

The influence of astrocytic leaflet motility on ionic signalling and homeostasis at active synapses

Toman, M., Wade, J. J., Verkhratsky, A., Dallas, M., Bithell, A., Flanagan, B., Harkin, J., & McDaid, L. (2023). The influence of astrocytic leaflet motility on ionic signalling and homeostasis at active synapses. *Scientific Reports*, *13*(1), 1-10. [3050]. https://doi.org/10.1038/s41598-023-30189-8

Link to publication record in Ulster University Research Portal

Published in: Scientific Reports

Publication Status: Published online: 21/02/2023

DOI: 10.1038/s41598-023-30189-8

Document Version

Publisher's PDF, also known as Version of record

General rights

Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

The influence of astrocytic leaflet motility on ionic signalling and homeostasis at active synapses – Supplementary Material

Marinus Toman ^{1*}, John Joseph Wade ¹, Alexei Verkhratsky ^{2,3,4}, Mark Dallas ⁵, Angela Bithell ⁵, Bronac Flanagan ¹, Jim Harkin ¹ and Liam McDaid ¹

¹ Computational Neuroscience and Neuromorphic Engineering Team, Intelligent Systems Research Centre, Ulster University, Northland Road, Derry, United Kingdom BT48 7JL

² Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom

³ Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

⁴ Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania

⁵ Reading School of Pharmacy, University of Reading, Reading, United Kingdom

* Corresponding author

Current	Description	Equation(s)	Source
I _{vgnc,pre}	Voltage-gated Na ⁺ channel	$g_{vgnc,pre}m^{3}h(V_{pre}-E_{Na})$	1
I _{vgkc,pre}	Voltage-gated K ⁺ channel	$g_{vgkc,pre}n^4(V_{pre}-E_K)$	1
I _{l,pre}	Background leak channel	$g_{l,pre}(V_{pre}-E_l)$	1
I _{vgcc,pre}	Voltage-gated Ca ²⁺ channel	$g_{vgcc,pre}s(V_{pre}-E_{Ca})$	2
$\frac{dw}{dt}$	Voltage-gated (in)activation	$\alpha_w(1-w) - \beta_w w$	1
α_m	Na ⁺ activation forward rate	$0.1 \left(\frac{25 - V_{pre}}{exp\left(\frac{25 - V_{pre}}{10} \right) - 1} \right)$	Adapted from ¹
$\boldsymbol{\beta}_m$	Na ⁺ activation backward rate	$4\left(\frac{-V_{pre}}{18}\right)$	Adapted from ¹
α_h	Na ⁺ inactivation forward rate	$0.07 \exp\left(\frac{-V_{pre}}{20}\right)$	Adapted from ¹
β_h	Na ⁺ inactivation backward rate	$\left(exp\left(\frac{30-V_{pre}}{10}\right)+1\right)^{-1}$	Adapted from ¹
α _n	K ⁺ activation forward rate	$0.1 \Bigg(rac{10 - V_{pre}}{exp\left(rac{10 - V_{pre}}{10} ight) - 1} \Bigg)$	Adapted from ¹
β_n	K ⁺ activation backward rate	$0.125\left(\frac{-V_{pre}}{80}\right)$	Adapted from ¹
α_s	Ca ²⁺ activation forward rate	$\frac{1.6}{1 + exp(-0.072(V_{pre} - 5))}$	Adapted from ²
β _s	Ca ²⁺ activation backward rate	$\frac{0.02(V_{pre} - 1.31)}{exp\left(\frac{V_{pre} - 1.31}{5.36}\right) - 1}$	Adapted from ²
I _{pmca,pre}	Plasma-membrane Ca ²⁺ -ATPase (PMCA)	$\bar{I}_{pmca}\left(\frac{[Ca^{2+}]_{pre}}{K_{Ca,pre} + [Ca^{2+}]_{pre}}\right)$	3
I _{nka,y}	Na ⁺ -K ⁺ -ATPase (NKA)	$\bar{I}_{nka}\left(\frac{[Na^+]_y^{1.5}}{K_{Na,y}^{1.5} + [Na^+]_y^{1.5}} \times \frac{[K^+]_y}{K_{K,y} + [K^+]_y}\right)$	4
I _{ampa,post}	AMPA receptor	$g_{ampa}r(V_{post}-E_{ampa})$	5
I _{nmda,post}	NMDA receptor	$g_{ampa}B(V_{post})r(V_{post}-E_{ampa})$	5

Table 1. Transmembrane currents used in the synaptic cradle model.

Current	Description	Equation(s)	Source	
dr dt	AMPA/NMDA (in)activation	$\alpha_r[Glu]_{ecs}(1-r) - \beta_r r$	5	
B(V _{post})	NMDA magnesium block	$\left(1 + exp(-0.062V_{post})\frac{[Mg]_o}{3.57}\right)^{-1}$	6	
I _{eaat,psc}	Excitatory amino- acid transporter (EAAT)	$\bar{I}_{eaat} \left(\frac{[Glu]_{ecs}}{K_{eaat} + [Glu]_{ecs}} \right)$	-	
I _{ncx,psc}	Na ⁺ /Ca ²⁺ exchanger (NCX)	$\bar{I}_{ncx}\left(\left(\frac{[Na^{+}]_{psc}}{[Na^{+}]_{ecs}}\right)^{3}exp\left(\frac{\gamma FV_{psc}}{RT}\right)$ $-\left(\frac{[Ca^{2+}]_{psc}}{[Ca^{2+}]_{ecs}}\right)exp\left(\frac{(\gamma-1)FV_{psc}}{RT}\right)\right)$	4,7	
I _{kir,psc}	K ⁺ inward rectifier channel (K _{ii} 4.1)	$g_{kir}\sqrt{[K^+]_{ecs}}(V_{psc}-E_{kir})$	8	
I _{pf,x}	Leaflet diffusion	$K_{pf,x} \frac{-E_x}{l_{lf}} exp\left(-\frac{Q\left(\varphi - \sqrt{\frac{Q(-E_x)}{l_{lf}\pi\epsilon}}\right)}{k_BT}\right)$	Adapted from 9	
$I_{l,x,y}$	Passive channels	$g_{l,x,y}(V_y - E_x)$	3	
I _{ecs,x}	ECS diffusion	$g_{ecs}\lambda(-E_{x,ecs})$	10	
Ex	Equilibrium potential	$\frac{RT}{z_x F} ln \frac{[x]_o}{[x]_i}$	3	
Note: $w \in \{m, h, n, s\}, x \in \{Na, K, Ca\}$ and $y \in \{pre, post, psc\}$				

Table 2. Parameters used in the synaptic cradle model.

Parameter	Description	Value	Unit(s)	Source	
Constants					
dt	Time step	10	μs	-	
F	Faraday's constant	96485	C/mol	-	
R	Idela gas constant	8.314	J/mol.K	-	
k _B	Boltzmann's constant	1.38 x 10 ⁻²³	J/K	-	
Т	Absolute temperature	310	K	-	
Q	Elementary charge	1.6002 x 10 ⁻¹⁹	C	-	
Z _K	Valency of K ⁺	1	-	-	
Z _{Na}	Valency of Na ⁺	1	-	-	
Z _{Ca}	Valency of Ca ²⁺	2	-	-	
Neuronal parameters					

Parameter	Description	Value	Unit(s)	Source
V _{pre}	Presynaptic membrane	-70	mV	-
	potential	-70		
Vnost	Postsynaptic membrane	-70	mV	_
- post	potential			
C _m	Membrane capacitance	0.01	F/m ²	1
$g_{vgnc,pre}$	Maximal Na ⁺ conductance	120	mS/cm ²	1
E _{Na}	Na ⁺ equilibrium potential	45	mV	Adapted from ¹
$g_{vgkc,pre}$	Maximal K ⁺ conductance	36	mS/cm ²	1
E _K	K ⁺ equilibrium potential	-82	mV	Adapted from ¹
$g_{vgcc,pre}$	Maximal Ca ²⁺ conductance	0.1	mS/cm ²	Adapted from ²
E _{Ca}	Ca ²⁺ equilibrium potential	$\frac{RT}{z_{ca}F}ln\frac{[Ca^{2+}]_{ecs}}{[Ca^{2+}]_{pre}}$	V	-
g _{l,pre}	Maximal leak conductance	0.3	mS/cm ²	1
El	Leak equilibrium potential	-59	mV	Adapted from ¹
V _{max}	Maximal PMCA velocity	0.2 x 10 ⁻⁶	mol/m ² s	3
I pmca	Maximal PMCA current	V _{max} F	A/m ²	3
K _{Ca,pre}	PMCA Ca ²⁺ affinity	0.2	μΜ	3
P _{max}	Maximal NKA velocity	1.12 x 10 ⁻²	mol/m ² s	4
\overline{I}_{nka}	Maximal NKA current	P _{max} F	A/m ²	4
K _{Na,pre/post}	NKA Na ⁺ affinity	10	mM	14
K _{K,pre/post}	NKA K ⁺ affinity	0.6	mM	14
g_{ampa}	Maximal AMPA conductance	0.18	S/m ²	5
E _{ampa}	AMPA equilibrium potential	0	mV	5
α_{ampa}	AMPA activation rate	1.1 x 10 ⁶	M ⁻¹ s ⁻¹	5
β_{ampa}	AMPA inactivation rate	190	s ⁻¹	5
g_{nmda}	Maximal NMDA conductance	0.26	S/m ²	6
E _{nmda}	NMDA equilibrium potential	0	mV	6
α _{nmda}	NMDA activation rate	7.4 x 10 ⁴	M ⁻¹ s ⁻¹	6
β_{nmda}	NMDA inactivation rate	6.6	s ⁻¹	6
$g_{l,Na,pre}$	Na ⁺ leak conductance	1.4184	S/m ²	Calculated
g _{l,K,pre}	K ⁺ leak conductance	7.6113	S/m ²	Calculated
g _{l,Ca,pre}	Ca ²⁺ leak conductance	0.0186	S/m ²	Calculated
g _{l,Na,post}	Na ⁺ leak conductance	1.4184	S/m ²	Calculated
g _{l,K,post}	K ⁺ leak conductance	7.6113	S/m ²	Calculated
g _{l,Ca,post}	Ca ²⁺ leak conductance	0.0186	S/m ²	Calculated
Astrocytic parameters				

Parameter	Description	Value	Unit(s)	Source	
V _{psc}	Membrane potential	-80.7	mV	10	
V _{eaat}	Maximal EAAT velocity	3 x 10 ⁻⁶	mol/m ² s	11	
eff _{eaat}	Average EAAT efficiency	0.5	-	12	
Īeaat	Maximal EAAT current	$V_{eaat} eff_{eaat} F$	A/m ²	-	
K _{eaat}	EAAT Glu affinity	20	μΜ	13	
K _{Na,psc}	NKA Na ⁺ affinity	10	mM	14	
K _{K,psc}	NKA K ⁺ affinity	3.6	mM	14	
Ī _{ncx}	Maximal NCX current	1	A/m ²	7	
γ	NCX energy partition	0.5	-	7	
g _{kir}	Maximal K _{ir} 4.1 conductance	144	S/m ²	10	
E _{kir}	K _{ir} 4.1 equilibrium potential	$\frac{RT}{z_K F} ln \frac{[K^+]_{ecs}}{[K^+]_{psc}}$	v	-	
K _{pf}	Poole-Frenkel channel constant	0.018	S/m	9	
φ	Well activation energy	10	J	9	
ε	Dynamic permittivity	$\epsilon_0 \epsilon_r$	-	9	
ϵ_0	Vacuum permittivity	8.85 x 10 ⁻¹²	F/m	9	
ϵ_r	Relative permittivity of brain tissue	0.82	F/m	9	
g _{l,Na,psc}	Na ⁺ leak conductance	2.3771	S/m ²	Calculated	
g _{l,K,psc}	K ⁺ leak conductance	33.0159	S/m ²	Calculated	
gi,Ca,psc	Ca ²⁺ leak conductance	1.6 x 10 ⁻¹¹	S/m ²	Calculated	
Extracellular parameters					
g _{ecs}	Maximal diffusion conductance	1	S/m ²	10	
λ	Conductance scaling factor	10	-	-	
E _{x,ecs}	ECS equilibrium potential	$\frac{RT}{z_x F} ln \frac{[x]_{gecs}}{[x]_{ecs}}$	V	10	
Concentrations					
$[K^+]_{psc}$	Initial K ⁺ in PsC	100	mM	14	
$[K^+]_{ecs}$	Initial K ⁺ in ECS	4	mM	14	
$[K^+]_{pre}$	K ⁺ in Pre	100	mM	14	
$[K^+]_{post}$	K ⁺ in Post	100	mM	14	
$[K^+]_{gecs}$	K ⁺ in GECS	4	mM	14	
$[Na^+]_{psc}$	Initial Na ⁺ in PsC	15	mM	14	
$[Na^+]_{ecs}$	Initial Na ⁺ in ECS	135	mM	14	
[Na ⁺] _{pre}	Na ⁺ in Pre	15	mM	14	

Parameter	Description	Value	Unit(s)	Source	
[Na ⁺] _{post}	Na ⁺ in Post	15	mM	14	
$[Na^+]_{gecs}$	Na ⁺ in GECS	135	mM	14	
$[Ca^{2+}]_{psc}$	Initial Ca ²⁺ in PsC	100	nM	14	
$[Ca^{2+}]_{ecs}$	Initial Ca ²⁺ in ECS	1.5	mM	14	
$[Ca^{2+}]_{pre}$	Initial Ca ²⁺ in Pre	50	nM	14	
$[Ca^{2+}]_{post}$	Ca ²⁺ in Post	50	nM	14	
$[Ca^{2+}]_{gecs}$	Ca ²⁺ in GECS	1.5	mM	14	
Morphology parameters					
Volpsc	PsC volume	0.031416	fL	Calculated	
Vol _{pre}	Pre volume	0.014314	fL	Calculated	
Vol _{post}	Post volume	0.014314	fL	Calculated	
Vol _{ecs,a}	ECS volume (A configuration)	0.001145	fL	Calculated	
Vol _{ecs,b}	ECS volume (B configuration)	0.00786	fL	Calculated	
Vol _{ecs,c}	ECS volume (C configuration)	0.055022	fL	Calculated	
SA _{psc}	PsC surface area	0.23562	μm ²	Calculated	
SA _{pre}	Pre surface area	0.21206	μm ²	Calculated	
SApost	Post surface area	0.21206	μm ²	Calculated	
SA _{ecs}	ECS diffusion surface area	0.015	μm ²	Calculated	
CSA _{lf}	Leaflet cross-sectional area	0.007854	μm ²	Calculated	
l _{lf}	Leaflet length	2	μm	-	

References

- 1. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. *J. Physiol.* **117**, 500–44 (1952).
- 2. Mirzakhalili, E., Epureanu, B. I. & Gourgou, E. A mathematical and computational model of the calcium dynamics in Caenorhabditis elegans ASH sensory neuron. *PLoS One* **13**, e0201302 (2018).
- 3. Keener, J. & Sneyd, J. *Mathematical Physiology*. vol. 8/1 (Springer New York, 2009).
- 4. Gabbiani, F. & Cox, S. J. *Mathematics for Neuroscientists*. *Mathematics for Neuroscientists* (Elsevier, 2010). doi:10.1016/C2009-0-01867-4.
- Destexhe, A. Kinetic Models of Postsynaptic Currents. in *Encyclopedia of Computational Neuroscience* 1–6 (Springer New York, 2014). doi:10.1007/978-1-4614-7320-6_355-1.
- 6. Jahr, C. & Stevens, C. Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. *J. Neurosci.* **10**, 3178–3182 (1990).
- 7. Sterratt, D., Graham, B., Gillies, A. & Willshaw, D. *Principles of Computational Modelling in Neuroscience*. (2011).
- 8. Witthoft, A., Filosa, J. A. & Karniadakis, G. E. Potassium buffering in the neurovascular unit: models and sensitivity analysis. *Biophys. J.* **105**, 2046–54 (2013).
- 9. Breslin, K. *et al.* Potassium and sodium microdomains in thin astroglial processes: A computational model study. *PLOS Comput. Biol.* **14**, e1006151 (2018).
- 10. Wade, J. J. *et al.* Calcium Microdomain Formation at the Perisynaptic Cradle Due to NCX Reversal: A Computational Study. *Front. Cell. Neurosci.* **13**, (2019).
- 11. Marcaggi, P. & Attwell, D. Role of glial amino acid transporters in synaptic transmission and brain energetics. *Glia* **47**, 217–225 (2004).
- Vandenberg, R. J. & Ryan, R. M. Mechanisms of Glutamate Transport. *Physiol. Rev.* 93, 1621–1657 (2013).
- 13. Tzingounis, A. V. & Wadiche, J. I. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. *Nat. Rev. Neurosci.* **8**, 935–947 (2007).
- Verkhratsky, A. & Nedergaard, M. Physiology of Astroglia. *Physiol. Rev.* 98, 239–389 (2018).