). Regarding Beta sheets for the coarse grained model,
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Figure 4.13: Tracking topological fingerprints of the coarse-grained model of two beta
strands (2JOX). The figure shows eight pairs of residues (16 Cα) and accordingly 16
bars in the β0. Every two pairs of atoms contribute one loop to make up 7 bars in
the β − 1 [57].

it has been reported that any two pairs of Cα atoms contribute a one-dimensional
loop, yielding bars in the PB1 panel. They accordingly built and analyzed elastic
network models for proteins. Furthermore, they developed correlation matrix-based
filtration and generated persistent barcodes to model proteins’ flexibility based on the
correlation between protein compactness, rigidity, and connectivity. Ultimately, they
utilized the evolution of obtained topological features to denote protein topological
transition during the folding process. We initially studied different computational
approaches that have used topological methods to clarify the proteins’ function us-
ing the residues’ static spatial coordinates. For instance, Edelsbrunner & Harer [16]
explored applications of topology-based computational methods to predict protein in-
teractions and protein docking. Moreover, Gameiro et al. [22] paper aimed to clarify
the relationship between the compressibility of a protein and its molecular geometric
structure. They used alpha filtration on several proteins’ persistence diagrams and
compared the experimental compressibility of most studied proteins. Using Persis-
tent Diagrams, they found a measure of compressibility based on topological features
(tunnels and cavities) and designated a transparent correlation between their topo-
logical measure and the experimentally-determined compressibility of most proteins.
Kovacev-Nikolic et al. (2016) [32] used TDA and precisely the method of persistent
homology and dynamical distances to analyze protein binding and indicated a clear
separation between the final closed and open protein conformations using TDA. They
also suggested that the active site residues and allosteric pathway residues of the pro-
tein under their study is located in the vicinity of the most persistent loop in the
corresponding filtered Vietoris-Rips complex to confirm the importance of topologi-
cal fingerprints. The input for their topological analysis was a 370 × 370 matrix of
dynamical distances for each conformation. However, these intuitive approaches are
inefficient as protein undergoes different local and global conformational changes in
time or when it goes though the unfolding process. We aim to capture the evolution
of topological features in time to account for possible topological contributions to



Chapter 4. Topological Data Analysis of Protein Interaction Network 56

protein activity.

4.6 Results of Persistent Homology Analysis of

Protein Interaction Network of CalB

As formerly mentioned, a k-hole of different dimensions in the space is a subspace with
“no boundary and is not being a boundary itself,” demonstrating a lack of higher-order
connections between the nodes of data. Tracking the number of k-dimensional holes
of the network by plotting their evolution as a function of weight in terms of Betti
numbers (β), Persistent Barcode, and Persistent Diagram is one crucial point for ana-
lyzing the topological features of different protein networks. In order to use CalB 3D
structure as an input for Topological study, we could utilize both the all-atom struc-
ture as an example of point-cloud or use the Protein Residue Network we built earlier
using α Carbons. The all-atom model from MD Simulation provides an atomic char-
acterization of the protein, whereas the residue network of CalB as a coarse-grained
representation illustrates the protein molecule with a reduced number of degrees of
freedom and can sufficiently highlight significant features of the structure. Hence, we
chose the residue network as an efficient input for our further Topological studies.
Regarding filtration process, since Vietoris-Rips filtration is widely used in practice,
we focused our effort on studying the topological properties of the protein network
of this particular kind of filtration. We utilized Vietoris-Rips filtration method of
Dionysus Python package [44] to form simplicial complexes (simplices), and calculate
the number of topological fingerprints of the network for both the crystal structure
and also tracked the evolution of topological features in time. We further tested the
robustness of our analysis using different filtration methods such as Alpha filtration
and other packages such as Gudhi libraries [43].

4.6.1 Persistent Homology on Protein Residue Network of
CalB Crystal Structure

CalB 3D structure downloaded from protein data bank (1TCA) consists of nine beta
sheets and sixteen helices, with its topological features including isolated entities,
rings, and cavities. Each helix has a coiling conformation, with each spiral in the
backbone made of 3.6 amino acid residues, connected through a hydrogen bonding,
and each beta-sheet consists of 3 to 10 amino acids. According to the work of Xia [57],
each alpha helices and beta sheets, together with neighbouring structures will gen-
erate their corresponding topological features which can be detected using persistent
barcodes. As protein goes through different conformational changes in time, we can
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detect the topological changes and their effect on the functionality of the protein.
In Fig 4.14, we first plot the 0-2 dimensional persistent barcode for the crystal

structure of CalB. As previously mentioned, PB0 counts the number 0-dimensional
holes (connected components), PB1 counts the number of 1-dimensional holes (loops),
and PB2 is responsible for counting 2-dimensional holes(cavities) of the network over
varying the threshold. As it can be noted from the graph, there are 317 bars in PB0

(connected components) at small thresholds, representing the number of nodes of the
graph (α carbons of the protein). Moving to bigger weights, persistent bars in PB0

start to disappear as nodes get connected and loops and cavities are generated. The
number of loops and cavities of the CalB crystal structure at varying threshold can
be tracked by PB1 (4.14b) and PB2 (4.14c) respectively. As Figure shows we see
the maximum number of loops at around 5Å, representing that at this distance most
of the patterns of interaction in terms of topological features exist. This number
according to the study by Xia [57] mostly come from the secondary structure. We
also noticed that the most persistent loop of the network dies at around 9Å and we
didn’t detect any loop at higher threshold. Fig 4.14c shows cavities of the network.
The number of 2-dimensional holes (cavities) increases as more loops are filled and
generates the planes of cavities. Hence, at higher thresholds (above 8Å) upon disap-
pearing the loops of the network PB2 increases. As the threshold keeps increasing
beyond 11Å, the general shape of the VR complex made from our protein network
would not undergo significant topological changes and stays as a single component
with no one or two-dimensional holes. Figure 4.15 shows 0-2 dimensional persistent
diagram for protein network of crystal structure of CalB. As it can be seen from 4.15,
the network becomes one-component above 4Å. Persistent pairs with longer lifetime
tend to be located further from the main diagonal and correspond to more robust
topological feature. One-dimensional holes (loops) of data-sets are usually referred to
as interaction pathways between the nodes, and our analysis shows that for crystal
structure of CalB the most persistent loop of the network has a lifetime of around 5Å.
Likewise, the most persistent two-dimensional hole (cavity) of the crystal structure
has the lifetime of 2.4Å. Since, as we previously seen the helices and sheets of the
secondary structure only contribute to the loops of the data-set, the cavities (2-d
holes) are only the result of 3D structure and the way these helices and sheets fold.

4.6.2 Persistent Homology on MD Simulation Results

By examining the protein interaction network from topological framework, in this
section we aim to shed some lights on the patterns of interaction between residues in
different systems. Applying PH on the weighted complex networks of different systems
of the protein, we analyze the evolution of the dimension of the k-homology group of
the topological space βk. As mentioned earlier each Betti number in each dimension
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(a)

(b) (c)

Figure 4.14: a. 0-dimensional Persistent Barcode, b. 1-dimensional Persistent Bar-
code and, c. 2-dimensional Persistent Barcode over varying threshold for protein
interaction network of CalB crystal structure.



Chapter 4. Topological Data Analysis of Protein Interaction Network 59

(a)

(b) (c)

Figure 4.15: a. 0-dimensional Persistent Diagram, b. 1-dimensional Persistent Dia-
gram and, c. 2-dimensional Persistent Diagram, over varying threshold for protein
interaction network of CalB crystal structure

Figure 4.16: RMSD and Rg values for CalB shows protein maintains the same 3-
dimensional structure in both states
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demonstrates the number of k-dimensional topological hole. CalB structure seems to
be folded in both glycerol at 423K and in water at 300K, where Fig 4.16 shows the
patterns of RMSD and Rg in these two states; however, active site analysis showed
how active site residues move away from one another in water. This motivated us
to look into topological changes of the protein network of CalB in time for different
states to look for possible topology-function relation that can not be detected in
three dimensional conformation of the protein. We applied Persistent Homology
technique to the MD simulation results of CalB protein interaction network to firstly
topologically compare the folded, active, and inactive state of CalB, and account for
the possible contribution of topological features on the activity of the protein and
also to study from the topological perspective how local changes in the network can
create functionality at the scale of the entire network.

In order to apply TDA to the protein interaction network, we built the filtered
Rips complex ψϵ(D , t) for each time frame (0 < t < 50ns) of the adjacency matrix
introduced in chapter 3, over varying ϵ, where ϵ = ωij(t) defined in Eq 3.3, and D =
A(t) and use persistent homology to look for k = 0, 1, 2 dimensional homology groups
hk in each time frame. Moreover, by using barcodes and persistence diagrams, we can
look more closely into which local topological features are more critical, and their role
in the entire network can be examined. Hence, we first report the analysis of Persistent
Barcode(PB) and Diagrams(PD) for the final time-frame (t = 50ns) of Rips simplicial
complex ψϵ(D) to find the most prominent local topological features and search for
the possibility of their effect on the functionality at the scale of the entire network. We
wish to extract information about the “most important” or “most robust” topological
features observed from the length of bars in the PB diagram, which correspond to
persistent features with the most extended “lifetime” over varying the threshold. In
representing the k = 0, 1, 2 homology groups, we use different colors for different
systems and plot each homology group generators on a separate chart. To show
the evolution of Betti curves in different dimensions (β0, β1, β2), since the total
number of topological features is time-dependent and changes during our simulation,
we calculate Betti curves for each time frame (βk(t) for 50 time frames for 50ns
simulation), and take the average in time and plot β̄k curves for protein network in
different states. Moreover, we track the total number of 1-dimensional holes of the
data-set for different states of CalB in time, which can be assumed as the pathways
of interactions between residues, and will ultimately represent so called “Persistent
Entropy” plots of the networks in different states to uncover our insights into the
patterns of interactions in active and inactive states of CalB.
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0-dimensional Topological Changes (Connected Components)

We used the final snapshot of CalB after 50ns simulation in different conditions as
the input for local topological changes analysis and plotted the PB0 and PD0 for
the protein network. Figure 4.17 illustrates the 0-dimensional topological changes of
the protein networks versus the network weight (distances) in different systems. This
figure shows that the protein network becomes fully connected in all three systems
upon the last filtration stage (ω > 0.4), and no isolated entity is left throughout the
whole network.
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Figure 4.17: 0-dimensional Persistence Barcode and Persistence Diagram for protein
network in three different states. The 0-dimensional topological fingerprints are born
in the first stage of filtration and died in the last stage at about 0.4nm

Fig 4.18 shows the time-averaged evolution of β0 versus the varying weight of
protein network in different states. The β0 curve can be used to demonstrate the
bond length information. One can notice from the β0 curve that the number of
β0(connected components) for the protein networks falls sharply at about 0.4 nm,
which physically implies the bond length between amino acids and is reflected in the
distance-based filtration. Hence, reaching this threshold, amino acid residues start
to bind, causing the network to become one component and stays as one component
until the last filtration stage, and no isolated components persist when proceeding to
higher threshold values. The β0 curves for water at 300K and 423K networks indicate
that some isolated components persist longer in the “inactive” state of CalB. The
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Figure 4.18: 0-dimensional topological changes (β0) curve for protein network in
different states averaged over time. The error bars for each curve shows the topological
changes in time. The system becomes one component in the last stage of filtration.

error bars emphasize how the total number of topological features changes over time.
We have used two subplots in Fig 4.18 to emphasize the sharpness of the curve in
glycerol network and highlight the larger error bars for protein network in water. The
sharpness of curves and the error bar value can also be interpreted using the analysis of
link distribution function plotted in chapter 3. Our probability distribution function
analysis of weights (Fig 3.5) of the network implies that in glycerol network total
number of links with stronger interaction is higher compared to water system. The
sharpness of glycerol mean of the distribution in Fig3.8 and the standard deviation
in Fig 3.7 shows that this system undergoes the topological evolution more promptly,
as their links are restricted to smaller values.

1-dimensional Topological Holes (Loops)

PB1 and PD1 trace the lifetime of 1-dimensional topological features (loops) of the
network and can provide a suitable representation of how local topological changes
can affect the entire network. Upon calculating and plotting a 1-dimensional per-
sistence barcode and persistence diagram for the final time frame of our simulation,
we can shed some light on the most persistent or most robust topological feature
of the network and its effect on the entire system. In Fig 4.19 we have plotted the
1-dimensional Persistence Barcode and Persistence Diagram for protein networks in
different states. Relative to the persistence barcode of the crystal structure, we no-
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Figure 4.19: 1-dimensional Persistence Barcode and Persistence Diagram for protein
network in three different states. The figure shows that the most persistent loop
of the network with the lifetime of about 0.7nm dying at around 1.2nm appears in
glycerol network

(a) (b)

Figure 4.20: (a)Persistent Barcode of CalB after 50ns in glycerol at 423K. (b) same
frame after removing helix α5. The barcode shows how the most persistent bar was
due to the existence of helix α5.
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Figure 4.21: (a)Persistent Diagram of CalB after 50ns in glycerol at 423K. (b) same
frame after removing helix α5. The most persistent feature of the diagram which dies
at around 12Å disappears after removing the helix.

(a) Glycerol 423K

(b) Water 300K (c) Water 423K

Figure 4.22: Protein residue network of CalB in different states, plotted with α5

residues colored in green and active site in red.
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ticed that the lifetime of the most persistent features has increased for the protein
network in all three systems. As loops of the biological systems networks are usually
referred to as the pathways of interaction, one can suppose that the network nodes
are constructing their paths of interaction via these loops. The 1-dimensional loops of
the network have decreased slightly in water at 300K both in total number and also
lifetime and has reduced substantially in water at 423K. For the protein network in
the glycerol system, we detect a robust 1-dimensional topological hole with the most
significant lifetime compared to others of around 0.7nm. The figure shows how the
noticed persistent 1-d feature (the longest bar in PB and the most persistent pair in
PD), being born at around 0.4nm and dying at around 1.2nm, tends to stand out in
both subplots. As this prominent feature should note some significant interaction, we
first hypothesized that this feature might stem from the active site region in glycerol.
Our further analysis proved that this notable feature, appearing in the active state
of the protein residue network, corresponds to topological alteration of α− 5. In Fig-
ure 4.20, and Figure 4.21 we remarked that upon removing α−5 from the same frame,
this topological feature disappears from persistence barcode and persistence diagram
respectively, which further highlights the role of α− 5 in the protein activity. Hence,
to account for the local topology-function relationship of protein complex networks of
CalB, we believe that the persistence of the topological fingerprint of conformational
changes of alpha-5 (CalB “lid”), which gave rise to the most persistent 1 bar, affects
the active site and the activity of the protein in high temperature. In Figure 4.22
we have plotted the protein residue network in different systems and highlighted the
active site residues in red and alpha-5 in green to schematically show the interaction
pathway created by this persistent feature.

Figure 4.23 illustrates the evolution of 1-dimensional topological features for the
protein network in different systems. The evolution of β1 for all three systems start
to increase at about 0.4 nm as amino acid residues start to bind, and as we observed
in Fig 3.5 the probability of links goes up. The one-dimensional interaction pathways
between nodes will create the maximum number of loops at around 0.5 nm. This
number decreases and goes to zero at ω > 1nm. As the cutoff distance for protein in-
teraction networks are usually taken to be around 0.7nm, we notice upon adding more
links in that distance the β1 curve shows another peak at around 0.7nm. We can see
how Betti curves error bar increases as the protein lose its activity and compactness
in time in the water. Interestingly, for protein in water at 300K and glycerol, even
though protein is considered folded and they both followed the same RMSD patterns,
in the case of water, we observed a more oversized error bar and, accordingly, a de-
cline in the total number of features 3. This difference is more apparent in Fig 4.24
where we have plotted the total number of one-dimensional holes of graphs versus

3Betti curves for each state are plotted with separate scales in Appendix B
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Figure 4.23: The evolution of β1 curve shows the topological changes of one-
dimensional hole(loops) of the network. The 1-hole can be considered as the pathways
of interaction between the nodes. For our network having dynamic in time, we have
plotted 50ns time-averaged β1 curves for all three systems. The first peak occurs at
around 0.5nm.

time. Upon the unfolding process of the protein at 423K and losing the active site
activity in water at 300K, we notice a more significant decline in the total number
of features. Hence, as the protein loses its activity in time, we hypothesized that the
corresponding protein interaction network loses some of its topological features.

2-dimensional Topological Holes (Voids)

2-dimensional holes or voids of the filtered simplicial complex created for protein
network, can be traced using the PB2, PD2 and β2 curves. We noticed total number
of voids has dropped in water 423K upon unfolding of CalB. The β2 curves for CalB
in different states are plotted in Fig 4.26, which represents that the total number
of voids has dropped in water. The distribution for 2-dimensional topological holes
of the network has its first peak around 0.8 to 0.9nm, upon the decline in the β1.
This peak has decreased in value and is shifted to higher weights for CalB network
in its inactive state. In smaller values of ω where the cut-off distance for pairwise
interaction (ω < 0.7nm) of amino acids is, protein network in water at 300K shows
the most number of cavities. In higher weights 1.1 < ω < 1.3 and before all the
topological holes disappear we see that the cavities in glycerol system persist longer,
showing that in the active state of CalB some prominent 2d-holes persist.
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(a)

(b) (c)

Figure 4.24: Total Number of H1 for protein in glycerol at 423K (a), Water at 300K
(b), and Water 423K (c) over 50 snapshots in 50ns time span
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Figure 4.25: 2-dimensional Persistence Barcode and Persistence Diagram for protein
network in three different states.
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Figure 4.26: The evolution of β2 curve shows the topological changes of two-
dimensional hole(voids) of the network. For our network having dynamic in time,
we have plotted 50ns time-averaged β2 curves for all three systems.

4.6.3 Shannon Entropy and Persistent Entropy

Shannon introduced the “Shannon entropy” concept in 1948, where a measure of the
uncertainty of the occurrence of a particular event, given partial information about
the system, was proposed. In the context of information theory, where there exists a
precise meaning for the information content of a probability distribution, the Shannon
entropy (or entropy of mixing) for any probability distribution is defined as:

S = −
M∑
i=1

p(i) ln p(i), (4.15)

where we have considered a random variable with a discrete set of outcomes S =
xi occurring with probabilities p(i), for i = 1, ..,M . S is a measure of dispersity
(disorder) of the distribution[30].

Using the concept of Shannon entropy from information theory, TDA introduces
a new measure of entropy, so-called “Persistent Entropy, which can calculate how
much the construction of filtration is ordered and a way to measure how different the
bars of a barcode are in length[6]. Given a filtration ϕ(ψD(θ)) = (ψD(θi))

n
i=0 and the

corresponding persistence diagram dgm(ϕ) = {ai = (xi, yi)|1 ≤ i ≤ n} (being xi < yi
for all i), let L = {ℓi = yi − xi|1 ≤ i ≤ n}. The persistent entropy E(ϕ) of ϕ is
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calculated as follows:

E(ϕ) = −
L∑
i=1

ℓi
SL

ln
ℓi
SL
, (4.16)

where SL =
∑n

i=1 ℓi. Hence, the maximum of persistent entropy occurs when all
the bars in the persistence barcode are of equal length (i.e., ℓi = ℓj for all 1 ≤ i, j ≤ n)
and this value decreases as more bars of different lengths become present in the
barcodes. We have compared the persistent entropy for protein residue network of
CalB in glycerol, water300K and water423K, we see that the persistent entropy of the
network decreases by a greater amount as the protein loses its structure and activity
where we find the greatest decline for water 423K.

(a) Glycerol423K (b) Water300K

(c) Water423K

Figure 4.27: The Persistent Entropy for protein in glycerol at 423K, and water at
423K and 300K
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Chapter 5

Conclusions

To this end, we first conducted a series of Molecular Dynamics (MD) simulations on
one of the most widely studied lipases, Candida Antarctica lipase B (CalB), with
a wide range of industrial applications and high thermal stability. MD simulation
results provide us with trajectories of thousands of atoms that build the system in
time. Furthermore, MD simulation analysis defines various measures based on these
atomic coordinates to globally and locally account for the folded structure and activity
of the protein. For instance, using Root Mean Square Deviation (RMSD) and Radius
of gyration, we examine the protein’s overall structure, and employing local analysis
such as distances between active site residues, we probe the activity of the protein.

In Chapter 2 the results of MD simulation on CalB confirmed that the protein
is folded and active in glycerol at high temperatures (423K) and loses its activity in
water even at lower temperatures (300K). We also examined the structure of CalB
”lid” (α5: residue 142-146) under different conditions and discovered that in the active
state of CalB, even though the overall structure is folded, α5 unfolds. Furthermore,
despite losing its activity in the water, the results of RMSD and Rg confirm that the
CalB structure doesn’t unfold at 300K in water. Hence, we concluded that we require
a more suitable measure than MD simulation to distinguish between folded states of
CalB, study the effect of α5 on the activity of CalB, and examine its high-temperature
activity.

To account for the activity of the protein at very high temperatures and study
the internal conformational changes occurring in the confinement of the protein, we
constructed the corresponding protein residue network of CalB. The protein residue
network (protein interaction network) is built using amino acids as nodes and dis-
tances between them as weighted edges. Therefore, for the protein consisting of 317
amino acids, we obtained a 317 × 317 matrix (called adjacency matrix for the net-
work) with matrix elements representing the weight values. We utilized the adjacency
matrix to analyze the statistical features of the network. Using the probability dis-
tribution function of distances, standard deviation, and mean of links’ distribution
over time, we statistically distinguished between the folded state of CalB in water at
300K and in glycerol. We confirmed that a higher standard deviation for the network
distribution function in water contributes to protein-losing activity while maintain-
ing its folded three-dimensional structure. Moreover, we found that in spite of a
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tiny standard deviation in time for CalB distribution function in glycerol, residues
142-146 (CalB lid) tend to stand out from the whole structure. From chapter 3, we
concluded that when the protein is active in high-temperature pairwise interactions
in the network form structures that are persistent in time.

The main question we aim to address from our further analysis concerns whether
protein activity only depends on its three-dimensional structure or whether there are
deeper patterns between residues that we need to consider studying protein activity.
While network analysis emphasizes the essence of structural analysis of the compo-
nents of the protein network and highlights the importance of little fluctuations in
pairwise interaction between amino acids for the active state, we further analyzed
the overall topology of the protein to search for features in the general interactions
patterns that contribute to the activity. In Chapter 4, we employed the Topological
Data Analysis (TDA) method, which characterizes the system’s topology based on
algebraic topology concepts and definitions.

By examining the topological features of the corresponding protein residue net-
work, we studied the association between the protein activity and the evolution of
its topological fingerprints. Firstly, regarding the local conformational changes and
their effect on the active site, we found the most persistent feature of the network in
1 dimension (referred to as interaction pathways) corresponds to the residue 142-146
in the active state. Moreover, we compared the protein’s total number of topological
features in time and observed a greater decline in the total number in time as the
protein loses its activity and compactness. To this end, we aim to establish that to
study the activity of proteins, other than the 3D structure of the protein of interest,
the topological fingerprints of the protein network are essential. However, we want
to suggest that we have to extend the simulation time scale to confirm this decline
by a greater amount.

This work is the first attempt at looking at the dynamical structural properties of
a protein, including during unfolding, through the idea of topological data analysis.
Previous studies have used TDA analysis of static protein structures or artificial
protein dynamics. We are using for the first time with a more realistic molecular
dynamics simulation.
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Appendix A

Additional notes and algebra

A.1 Some Additional Definitions from Algebraic

Topology

Definition A.1.1 (Map). A map. f from X to Y is a rule by which for any element
x ∈ X we assign an element y ∈ Y [41]. We write:

f : X → Y (A.1)

Remark. We call X the domain and Y the range of map f .

If f is defined by some explicit formula:

if Y = f(x); f : x→ f(x). (A.2)

Definition A.1.2. Maps with certain properties bear special names:

• A map f : X → Y is injective (one to one) if any distinct pair elements of
X is assigned to a distinct pair elements of Y . We write:

∀x, x′ ∈ X : if x ̸= x′ → f(x) ̸= f(x′) (A.3)

• A map f : X → Y is surjective (onto) if for each element of set Y there exist
at least one element x in X to be assigned by the map:

∀y ∈ Y ∃x ∈ X; f(x) = y (A.4)

• A map f : X → Y is bijective and invertible if it is both injective and surjective

Definition A.1.3 (Inverse Image). If more than two elements in X correspond to
same y ∈ Y inverse image of y is defined as a subset of X whose elements are
mapped. We write:

f−1(y) = {x ∈ X | f(x) = y} (A.5)
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.

Definition A.1.4 (Image). The image of the map is defined as:

f(x) = {y ∈ Y | y = f(x) for x ∈ X} ⊂ Y (A.6)

Definition A.1.5 (Relation). A relation R defined in set X is a subset of X2. If a
point (a, b) ∈ X2 is in R: (aRb)

Definition A.1.6 (Equivalence Relation). An equivalence relation ∼ is a relation
that satisfies:

• a ∼ a

• If a ∼ b→ b ∼ a

• If a ∼ b, b ∼ c→ a ∼ c

Definition A.1.7 (Equivalence Class). A class [a] is made of all the elements x ∈ X
such that x ∼ a:

[a] = {x ∈ X | x ∼ a} (A.7)

Definition A.1.8 (Geometrically Independent). n+1 points in space are geomet-
rically independent if their corresponding n vectors are linearly independent. Set
{a0, a1, ..., an} of points in RN with real scalars ti is geometrically independent such
that:

n∑
i=0

ti = 0,
n∑
i=0

tiai = 0, implies t0 = t1 = ... = tn = 0 (A.8)

Definition A.1.9 (Homomorphism). A map f : X → Y is called a homomorphism
if for any two sets X and Y together with their certain algebraic structure (product,
addition, etc) f preserves these algebraic structures. We write:

∀x, x′ ∈ X f(x⊙x x
′) = f(x)⊙y f(x′), (A.9)

where ⊙x and ⊙y are arbitrary algebraic operations in X and Y respectivele.

Definition A.1.10 (Isomorphism). If a homomorphism f is bijective, f is called an
isomorphism and X is said to be isomorphic to Y . We write: X ∼= Y
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Appendix B

Further Plots

B.1 Statistical Analysis of CalB Network in

Different States

This section includes for each system, statistical analysis of CalB interaction network
on a separate figure.
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Figure B.1: Figure shows statistical analysis of CalB network in glycerol at 423K
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Figure B.2: Figure shows statistical analysis of CalB network in water at 300K
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Figure B.3: Figure shows statistical analysis of CalB network in water at 423K
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B.2 Statistical Analysis and Persistent Homology

on Protein Residue Network in Urea

Here in Fig B.4 we show the distance matrix, probability density function, mean,
standard deviation, and the evolution of topological features of CalB in urea at 423K.
Also In Fig B.5 we show 0 and 1-dimensional betti curves together with persistent
entropy for CalB network in Urea.

(a) Distance Matrix (b) Probability Density Function

(c) Mean

Figure B.4: For the protein interaction network of CaB in urea we have plotted
distance matrix, PDF and mean

B.3 Topological Data Analysis Results

B.3.1 Betti Curves

Here we show 0− 1-dimensional Betti curves for protein in each state.
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(a) Betti0 (b) Betti 1

(c) Persistent Entropy

Figure B.5: For the protein interaction network of CaB in urea we have plotted 0 and
1-dimensional betti curves and persistent entropy

(a) β0 (b) β1

Figure B.6: the evolution of zero(left) and one(right) dimensional hole (loops) as a
function of threshold for CalB in Glycerol at 423K
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(a) β0 (b) β1

Figure B.7: the evolution of zero(left) and one(right) dimensional hole (loops) as a
function of threshold for CalB in Water at 300K

(a) β0 (b) β1

Figure B.8: Figure shows the evolution of zero(left) and one(right) dimensional hole
(loops) as a function of threshold together with the corresponding total number of
features as a function of frame number for CalB in water at 423K
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B.3.2 Persistence Barcode and Diagram

In the following we show for each state 0-2 dimensional persistence barcode and
persistence diagram.

(a) Glycerol423K (b) Water300K

(c) Water423K

Figure B.9: The 0-dimensional Persistent Barcode for protein in water at 300K ,
Glycerol at 423K and Water at 423K
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(a) Glycerol423K (b) Water300K

(c) Water423K

Figure B.10: The 0-dimensional Persistent Diagram for protein in glycerol at 423K,
water at 300K and Water at 423K

Figure B.11: (a)Persistent Diagram of CalB after 50ns in glycerol
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Figure B.12: (a)Persistent Diagram of CalB after 50ns in glycerol

Figure B.13: (a)Persistent Barcode of CalB after 50ns in water at 300K and 423K.

Figure B.14: (a)Persistent Diagram of CalB after 50ns in different temperatures in
water
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(a) Glycerol423K (b) Water300K

(c) Water423K

Figure B.15: The 2-dimensional Persistent Barcode for protein in glycerol at 423K,
water at 300K, and Water at 423K

(a) Glycerol423K
(b) Water300K

(c) Water423K

Figure B.16: The 2-dimensional Persistent Diagram for protein in water at 300K ,
Glycerol at 423K and Water at 423K
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Appendix C

TDA Analysis Source Code

C.1 The source code used to calculate distance

matrix, plot distance matrix and distribution

locations.py
1 import numpy as np

2 from Bio import PDB

3 from Bio import *

4 from Bio.PDB.PDBParser import PDBParser

5 from Bio.PDB.Polypeptide import PPBuilder

6 import dionysus

7 import matplotlib.pyplot as plt

8

9

10

11

12 def distance(p_i, p_j):

13 D = len(p_i)

14 dis = 0

15 for d in range(D):

16 dis += (p_i[d] - p_j[d]) ** 2

17

18 return(dis ** (1/2))

19

20

21 ########################################################################

22

23

24 parser = PDB.PDBParser()

25 struct = parser.get_structure('1tca','proteinwater423.pdb')

26

27 data = []

28
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29 subnode_number = []

30

31 for model in struct:

32 for chain in model:

33 for residue in chain:

34 c = 0

35

36 k = residue.get_id()

37 for atom in residue:

38

39 if atom.get_name() == 'CA' :

40 c += 1

41

42 X,Y,Z = atom.get_coord()

43 data.append([X,Y,Z])

44 subnode_number.append(c)

45

46

47 N = len(subnode_number)

48

49 data = np.array(data)

50

51

52 nodes = []

53

54 for i in range(N):

55 nodes.append(data[sum(subnode_number[:i]) : sum(subnode_number[:i])+subnode_number[i]])

56

57 nodes = np.array(nodes)

58

59

60 distance_matrix = np.zeros((N,N))

61

62 for i in range(N):

63 for j in range(i+1, N):

64

65 d_ij = []

66

67 for p_i in nodes[i]:

68 for p_j in nodes[j]:
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69

70 dist = distance(p_i, p_j)

71 d_ij.append(dist)

72

73 #print(min(d_ij))

74

75 distance_matrix[i][j] = distance_matrix[j][i] = min(d_ij)

76

77

78 np.save('locations', data)

79

80

81 np.save('distance_matrix', distance_matrix)

82

83 print('distance_matrix saved')

84

Topology.py
1 import numpy as np

2 import networkx as nx

3 from Bio import PDB

4 from Bio import *

5 from Bio.PDB.PDBParser import PDBParser

6 from Bio.PDB.Polypeptide import PPBuilder

7 import dionysus

8 import matplotlib.pyplot as plt

9

10

11

12

13 def distance(p_i, p_j):

14 D = len(p_i)

15 dis = 0

16 for d in range(D):

17 dis += (p_i[d] - p_j[d]) ** 2

18

19 return(dis ** (1/2))

20

21 ########################################################################

22
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23

24

25 distance_matrix = np.load('distance_matrix.npy')

26

27 flat = distance_matrix.flatten()

28

29 plt.hist(flat, bins=100)

30 plt.show()

31

32 N = len(distance_matrix)

33

34

35 plt.imshow(distance_matrix)

36 plt.colorbar()

37 plt.show()

38

39

40 edge_list = []

41

42 for i in range(N):

43 for j in range(i+1, N):

44 if distance_matrix[i][j] != 0 :

45 edge_list.append(distance_matrix[i][j])

46 else:

47 edge_list.append(np.inf)

48

49 edge_list = np.array(edge_list)

50

51 unq = np.unique(edge_list)

52

53 print(unq[-2])

54

55 max_dim_sim = 3

56 the_max = 14

57 the_min = 0

58

59

60 filt = dionysus.fill_rips(edge_list, max_dim_sim, the_max)

61 ph = dionysus.homology_persistence(filt)

62 pds = dionysus.init_diagrams(ph, filt)
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63

64

65

66 np.save('pds', pds)

67

68

69 loops = []

70

71 for pp in pds[1]:

72 loops.append([pp.birth, pp.death])

73

74 np.savetxt('loops', loops)

75

76 print('pds saved')

C.2 The source code used to plot for each frame

betti curves, persistent barcodes and

persistent diagrams

topologyplot.py
1 import numpy as np

2 import networkx as nx

3 from Bio import PDB

4 from Bio import *

5 from Bio.PDB.PDBParser import PDBParser

6 from Bio.PDB.Polypeptide import PPBuilder

7 import dionysus

8 import matplotlib.pyplot as plt

9

10

11

12 pds = np.load('pds.npy',allow_pickle=True)

13

14 max_dim_sim = len(pds)

15

16

17 for d in range(max_dim_sim-1):

18 dionysus.plot.plot_bars(pds[d])
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19 plt.savefig('PB'+str(d)+'.pdf')

20 print(len(pds[d]))

21 plt.title('PB'+str(d))

22 plt.show()

23

24

25 for d in range(max_dim_sim-1):

26 dionysus.plot.plot_diagram(pds[d])

27 print(len(pds[d]))

28 plt.title('PD'+str(d))

29 plt.savefig('PD'+str(d)+'.pdf')

30 plt.show()

31

32

33 the_max = 14

34 the_min = 0

35

36

37 Betti_curve_d = []

38 birth_curve_d = []

39 death_curve_d = []

40 pdf_PB_d = []

41 PE_d = []

42 PI_d = []

43 mean_bars_d = []

44

45 STEP = 50

46 DELTA = float((the_max-the_min)/STEP)

47

48 step_Bettis = 1000

49 step = 100

50

51 delta = float((the_max-the_min)/step)

52

53 delta_Bettis = float((the_max-the_min)/step_Bettis)

54

55 thrs_Bettis = np.arange(the_min, the_max+delta_Bettis, delta_Bettis)

56

57 for d in range(max_dim_sim-1):

58
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59 bars = []

60 baRs = []

61 Betti_curve = np.zeros(step_Bettis+1)

62 birth_curve = np.zeros(step+1)

63 death_curve = np.zeros(step+1)

64 PI = np.zeros((STEP+1,STEP+1))

65

66 births = []

67 deaths = []

68

69 for p in pds[d]:

70

71 births.append(p.birth)

72 deaths.append(min(p.death,the_max))

73

74 if p.death != np.inf :

75 k_min = int((p.birth-the_min) / delta_Bettis)

76 k_max = int((p.death-the_min) / delta_Bettis)

77

78 k_birth = int((p.birth-the_min) / delta)

79 k_death = int((p.death-the_min) / delta)

80

81 K_MIN = int((p.birth-the_min) / DELTA)

82 K_MAX = int((p.death-the_min) / DELTA)

83 PI[K_MIN][K_MAX] += 1

84

85

86 birth_curve[k_birth] += 1

87 death_curve[k_death] += 1

88

89 for k in range(k_min, k_max):

90 Betti_curve[k] += 1

91 bars.append(p.death - p.birth)

92 baRs.append(p.death - p.birth)

93

94 else:

95 k_min = int((p.birth-the_min) / delta_Bettis)

96 k_max = int((the_max-the_min) / delta_Bettis)

97

98 k_birth = int((p.birth-the_min) / delta)
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99 k_death = int((the_max-the_min) / delta)

100

101 K_MIN = int((p.birth-the_min) / DELTA)

102 K_MAX = int((the_max-the_min) / DELTA)

103 PI[K_MIN][K_MAX] += 1

104

105 birth_curve[k_birth] += 1

106 death_curve[k_death] += 1

107

108 for k in range(k_min, k_max):

109 Betti_curve[k] += 1

110 bars.append(the_max - p.birth)

111

112 pdf_PB = np.zeros(step+1)

113 PE = 0

114 Bar = np.sum(baRs)

115

116 mean_bars = np.max(baRs)

117 mean_bars_d.append(mean_bars)

118

119 for bar in baRs:

120 kl = int((bar-the_min) / delta)

121 pdf_PB[kl] += 1

122 probab = float(bar / Bar)

123 PE -= (probab * np.log(probab))

124

125 #PE = float(PE / Bar)

126

127 Betti_curve_d.append(Betti_curve)

128 birth_curve_d.append(birth_curve)

129 death_curve_d.append(death_curve)

130 pdf_PB_d.append(pdf_PB)

131 PE_d.append(PE)

132 PI_d.append(PI)

133

134

135 np.save('Betti_curve_d', Betti_curve_d)

136

137 for d in range(max_dim_sim-1):

138 plt.plot(thrs_Bettis, Betti_curve_d[d], marker='.')
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139 plt.savefig('betti'+str(d))

140 plt.show()

141 #plt.plot(thrs_Bettis, birth_curve_d[d], marker='.')

142 #plt.show()

143 #plt.plot(thrs_Bettis, death_curve_d[d], marker='.')

144 #plt.show()

145

146 #for d in range(max_dim_sim-1):

147 # dionysus.plot.plot_diagram(pds[d])

148 # print(len(pds[d]))

149 # plt.title('PD'+str(d))

150 #plt.savefig('PD'+str(d)+'.pdf')

151 #plt.show()

C.3 The source code used to find time averaged

betti curves

timeaveragedbetti.py
1 import numpy as np

2 import pandas

3 import scipy.spatial

4 import mdtraj

5 import dionysus

6 import matplotlib.pyplot as plt

7 from mpl_toolkits import mplot3d

8 from mpl_toolkits.mplot3d import Axes3D

9

10

11 def dis(p1,p2):

12 D = len(p1)

13 distance = 0

14 for d in range(D):

15 distance += (p1[d]-p2[d])**2

16 return(distance**0.5)

17

18

19 #get_ipython().run_line_magic('matplotlib', 'inline')

20
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21 calb_residues = 317

22 coordinates = np.zeros((calb_residues,3))

23 number_of_frames = 5001

24 step_frames = 100

25

26

27 time_step = int(number_of_frames/step_frames)

28

29

30 the_min = 0

31 the_max = 1.4

32 step = 1000

33 delta = float((the_max-the_min)/step)

34 thrs = np.arange(the_min, the_max+delta, delta)

35

36

37 am_frame = []

38 diagrams_0_frame = []

39 diagrams_1_frame = []

40 diagrams_2_frame = []

41

42

43 store0 = pandas.HDFStore('test0.h5d')

44 store1 = pandas.HDFStore('test1.h5d')

45 store2 = pandas.HDFStore('test2.h5d')

46

47

48 for read_frame in range(0, number_of_frames, step_frames) :

49 #

50 # LOAD THE FRAME

51 #

52 trajectory = mdtraj.load_xtc("md_0_1.xtc",

53 top="1tcagly423.gro",

54 frame=read_frame)

55 #

56 # CREATE A (317,3) MATRIX OF THE COORDINATES OF THE CHOSEN ATOM

57 #

58 topology = trajectory.topology

59 alpha_carbon_indexes = topology.select("name CA")

60
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61

62

63 for index in range(calb_residues) :

64 coordinates[index] = trajectory.xyz[0,alpha_carbon_indexes[index]]

65

66

67 #print(coordinates)

68 #plt.scatter(coordinates[:,0],coordinates[:,1],marker='.')

69 #plt.show()

70 #fig = plt.figure()

71 #ax = fig.add_subplot(projection='3d')

72 #ax.plot3D(coordinates[:,0], coordinates[:,1], coordinates[:,2], marker='.', lw=0)

73 #plt.show()

74

75

76

77 #

78 # DO TDA ON THAT POINT CLOUD

79 #

80 #print(coordinates[:,0])

81

82 xyz = []

83

84 am = np.zeros((317,317))

85 for i in range(317):

86 xyz.append(coordinates[i])

87 for j in range(i+1,317):

88 am[i][j] = am[j][i] = dis(coordinates[i],coordinates[j])

89

90

91 am_frame.append(am)

92 #pdist = scipy.spatial.distance.pdist(coordinates)

93 #print(coordinates.shape)

94 #print(type(coordinates))

95 #print(pdist.shape)

96

97 xyz = np.array(xyz)

98

99 np.save('am_'+str(read_frame), am)

100
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101

102 filtration = dionysus.fill_rips(xyz, 3, the_max)

103

104

105 #filtration = dionysus.fill_rips(coordinates, 2, the_max)

106 persistence = dionysus.homology_persistence(filtration)

107 diagrams = dionysus.init_diagrams(persistence,filtration)

108 #

109 # ADD EACH FEATURE TO THE DENSITY MATRIX

110 #

111 #for i,pd in enumerate(diagrams[1]) :

112 #for j,cutoff in enumerate(cutoff_distance) :

113 #if (pd.birth < cutoff) and (pd.death > cutoff) :

114 #density[j] += 1

115

116

117 births0 = []

118 deaths0 = []

119 for pp in diagrams[0] :

120 births0.append(pp.birth)

121 deaths0.append(pp.death)

122

123

124 df0 = pandas.DataFrame({"birth":births0, "death":deaths0})

125 key = f"frame{read_frame:04d}"

126 store0.put(key,df0)

127

128

129

130

131 births1 = []

132 deaths1 = []

133 for pp in diagrams[1] :

134 births1.append(pp.birth)

135 deaths1.append(pp.death)

136

137 df1 = pandas.DataFrame({"birth":births1, "death":deaths1})

138 key = f"frame{read_frame:04d}"

139 store1.put(key,df1)

140
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141 births2 = []

142 deaths2 = []

143 for pp in diagrams[2] :

144 births2.append(pp.birth)

145 deaths2.append(pp.death)

146

147 df2 = pandas.DataFrame({"birth":births2, "death":deaths2})

148 key = f"frame{read_frame:04d}"

149 store2.put(key,df2)

150

151

152 diagrams_0_frame.append(diagrams[0])

153 diagrams_1_frame.append(diagrams[1])

154 diagrams_2_frame.append(diagrams[2])

155

156

157

158 np.save('pd_'+str(read_frame), diagrams)

159

160

161

162

163 store0.close()

164 store1.close()

165 store2.close()

166

167

168

169 am_frame = np.array(am_frame)

170 am_mean = np.mean(am_frame, axis=0)

171 am_std = np.std(am_frame, axis=0)

172 np.save('am_mean', am_mean)

173 np.save('am_std', am_std)

174

175

176 #np.save('diagrams_0_frame', diagrams_0_frame)

177 #np.save('diagrams_1_frame', diagrams_1_frame)

178 #np.save('diagrams_2_frame', diagrams_2_frame)

179

180
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181 ####################

182

183

184 pdf_am_frame = []

185 min_am = 0

186 max_am = 10

187 step_am = 100

188 delta_am = float((max_am-min_am)/step_am)

189 thrs_am = np.arange(min_am, max_am+delta_am, delta_am)

190

191 betti_curve_0_frame = []

192 betti_curve_1_frame = []

193 betti_curve_2_frame = []

194

195

196 entropy_0_frame = []

197 entropy_1_frame = []

198 entropy_2_frame = []

199 pbar_frame = []

200 for time in range(time_step):

201 pdf_am = np.zeros(step_am+1)

202 for val in am_frame[time].flatten():

203 if min_am < val <= max_am :

204 k = int((val-min_am)/delta_am)

205 pdf_am[k] += 1

206 pdf_am_frame.append(pdf_am)

207 np.save('pdf_am_'+str(time), pdf_am)

208

209

210 betti_curve_0 = np.zeros(step+1)

211

212 lifetimes0 = []

213

214

215 for pp in diagrams_0_frame[time] :

216

217 if pp.death != np.inf :

218 k_min = int((pp.birth-the_min)/delta)

219 k_max = int((pp.death-the_min)/delta)

220
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221

222 lifetimes0.append(pp.death-pp.birth)

223

224

225 else:

226 k_min = int((pp.birth-the_min)/delta)

227 k_max = int((the_max-the_min)/delta)

228

229

230 lifetimes0.append(the_max-pp.birth)

231

232

233 betti_curve_0[k_min:k_max] += 1

234

235

236 L = sum(lifetimes0)

237

238

239 entropy_0 = 0

240

241

242 for l in lifetimes0:

243

244

245 entropy_0 -= (l/L) * np.log(l/L)

246

247

248 entropy_0_frame.append(entropy_0)

249 betti_curve_0_frame.append(betti_curve_0)

250

251

252

253

254 betti_curve_1 = np.zeros(step+1)

255 lifetimes1 = []

256

257

258 for pp in diagrams_1_frame[time] :

259

260
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261 if pp.death != np.inf :

262 k_min = int((pp.birth-the_min)/delta)

263 k_max = int((pp.death-the_min)/delta)

264

265

266 lifetimes1.append(pp.death-pp.birth)

267

268

269 else:

270 k_min = int((pp.birth-the_min)/delta)

271 k_max = int((the_max-the_min)/delta)

272

273

274 lifetimes1.append(the_max-pp.birth)

275

276

277 betti_curve_1[k_min:k_max] += 1

278

279

280 L = sum(lifetimes1)

281

282

283

284 entropy_1 = 0

285

286 for l in lifetimes1:

287 entropy_1 -= (l/L) * np.log(l/L)

288

289

290 #pbar = float(max(lifetimes1) / np.mean(lifetimes1.pop(np.argmax(lifetimes1))))

291 #pbar = float(max(lifetimes1) / np.mean(lifetimes1))

292

293 sort = np.sort(lifetimes1)

294 pbar = sort[-1]/np.mean(sort[:-2])

295 pbar_frame.append(pbar)

296

297 entropy_1_frame.append(entropy_1)

298

299 betti_curve_1_frame.append(betti_curve_1)

300
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301

302

303

304 betti_curve_2 = np.zeros(step+1)

305 lifetimes2 = []

306

307

308 for pp in diagrams_2_frame[time] :

309

310

311 if pp.death != np.inf :

312 k_min = int((pp.birth-the_min)/delta)

313 k_max = int((pp.death-the_min)/delta)

314

315

316 lifetimes2.append(pp.death-pp.birth)

317

318

319 else:

320 k_min = int((pp.birth-the_min)/delta)

321 k_max = int((the_max-the_min)/delta)

322

323

324 lifetimes2.append(the_max-pp.birth)

325

326

327 betti_curve_2[k_min:k_max] += 1

328

329

330 L = sum(lifetimes2)

331

332

333

334 entropy_2 = 0

335

336 for l in lifetimes2:

337 entropy_2 -= (l/L) * np.log(l/L)

338

339

340
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341 sort = np.sort(lifetimes2)

342 pbar = sort[-1]/np.mean(sort[:-2])

343 pbar_frame.append(pbar)

344

345 entropy_2_frame.append(entropy_2)

346

347

348

349 betti_curve_2_frame.append(betti_curve_2)

350

351

352

353

354 pdf_am_frame = np.array(pdf_am_frame)

355 pdf_am_mean = np.mean(pdf_am_frame, axis=0)

356 pdf_am_std = np.std(pdf_am_frame, axis=0)

357

358 np.save('pdf_am_mean', pdf_am_mean)

359 np.save('pdf_am_std', pdf_am_std)

360

361 betti_curve_0_frame = np.array(betti_curve_0_frame)

362 betti_curve_0_mean = np.mean(betti_curve_0_frame, axis=0)

363 betti_curve_0_std = np.std(betti_curve_0_frame, axis=0)

364 betti_curve_1_frame = np.array(betti_curve_1_frame)

365 betti_curve_1_mean = np.mean(betti_curve_1_frame, axis=0)

366 betti_curve_1_std = np.std(betti_curve_1_frame, axis=0)

367 betti_curve_2_frame = np.array(betti_curve_2_frame)

368 betti_curve_2_mean = np.mean(betti_curve_2_frame, axis=0)

369 betti_curve_2_std = np.std(betti_curve_2_frame, axis=0)

370

371

372 bottleneck_distance_matrix_0 = np.zeros((time_step,time_step))

373 bottleneck_distance_matrix_1 = np.zeros((time_step,time_step))

374 bottleneck_distance_matrix_2 = np.zeros((time_step,time_step))

375

376

377 for i in range(time_step):

378 for j in range(i+1, time_step):

379

380
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381 bottleneck = dionysus.bottleneck_distance(diagrams_0_frame[i], diagrams_0_frame[j])

382 bottleneck_distance_matrix_0[i][j] = bottleneck_distance_matrix_0[j][i] = bottleneck

383

384 bottleneck = dionysus.bottleneck_distance(diagrams_1_frame[i], diagrams_1_frame[j])

385 bottleneck_distance_matrix_1[i][j] = bottleneck_distance_matrix_1[j][i] = bottleneck

386

387 bottleneck = dionysus.bottleneck_distance(diagrams_2_frame[i], diagrams_2_frame[j])

388 bottleneck_distance_matrix_2[i][j] = bottleneck_distance_matrix_2[j][i] = bottleneck

389

390

391

392 print(time_step)

393 np.save('Betti_curve_mean_0', betti_curve_0_mean)

394 np.save('Betti_curve_mean_1', betti_curve_1_mean)

395 np.save('Betti_curve_mean_2', betti_curve_2_mean)

396 np.save('Betti_curve_std_0', betti_curve_0_std)

397 np.save('Betti_curve_std_1', betti_curve_1_std)

398 np.save('Betti_curve_std_2', betti_curve_2_std)

399 np.save('bottleneck_distance_matrix_0', bottleneck_distance_matrix_0)

400 np.save('bottleneck_distance_matrix_1', bottleneck_distance_matrix_1)

401 np.save('bottleneck_distance_matrix_2', bottleneck_distance_matrix_2)

402 print(bottleneck_distance_matrix_0)

403 print(bottleneck_distance_matrix_1)

404 print(bottleneck_distance_matrix_2)

405

406

407 ### plots :

408

409 plt.imshow(am_mean)

410 plt.title('am_mean')

411 cbar = plt.colorbar()

412 cbar.set_label('Weights in $(nm)$', rotation=90)

413 plt.savefig('am_mean')

414 plt.show()

415

416 flat = am_mean.flatten()

417 plt.hist(flat, bins=100)

418 plt.savefig('Averaged PDF')

419 plt.xlabel('Threshold(nm)')

420 plt.show()
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421

422 plt.imshow(am_std)

423 plt.title('am_std')

424 cbar = plt.colorbar()

425 cbar.set_label('Weights in $(nm)$', rotation=90)

426 plt.savefig('am_std')

427 plt.show()

428

429 flat = am_std.flatten()

430 plt.hist(flat, bins=100)

431 plt.savefig('pdf_am_std')

432 plt.show()

433

434

435 plt.errorbar(thrs_am[:len(pdf_am_std)], pdf_am_mean, pdf_am_std, marker='.')

436 plt.savefig('pdf_am_mean')

437 plt.savefig('Mean Value of PDF in Time')

438 plt.xlabel('Threshold(nm)')

439 plt.show()

440

441 plt.plot(pbar_frame, marker='.')

442 plt.savefig('pbar')

443 plt.title('PBar')

444 plt.xlabel("Time(ns)")

445 plt.ylabel("Lifetime")

446 plt.grid(True)

447 plt.show()

448

449

450 d = 0

451

452 plt.errorbar(thrs[:len(betti_curve_0_mean)], betti_curve_0_mean, betti_curve_0_std, marker='.')

453 plt.xlabel("Threshold(nm)")

454 plt.ylabel("Betti0")

455 plt.show()

456

457

458

459 d = 1

460 plt.errorbar(thrs[:len(betti_curve_1_mean)], betti_curve_1_mean, betti_curve_1_std, marker='.')
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461 plt.xlabel("Threshold(nm)")

462 plt.ylabel("Betti1")

463 plt.show()

464

465

466 d = 2

467 plt.errorbar(thrs[:len(betti_curve_2_mean)], betti_curve_2_mean, betti_curve_2_std, marker='.')

468 plt.xlabel("Threshold(nm)")

469 plt.ylabel("Betti2")

470 plt.show()

471

472

473

474 ###

475

476 d = 0

477 plt.plot(range(time_step), entropy_0_frame, marker='.')

478 plt.show()

479

480

481

482 d = 1

483 plt.plot(range(time_step), entropy_1_frame, marker='.')

484 plt.show()

485

486 d = 2

487 plt.plot(range(time_step), entropy_2_frame, marker='.')

488 plt.show()

489

490 ###

491

492

493 d = 0

494 plt.imshow(bottleneck_distance_matrix_0)

495 plt.colorbar()

496 plt.show()

497

498

499

500 d = 1
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501 plt.imshow(bottleneck_distance_matrix_1)

502 plt.colorbar()

503 plt.show()

504

505 d = 2

506 plt.imshow(bottleneck_distance_matrix_2)

507 plt.colorbar()

508 plt.show()

509

510

511

512
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