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Abstract: Class imbalance is a common problem in real-world applications and usually poses a major challenge to artificial 

intelligent (AI)-based decision models. The present work introduces a novel ensemble decision model which utilizes an 

explainable and fast-growing rule-based system, called extended belief rule base (EBRB) decision model, to alleviate the 

impact of class imbalance, where the proposed ensemble EBRB model includes two core components: a diversity-based base 

EBRB construction scheme and a consistency-based ensemble EBRB inference scheme. Specifically, for the purpose of 

enhancing diversity in the construction scheme, various kinds of oversampling techniques are applied to construct diverse 

base EBRBs firstly, followed by the calculation of attribute weights based on information gain. As for the inference scheme, 

the proposed ensemble EBRB model aims to produce inferential outputs not only integrating the rules activated from all base 

EBRBs, but also taking into consideration the consistency of the activated rules. In experimental study, twenty-six imbalanced 

classification datasets are used to demonstrate the effectiveness of the proposed ensemble EBRB decision model. Results 

demonstrate that the proposed model outperforms conventional EBRB systems and other typical imbalanced classifiers. 

Keywords: Belief rule base; Imbalanced classification; Diversity; Inconsistency; Oversampling 

 

1. Introduction 

Aiming to label unseen data samples, classification tasks have become an important topic in machine learning community 

and play a fundamental role in modern industries and real-world applications. However, for the majority of machine learning 

algorithms, there still exist challenges for knowledge discovery from the datasets with skewed distribution, which are also 

known as imbalanced classification problems. In such problems, one or several classes (minority class) contain little data 

comparing to other classes (majority class), nevertheless, the samples of minority class are often the kernel samples and the 

machine learning algorithms fail to move their decision boundaries closer to the minority class since they were designed to 

minimize the misclassification cost on all training data. This is the reason why imbalanced classification problems poses a 

crucial challenge to artificial intelligent (AI)-based decision systems. 

Imbalanced classification problems are prevalent in practical scenarios, such as defect detection [1], medical diagnosis 

[2], and fraud detection [3]. In the past decades, many attempts have been undertaken to address and solve imbalanced 

classification problems and these attempts can be categorized into: data-level, algorithm-level, and ensemble approaches. 

More details on the attempts can be found in Section 2. Note that the attempts of data-level and algorithm-level approaches 

are based on single classifiers, which may cause a great bias to the minority class and fail to generate a robust prediction result. 

The ensemble approach is becoming more popular and it combines the ensemble learning theorem with existing classifiers 

and oversampling techniques to provide accurate prediction results when handling imbalanced classification problems. 

So far, many kinds of classifiers, such as support vector machine (SVM), artificial neural network (ANN), and k-nearest 

neighbor (KNN), have been applied to propose an ensemble classifier for dealing with imbalanced classification problems. 
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However, all these ensemble classifiers only focused on a desired accuracy for any given imbalanced dataset without taking 

into consideration the explainability of the process that a classifier produces a prediction output from input data. Recently, the 

extended belief rule base (EBRB) decision model [7] was used to propose a boosting-based ensemble EBRB classifier for 

imbalanced classification problems [43], where the EBRB decision model was designed as one integrated data and knowledge 

driven decision model with high interpretability and efficiency. In other words, the EBRB decision model is exactly a ‘white-

box’ model and it can easily interpret the reasons why decision makers make such predictions. 

However, the existing studies of EBRB decision model on imbalanced classification problems show that 1) few attempts 

have been done to develop a powerful classifier based on EBRB decision model for imbalanced classification problems; and 

2) the existing ensemble EBRB classifier failed to consider high-efficiency and components diversity. This creates two 

challenges that must be investigated. The first challenge is how to ensure the components diversity of an ensemble EBRB 

decision model because the base EBRB (component) is directly generated from datasets so that it is hard to achieve the 

diversity of base EBRB. The second challenge is how to ensure the consistency of an ensemble EBRB decision model because 

the consistency among activated rules has notable influence on both minority and majority class accuracies. Considering the 

class overlap tends to be more serious in the context of class imbalance, ensuring consistency is still imperative for the 

ensemble EBRB decision model while distinguishing component outputs instead of maintaining consistency seems to be more 

feasible. 

For the first challenge, the present work initiates a diversity-based base EBRB construction method. Since the diversity 

plays a fundamental role in improving the performance of an ensemble model, generating a diverse base EBRB is essential 

for the construction process of the ensemble EBRB decision model. However, common ensemble methods which were mainly 

designed for parametric models may not be sufficient enough to generate the diverse base EBRBs. To develop a novel method 

for constructing an ensemble EBRB decision model from an imbalanced dataset, in the present work, one random sampling 

technique is firstly utilized to extract several base datasets from original dataset. Various kinds of oversampling techniques 

are then used to rebalance those base datasets. When the base EBRBs are constructed using the base datasets, the information 

gain is used to calculate attribute weights for further improving the diversity of all base EBRBs. 

For the second challenge, a consistency-based ensemble EBRB inference method is proposed to aggregate the rules 

activated from all base EBRBs. In the context of data imbalance, the class overlap must be a more serious problem when an 

ensemble classifier is constructed based on an imbalanced dataset and it has to cause the inconsistency between the activated 

rules. In other words, the immediate cause of hindering the performance of ensemble EBRB decision model is resulted from 

the class overlap. For this reason, a new definition regarding consistency is provided for the first time to effectively measure 

the consistency of the activated rules, and then the consistency is used together with the integrated belief degrees derived from 

all base EBRBs to produce final belief degrees. Owing to the proposed inference method, the ensemble EBRB decision model 

is able to handle imbalanced classification problems in a desired performance. 

On the basis of the above-mentioned solutions for the two challenges, a novel ensemble EBRB decision model can be 

constructed by using the diversity-based base EBRB construction method to construct multiple base EBRBs from a given 

imbalanced dataset and the consistency-based ensemble EBRB inference method to produce an accurate output for any given 

query data. In the case study, four experiments with 26 imbalanced classification datasets are used to verity the effectiveness 

of the proposed ensemble EBRB decision model. Moreover, several ensemble EBRB decision models with different modeling 

setting and commonly used machine learning algorithms are applied to compare the performance of the proposed ensemble 



 

3 

EBRB decision model. 

The novelties and contributions of this present study can be summarized below: 1) the use of multiple data sampling 

methods and information gain to improve the conventional EBRB construction scheme for imbalanced classification problems; 

2) the consideration of the activated rules’ consistency in each base EBRB to improve the conventional EBRB inference 

scheme for imbalanced classification problems; and 3) numerous preliminary conclusions are obtained to clarify the inherent 

features of the proposed ensemble EBRB decision model under imbalanced classification problems 

The remainder of the present study is organized as follows: Section 2 introduces the related work of data imbalance. 

Section 3 gives an overview of the EBRB decision model and its challenges for imbalanced classification; Section 4 proposes 

a novel ensemble EBRB decision model for imbalanced classification; Section 5 provides an experimental study to validate 

the effectiveness of the proposed model. Finally, Section 6 draws conclusions from the study. 

 

2. Related Works on Data Imbalance 

To date, the widely used approaches for imbalanced classification can be segmented into data-level approaches, algorithm 

-level approaches, and ensemble approaches. The detailed reviews of these three categories are provided as follows: 

(1) Data-level approaches. Data-level approaches are mainly based on generating minority class samples or removing 

majority class samples to rebalance data distribution. These two kinds of data processing ways are called oversampling and 

undersampling techniques. Among existing oversampling techniques, synthetic minority oversampling technique (SMOTE) 

[8] is a well-established over-sampling technique and many kinds of variants have been developed for effectively rebalance 

data distribution. For example, Han et al. [6] proposed the borderline-SMOTE, which only oversamples the minority class 

samples near the borderline. Experiments showed that the borderline-SMOTE could achieve better performance than SMOTE 

and random oversampling technique. Afterwards, Bunkhumpornpat et al. [5] proposed the Safe-Level-SMOTE based on the 

idea that the minority class samples along the same line with different safe levels are oversampled. They demonstrated that 

the Safe-Level-SMOTE could have better precision and F-value than SMOTE and Borderline-SMOTE when a decision tree 

is applied as a classifier. He et al. [4] presented the adaptive synthetic (ADASYN) oversampling technique for learning from 

an imbalanced dataset, where the ADASYN not only can generate synthetic data for the minority class, but also is able to shift 

the classifier decision boundary to be more focused on those difficult to learn data samples. Recently, Juez-Gil et al. [44] 

proposed the Approx-SMOTE which is a parallel implementation of the SMOTE under the Apache Spark framework. The 

big data related experiments demonstrated that the Approx-SMOTE is able to achieve up to 30 times faster execution times 

without sacrificing the improved classification performance offered by the original SMOTE. Comparing to oversampling 

techniques, few attentions have been paid to undersampling techniques because it is accompanied by information loss owing 

to removing majority class samples. The representative studies have: Anand et al. [48] proposed an undersampling technique 

targeting the boundary data samples which are always challenging to deal with for any classifiers. Lin et al. [27] proposed a 

clustering-based undersampling technique based on the process that only majority class samples is divided into several clusters 

and the cluster centers or their nearest neighbors is utilized to represent the majority class. 

(2) Algorithm-level approaches. Algorithm-level approaches are mainly based on the modification of some standard 

algorithms to address imbalanced classification problems. This kind of approaches can be categorized into cost-sensitive 

learning (CSL) and algorithmic classifiers modifications. The representative studies of the former includes: Yu et al. [28] 

developed a support vector machine (SVM) decision threshold adjustment algorithm called SVM-OTHR. This method first 
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generated several new hyperplane positions for the misclassified minority class samples and then exhaustively searched for 

the best position; Zhang et al. [29] combined the oversampling techniques with CSL to address imbalanced datasets, where 

the higher-cost minority samples is replicated according to the given cost matrices to balance the distribution of minority class. 

Due to that the large margin distribution machine (LDM) failed to handle imbalanced datasets, a cost-sensitive LDM (CS-

LDM) was proposed in [30] to improve the detection rate of minority class. The main idea is to increase the margin weight of 

the minority class in the margin mean and the misclassification penalty of the minority class to let the minority class has a 

larger margin to the separator. For the algorithmic classifiers’ modifications, Zhang et al. [31] proposed a scaling kernel-based 

SVM to deal with multi-class imbalanced data classification problems. Specifically, the proposed method first used SVM to 

gain an approximate hyperplane. Then, a scaling kernel function was presented and the parameters are calculated using the 

chi-square test and weighting factors. Kim et al. [32] proposed a modified weight-k-nearest neighbor classifier called α-wkNN, 

where the α-wkNN should learn an optimized α value to be decision threshold from imbalanced datasets. Later, a novel 

support vector data description (SVDD) model [33] was proposed by combining binary tree (BT) to handle imbalanced multi-

classification problems. 

(3) Ensemble approaches. Ensemble approaches are mainly based on ensemble learning theorem to handle imbalanced 

datasets and have gained popularity in recent years. Since the ensemble approaches aim to provide a framework of 

constructing classifiers for imbalanced datasets, the algorithm-level and/or data-level approaches should be used together [47]. 

For the algorithm-level-based ensemble approaches, Sun et al. [34] developed three different cost items to update the weight 

of AdaBoost for imbalanced datasets. Experimental results showed that the proposed ensemble classifiers increased more 

weights on misclassified minority samples and less on majority samples; Ali et al. [35] presented a cost-sensitive ensemble 

model called Can-CSC-GBE for a breast cancer dataset by incorporating CSL with GentleBoost, AdaBoostM1, and Bagging. 

They demonstrated that the cost of misclassifying a cancer patient as non-cancer equals to the imbalance ratio. Afterwards, a 

more advanced cost-sensitive ensemble classifier tried to learn from imbalanced datasets without a prior cost was proposed 

in [36]. In this study, the imbalanced classification problem was reformulated into a partial ranking problem that learned a 

non-parametric scoring function to maximize the difference between the majority and minority classes. Comparing to 

algorithm-level-based ensemble approaches, data-level-based ensemble approaches are more common and general in the 

previous studies. For example, Barandela et al. [37] proposed UnderBagging based on the way of randomly undersampling 

the majority class samples in each iteration of the Bagging algorithm while all minority class samples are kept. Wang and Yao 

[39] used SMOTE in each iteration of the Bagging algorithm to propose SMOTEBagging, where the size of oversampled 

dataset is two times that of original majority class. The first half is the bootstrapped replica of majority examples, whereas 

the second half is obtained by SMOTE or random oversampling depending on the oversampling rate; Later, Chawla et al. [40] 

utilized SMOTE to generate synthetic minority class data for proposing a new data-level-based ensemble approach called 

SMOTEBoost. The other representative data-level-based ensemble approaches include EasyEnsembles [38], ECO-Ensemble 

[41] and DPHS-MDS [42]. Recently, the EBRB decision model, which has been widely used to handle classification problems 

and demonstrated its explainability, efficiency, and accuracy over other traditional classifiers [10-23], was introduced to 

propose a boosting-based ensemble EBRB classifier for dealing with imbalanced datasets [43]. Experiments showed that the 

proposed EBRB classifier significantly improves F-value compared to other imbalanced classification algorithms. 

It can be found from the above-mentioned related works on data imbalance that the ensemble approaches are more 

advanced and popular approaches. As the latest and representative study of the ensemble approaches, the boosting-based 
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ensemble EBRB decision model showed its potential over other ensemble classifiers. However, this kind of EBRB decision 

model is a low-efficiency classifier because it must include an iterative training process to determine the values of parameters. 

Besides, it failed to distinguish the reliability of each component of the boosting-based EBRB classifier. Hence, in order to 

make full use of EBRB decision model, it is desirable to develop a novel ensemble classifier based on EBRB decision model 

for handling imbalanced classification problems. 

 

3. EBRB Decision Model for Classification Problems: Overview and Challenges 

In this section, an overview of the EBRB decision model is outlined. After that, the challenges are summarized for the 

EBRB decision model for handling imbalanced classification problems. 

3.1. Basics of Extended Belief Rule Base (EBRB) 

As the rule base of an EBRB decision model, EBRB contains M antecedent attributes Ui (i=1,…, M) with Ji reference 

values Ai, j (j=1,…, Ji) and one consequent attribute D having N consequents Dn (n=1,…, N). Consequently, the kth (k=1,…, 

L) extended belief rule in EBRB can be represented as:  

           (1) 

where  and  denote the belief degree of reference value Ai, j and consequent Dn in the 

kth rule, respectively. In addition, θk denotes the weight of the kth rule and δi denotes the weight of the ith antecedent attribute. 

From Eq. (1), it is worth noting that the extended belief rule is a flexible and advanced rule representation scheme because 

of the belief structure, which reflects that the kth rule is considered to be incomplete when  or , 

and it is considered to be complete when  and . 

In an EBRB decision model, the construction of an EBRB for classification problems includes the three steps below: 

Step 1: To initialize basic parameters. According to prior knowledge, the value of the basic parameters, including M 

attribute weights δi (i=1,…, M),  utility values u(Ai, j) (j=1,…, Ji) related to M antecedent attributes, and N classes 

related to N consequents Dn (n=1,…, N) in the consequent attribute. 

Step 2: To generate belief distributions. Suppose that there are L historical input-output data pairs <xk, yk> (k=1,…, L), 

where xk=(xk,1,…, xk, M) denotes the kth input vector and xk, i is the kth input data on the ith antecedent attribute, yk denotes the 

kth output data on the consequent attribute. By utilizing the utility-based transformation technique[39], these L historical data 

pairs are converted into belief distributions, in which the belief distribution of the ith antecedent attribute is as follows: 

                             (2) 

where 

              (3) 

                          (4) 

The belief distribution of the consequent attribute can be obtained by: 

                             (5) 
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                                  (6) 

Step 3: To calculate rule weights. After obtaining L×(M+1) belief distributions from the L historical input-output data 

pairs, all these belief distributions can form L extended belief rules, where the weight of the kth (k=1,…, L) extended belief 

rule is calculated by 

                                    (7) 

where Incons(Rk) denotes the inconsistency degree between the kth rule to others and it is calculated by 

                  (8) 

where SRA(Rl, Rk) and SRC(Rl, Rk) denote the similarity of rule similarity (SRA) and rule consequent (SRC), and they are 

calculated by: 

                 (9) 

                   (10) 

 

3.2. Inference scheme for EBRB decision model 

After the construction of EBRB, the EBRB decision model can produce an inferential class to reply any given input data 

based on the rule-based inference procedure below: 

Step 1: To calculate individual matching degrees. Suppose that the new input vector is x=(x1,…, xM), each input data xi 

(i=1,…, M) in x should be transformed into the following belief distribution based on Eq. (3) and Eq. (4): 

                              (11) 

Then, the individual matching degree of the kth rule on the ith antecedent attribute can be calculated by: 

                (12) 

where λ denotes the activation factor [17];  denotes Euclidean distance between two belief distributions. Note that, to 

ensure the range of individual matching degree being in [0, 1], Eq. (12) includes an additional normalization compared to the 

calculation of individual matching degrees detailed in [17].  

Step 2: To calculate activation weights. Based on rule weights θk, attribute weights δi, and individual matching degree 

Sk(xi, Ui), the activation weight of the kth rule, denoted as wk, can be calculated by: 

                         (13) 

Step 3: To integrate activated rules. The distributed inferential output to reply the given input data x can be obtained by 

integrating all activated rules, whose activation weights are greater than 0, using the Evidence Reasoning for Classification 

(ER-C) algorithm [40] below: 
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The inferential class of the input data x can be calculated by: 

                             (15) 

 

3.3. Challenges of EBRB decision model for imbalanced classification 

One of reasons why a classifier rarely performs well on imbalanced classification problems is that the boundary of the 

classifier has to move closer to minority class due to the sightless guidance of obtaining higher accuracy on entire data. This 

issue can be also found in the EBRB decision model, thus the following challenges should be discussed and addressed when 

an ensemble approach is used to improve the EBRB decision model for handling imbalanced classification problems. 

Challenge 1: The diversity of base EBRBs under imbalanced classification problems. 

Data sampling-based ensemble classifiers have demonstrated the great potential in handling imbalanced classification 

problems. As mentioned in [9], the diversity of base classifiers plays a fundamental role in improving the performance of 

ensemble classifiers. However, the diversity of the EBRB-based ensemble classifier is typically challenging to be achieved 

under the framework of data sampling. This is because the construction of EBRB is dependent on training data, namely the 

diversity of training data has a significant influence on the diversity of EBRB, leading to the dilemma that the diversity loss 

of the base EBRB has to be aggravated due to the unbalance of datasets. Hence, in the present work, the first challenge is to 

propose an effective data sampling method for constructing diverse base EBRBs, so all these base EBRBs can be integrated 

to develop an accurate ensemble EBRB decision model for imbalanced classification problems. 

Challenge 2: The consistency of ensemble EBRB inference under imbalanced classification problems. 

The inference core of the EBRB decision model is to activate the similar rules comparing to the given input and integrate 

these activated rules for producing an inferential output. Thus, the consistency of activated rules has notable influence on the 

accuracy of the EBRB decision model. Owing to the fact that an ensemble EBRB decision model consists of multiple base 

EBRBs, keeping consistency of the activated rules in the ensemble EBRB decision model become more complex because the 

consistency of the activated rules obtained from all base EBRBs has to be considered simultaneously. In addition, the overlap 

region of data can easily weaken the performance of the EBRB decision model, especially for the imbalanced classification 

problems, because the data with majority class are usually the dominate data in overlap region, which makes that the rules 

generated from the data with minority class are regarded as disturbance to decrease the consistency of the activated rules, 

finally resulting in the low accuracy of the data with minority class. 

For the above-mentioned challenges, it is clear from the related works shown in Section 2 that existing studies still cannot 

properly construct an ensemble EBRB decision model for imbalanced classification problems, because all these attempts fail 

to meet the requirement of the two challenges. Thus, in this study, a new ensemble EBRB decision model for imbalanced 

classification problems is developed to overcome the two challenges. 

4. Ensemble EBRB Decision Model for Imbalanced Classification Problems 

In order to overcome the two challenges discussed in Section 3.3, a novel ensemble classifier is proposed based on the 

EBRB decision model for handling imbalanced classification problems in Sections 4.1 to 4.3. 

4.1. Framework of ensemble EBRB decision model 

In this section, an ensemble EBRB decision model is proposed for imbalanced classification problems and it consists of 

two core components: diversity-based base EBRB construction and consistency-based ensemble EBRB inference. Fig. 1 

shows the basic framework of the ensemble EBRB decision model. 

}{maxarg,)( ,...,1 tNtn nDf b===x



 

8 

 
Fig. 1. Framework of ensemble EBRB decision model for imbalanced classification 

From Fig. 1, the steps of the ensemble EBRB decision model for imbalanced classification are provided as follows: 

Step 1: Diversity-based base EBRB construction. For handling imbalanced classification problems, diverse data 

sampling methods are necessary and important approaches to construct base classifiers in the aim of enhancing the diversity 

among base classifiers and eliminating the unbalance of datasets. Hence, the random data sampling and oversampling methods 

detailed in Section 4.2 are used together to improve the traditional EBRB construction process. Moreover, the attribute weights 

of each base EBRB are calculated based on information gain to further enhance the diversity of base EBRBs. 

Step 2: Consistency-based ensemble EBRB inference. After constructing multiple base EBRBs based on Step 1, all of 

these base EBRBs should be used together to classify any given input data. As each base EBRB is an independent unit in the 

ensemble EBRB decision model, the consistency of the activated rules in each base EBRB should be measured independently. 

Afterwards, the consistency-based integrated belief degree is defined to take into consideration the consistency of all base 

EBRBs for producing an accurate inferential output. The details of this step can be found in Section 4.3. 

 

4.2. Diversity-based base EBRB construction 

As mentioned, it is meaningful and imperative to develop an ensemble EBRB decision model from an imbalanced dataset. 

Considering data sampling-based ensemble classifiers were widely used in previous studies with high efficiency for 

imbalanced classification problems, in this section, a random data sampling method together with different kinds of data 

oversampling methods are introduced to construct diverse base EBRBs based on traditional EBRB construction process shown 

in Section 3.1. Afterwards, in order to further enhance the diversity of the base EBRBs, all these base EBRBs are assigned to 

have different attribute weights based on the information gain which indicates how much information an antecedent attribute 

reflects about the final output. Such that, the attribute weight is calculated by subtracting the entropy of a particular attribute 

inside the dataset from the entropy of the whole dataset, where the entropy is the degree of disorder or randomness indicating 

how impure or uncertain the data in the set is. The process of diversity-based base EBRB construction is shown in Fig. 2. 
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Fig. 2. The proposed diversity-based base EBRB construction process 

According to Fig. 2, the base EBRB can be constructed by the following steps: 

Step 1: To generate S sub-datasets from imbalanced classification dataset. Suppose that an imbalanced dataset has T data 

with M inputs Ui (i=1,…, M) and one output D, denoted as (xt, yt) and xt= (xt,1,…, xt,M). A total of S sub-datasets, denoted as 

SDs (s=1,…, S), can be generated according to the following pseudocode and the size of SDs is assumed as L: 

Pseudocode 1: generation of S base datasets from original dataset 

01 

02 

03 

04 

05 

06 

07 

08 

09 

For s = 1 to S do 

  Initialize the sth base dataset SDs ={} 

  For k = 1 to T do 

Select a data (xl, yl) from {(xt, yt); t=1, …, T} by random way 

If (xl, yl) is not in SDs do 

SDs = SDsÈ{(xl, yl)} 

End if  

  End for 

End for 

Step 2: To balance the number of data for minority class based on data oversampling methods. For the sth sub-dataset 

SDs obtained from Step 1, suppose that the number of data of minority class and majority class is Lmin and Lmaj, respectively. 

Thus, the total number of new data generated by one data oversampling method for minority class is Lnew=Lmaj-Lmin. Here, it 

is worth noting that different kinds of data oversampling methods should be used to balance the data distribution of SDs, so 

the oversampled SDs has enough diversity to ensure the performance of ensemble EBRB decision model. 

Step 3: To calculate belief distributions and rule weights. For the sth sub-dataset SDs obtained from Step 2, each input 

and output data pair (xk, yk) ((xk, yk)ÎSDs) is used to generate an extended belief rule for the sth base EBRB by the following 

pseudocode: 

Pseudocode 2: generation of belief distributions and rule weights 

01 

02 

03 

04 

05 

06 

For each (xk, yk) in SDs do 

For each xk,i in xk do 

Calculate  based on Eqs. (3) and (4) 

End for 

Calculate  based on Eq. (6). 

Calculate qk from S(xk,i) and S(yk) based on Eqs. (7) to (10) 

Imbalanced binary dataset

1st imbalanced 
sub-dataset

sth imbalanced 
sub-dataset

Sth imbalanced 
sub-dataset

Random data sampling 
method

Data oversampling methods

Data with majority class
in the sth sub-dataset

Data with minority class
in the sth sub-dataset

1st balanced 
sub-dataset

sth balanced 
sub-dataset

Sth balanced 
sub-dataset

Rule generation based on traditional EBRB construction

1st base EBRB sth base EBRB Sth base EBRB

Information gain-based attribute weight calculation
(xt, yt)

SD1

(xl, yl) (xl, yl)(xl, yl)

SDs SDS

min
sSDmaj

sSD

maj
sSD min

sSD

SDsSD1 SDS

SD1 SDs SDS
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Form the kth extended belief rule Rk using qk, S(xk,i), and S(yk) 

End for 

Step 4: To calculate attribute weights. For the sth base EBRB obtained from Step 3, the weight of each attribute is 

calculated using the sth sub-dataset SDs obtained from Step 2 and the following steps:  

Step 4.1: To calculate information entropy. The information entropy of BDs is calculated by 

                            (16) 

where pmin and pmaj denote the proportion of minority and majority class data, and they are calculated by 

                            (17) 

Step 4.2: To calculate information gain. Suppose that there are Ji reference values Ai, j (j=1,…, Ji) for the ith (i=1,…, M) 

antecedent attribute Ui. The information gain of Ui is calculated by 

                        (18) 

where  denotes the subset of the input-output data pair (xk, yk) ((xk, yk)ÎSDs) whose corresponding belief distribution 

 satisfying (t=1, …, Ji), namely 

                       (19) 

Step 4.3: To calculate attribute weights. The weight δi of the ith antecedent attribute is calculated by 

                             (20) 

In order to show the diversity of the base EBRBs, a benchmark binary imbalanced dataset, named new-thyroid-1 [24] 

containing 35 positive and 180 negative samples with 5 features T3resin, Thyroxin, Triiodothyronine, Thyroid stimulating, 

and TSH value, is used to perform a case study with three kinds of data oversampling methods, including ADASYN [6], 

Borderline-SMOTE[5], and Safe-Level-SMOTE[4]. The Kohavi-Wolpert variance (KWV)[45, 46] is used to evaluate the 

difference of the inferential outputs of all base EBRBs in the ensemble EBRB decision model within the range [0, 0.25], and 

0 denotes the lowest diversity of the ensemble model because all base EBRBs have the same inferential output; 0.25 denotes 

the highest deversity of the ensemble model when half of all base EBRBs have the same inferential output. The results are 

shown in Table 1 when considering different options to generate 30 base EBRBs for an ensemble EBRB decision model. 

Table 1. Descriptions of ensemble EBRB decision model with different construction options 

Ensemble EBRB 

decision model 
Step 1   

Step 2 
Step 3 Step 4 KWV 

ADASYN Borderline-SMOTE Safe-Level-SMOTE 

Option 1 √ × × × √ × 0.0044 

Option 2 √ × × × √ √ 0.0047 

Option 3 √ × √ × √ × 0.0080 

Option 4 √ √ × × √ × 0.0173 

Option 5 √ × × √ √ × 0.0196 

Option 6 √ √ √ √ √ √ 0.0438 
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As shown in Table 1, the ensemble EBRB decision model constructed by option 1 has the lowest KWV, which means 

that the predictions based on different base EBRBs are almost the same to each other. When the attribute weight calculation 

method detailed in Step 4 is considered, the corresponding KWV increases. Moreover, by considering Safe-Level SMOTE[5], 

Borderline-SMOTE [6], and ADASYN [4] to balance the imbalanced base datasets, the KWV continues to increase comparing 

to options 1 and 2. For the option 6, which includes the entire steps, the KWV is much greater than other options, even ten 

times of option 1. Therefore, it is clear that the proposed diversity-based base EBRB construction can effectively enhance the 

diversity of the ensemble EBRB decision model. 

 

4.3. Consistency-based ensemble EBRB inference 

From the previous studies on EBRB decision model [25], the consistency among activated rules is a crucial influence to 

weaken the classification accuracy of an EBRB decision model. Hence, the consistency is taken into consideration in the 

inference result of EBRB decision model. Specifically, the inference result obtained from the sth base EBRB is regarded as 

an unreliable result when the set of activated rules from the sth base EBRB has a low consistency. From this viewpoint, a new 

definition for the consistency of activated rules is given as follows: 

Definition 1 (Consistency of activated rules). Suppose that ARs is the set of activated rules for the sth base EBRB, Dn is 

the nth (n=1, ..., N) consequent of the consequent attribute and βn,k is the belief degree of the kth activated rule on the nth 

consequent. The consistency of activated rules ARs is defined as: 

                               (24) 

where Cn is given by:  

                             (25) 

Taking a binary classification problem with two classes {D1, D2} for example, suppose the number of activated rules ARs 

having the maximum belief degree on D1 and D2 is 8 and 2, namely |ARs|=10, C1=8 and C2=2, the consistency of activate rules 

ARs is therefore calculated by C(ARs)=8/10=0.8. 

Definition 2 (Consistency-based integrated belief degree). Based on Definition 1, when the integrated belief degree of 

the sth base EBRB to reply the input data x is assumed to be  (n=1,…, N) obtained from Eq. (14), the consistency- based 

integrated belief degree of S base EBRBs can be calculated by: 

                               (26) 

On the basis of Definition 1 and Definition 2, the specific procedure of consistency-based ensemble EBRB inference is 

shown in Fig. 4 and the following pseudocode when S base EBRBs Φs (s=1,…, S) obtained from Section 4.1 are used to reply 

the given input data x. 

Pseudocode 3: Consistency-based ensemble EBRB inference 

01 

02 

03 

04 

For each base EBRB Φs in {Φs; s=1,…, S} do 

  ARs={} 

  For each rule Rk in base EBRBΦs do 

    Calculate activation weight wk based on Eqs. (11) to (13). 
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05 

06 

07 

08 

09 

10 

11 

12 

13 

    If wk > 0 then  

      ARs = ARs∪Rk 

    End if 

  End for 

  Calculate the consistency C(ARs) based on ARs and Definition 1 

  Calculate integrated belief degrees {(Dn, ); n=1, …, N} based on ARs and Eq. (14) 

End for 

Calculate consistency-based integrated belief degrees  based on C(ARs), , and Definition 2. 

Produce an inference output f(x)to reply input data x based on Eq. (15) 

For the earlier mentioned ensemble EBRB inference method, it is worth noting that the class overlap problem tends to 

be more serious in the context of data imbalance and this is the direct reason of decreasing the accuracy of EBRB decision 

model. By measuring the consistency of the activated rules derived from each base EBRB, it is helpful to distinguish the 

unreliable prediction outputs caused by inconsistent activated rules. Furthermore, by integrating these consistencies in the 

ensemble EBRB decision model, it is helpful to improve the accuracy in both majority class and minority class. 

 
Fig.4. The proposed consistency-based ensemble EBRB inference process 

 

5. Experimental study 

In this section, an experimental study is performed according to the following aspects: Section 5.1 shows datasets and 

experimental settings; Section 5.2 compares ensemble and traditional EBRB decision models; Sections 5.3 and 5.4 analyze 

the function of data oversampling and attribute weight calculation on the ensemble EBRB decision model; and Section 5.5 

provides comparative analysis for conventional classifiers. 

5.1. Datasets and experimental settings 

Twenty-six imbalanced classification datasets are utilized as benchmark datasets to evaluate the performance of the 

proposed ensemble EBRB decision model and all these datasets are obtained from the KEEL repository [24]. Table 2 provides 

the main characteristics of these 26 datasets, including the number of data (#Data) within the range [215, 1484], the number 

of attributes (#Attr) within the range [5, 18], and the imbalance ratio (#IR) within the range [1.86, 41.4]. 
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Table 2. 26 imbalanced classification datasets 
No Datasets Abbreviation #Data #Attr #IR No Datasets Abbreviation #Data #Attr #IR 

1 Ecoli1 Eco-1 336 7 1.86 14 Yeast4  Yea-3 1484 8 28.1 

2 Ecoli2 Eco-2 336 7 5.46 15 Yeast6 Yea-4 1484 8 41.4 

3 Ecoli3 Eco-3 336 7 8.60 16 Yeast1vs7 Yea-5 459 7 14.3 

4 Ecoli4 Eco-4 336 7 15.80 17 Yeast2vs4 Yea-6 514 8 9.08 

5 Ecoli0146vs5 Eco-5 280 6 13 18 Yeast2vs8 Yea-7 482 8 23.1 

6 Ecoli01vs235 Eco-6 244 7 9.17 19 Yeast0359vs78 Yea-8 506 8 9.12 

7 Ecoli01vs5 Eco-7 240 6 11 20 Yeast0256vs3789 Yea-9 1004 8 9.14 

8 Ecoli0147vs56 Eco-8 332 6 12.28 21 Yeast02579vs368 Yea-10 1004 8 9.14 

9 Ecoli0234vs5 Eco-9 202 7 9.1 22 Vehicle1 Veh-1 846 18 2.9 

10 Ecoli0267vs35 Eco-10 224 7 9.18 23 Vehicle3 Veh-2 846 18 2.99 

11 Ecoli0347vs56 Eco-11 257 7 9.28 24 New-thyroid-1 New-1 215 5 5.14 

12 Yeast1 Yea-1 1484 8 2.46 25 New-thyroid-2 New-2 215 5 5.14 

13 Yeast3 Yea-2 1484 8 28.1 26 Pima Pim 768 8 1.87 

To develop comparison in multiple aspects and diminish randomness, 5×5-fold cross-validation (5×5-CV) is used to 

generate training datasets and testing datasets. The corresponding experimental results are evaluated by using the following 

F1 score and G-mean [35] in the form of ‘‘average ± standard deviation”:  

                                     (28) 

                                    (29) 

where F1 denotes the hybrid indicator of the recall and precision of a classifier; G-mean denotes the geometric means of the 

accuracy of a classifier for minority and majority classes. The corresponding formulas of recall, precision, and the accuracy 

of minority and majority classes are as follows 

                                        (30) 

                                         (31) 

                                         (32) 

where TP, FN, FP, TN are the four indicators obtained from a confusion matrix, as shown in Table 2. 

Table 3. Confusion matrix under imbalanced classification problems 

Classes Predictive minority class Predictive majority class 

Actual minority class TP FN 

Actual majority class FP TN 

Moreover, the following options are considered to construct different variants of the EBRB decision model for the 

purpose of performance comparison: 

(1) For the process of constructing EBRB, there are four kinds of options: none of data oversampling method is used to 

balance imbalanced datasets, denoted as Cnone, and the use of ADASYN [6], Borderline-SMOTE[5], and Safe-Level-SMOTE 

[4] techniques, denoted as CADAS, CBORD, and CSAFE, to balance imbalanced datasets, respectively; Noting that all the three data 

oversampling techniques are used to generate diverse base EBRBs for the ensemble EBRB decision model. 
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(2) For the process of ensemble inference, an average-based integrated belief degree is defined to produce the final output 

of the ensemble EBRB decision model, denoted as Iavg, where the average-based integrated belief degree is written as follows:  

                                       (33) 

Additionally, for the construction of ensemble and traditional EBRB decision models, the parameter configuation is 

defined as follows: 1) the number of reference values for each antecedent attribute is set as 5 and the number of consequents 

is equal to the number of classes; 2) the activation factor λ in Eq. (12) is set as 1; 3) the attribute weights used in traditional 

EBRB decision model are all defined as 1; and 4) the ensemble EBRB decision model is defined to have 30 base EBRBs, 

which means that CADAS, CBORD, and CSAFE are evenly used to generate 10 base EBRBs. 

5.2. Comparison of ensemble and traditional EBRB decision model 

In this subsection, the proposed ensemble EBRB decision model is evaluated against the EBRB decision models 

equipped with the four options detailed in Section 5.1. Tables 4 and 5 show the experimental results of 26 imbalanced datasets 

in the terms of F1 score and G-mean. 

Table 4. Comparison of average F1 score for traditional and ensemble EBRB decision models 

Dataset  
Traditional EBRB decision model Ensemble EBRB 

decision model Cnone CADAS CBORD CSAFE 
Eco-1 84.17±0.00(1) 76.21±0.71(5) 76.52±0.29(4) 79.13±0.52(2) 77.23±0.29(3) 
Eco-2 86.84±0.00(2) 63.32±0.16(5) 74.67±0.38(4) 87.50±0.80(1) 77.21±0.35(3) 
Eco-3 60.94±0.00(4) 55.68±0.33(5) 63.39±0.24(3) 70.04±1.28(1) 64.06±0.27(2) 
Eco-4 79.76±0.00(3) 45.75±0.94(5) 64.05±1.03(4) 83.91±2.31(1) 82.11±0.00(2) 
Eco-5 79.81±0.00(2.5) 65.05±1.09(5) 74.33±1.33(4) 79.81±0.00(2.5) 83.20±0.85(1) 
Eco-6 74.51±0.00(3) 55.34±1.40(3) 71.18±2.10(4) 75.35±1.33(2) 80.94±0.89(1) 
Eco-7 75.78±0.00(2) 64.40±1.38(5) 66.91±0.00(4) 74.78±0.82(3) 81.83±0.71(1) 
Eco-8 79.84±0.00(1) 54.72±1.73(5) 66.35±0.06(4) 77.71±1.23(2) 72.85±1.45(3) 
Eco-9 78.57±0.00(2) 62.12±2.27(5) 69.19±1.05(4) 77.24±1.09(3) 80.63±1.46(1) 
Eco-10 71.00±0.00(3) 54.75±1.16(5) 64.47±1.00(4) 74.68±0.58(2) 76.43±1.76(1) 
Eco-11 78.36±0.00(1) 51.39±0.44(5) 66.65±0.63(4) 76.63±0.44(3) 76.81±1.18(2) 
Yea-1 33.09±0.00(5) 56.51±0.22(4) 57.01±0.25(3) 57.11±0.44(2) 57.30±0.20(1) 
Yea-2 18.29±0.00(5) 49.95±0.14(4) 51.91±0.00(3) 65.77±0.58(2) 69.94±0.32(1) 
Yea-3 16.41±0.00(5) 26.67±0.12(4) 33.25±0.41(2) 29.21±1.01(3) 39.91±0.81(1) 
Yea-4 37.48±0.00(2) 21.29±0.15(5) 29.94±0.07(4) 52.24±1.00(1) 36.71±0.39(3) 
Yea-5 22.86±0.00(4) 21.12±0.28(5) 27.29±0.59(3) 29.84±3.05(2) 45.72±2.13(1) 
Yea-6 64.60±0.00(4) 61.54±0.87(5) 71.67±0.48(3) 74.87±0.73(2) 77.25±0.81(1) 
Yea-7 63.81±0.00(2.5) 16.82±0.26(5) 37.60±0.65(4) 63.81±0.00(2.5) 65.15±0.67(1) 
Yea-8 82.82±0.00(1) 44.89±0.21(5) 64.49±0.37(4) 80.85±0.29(2) 78.16±0.62(3) 
Yea-9 55.63±0.00(3) 37.03±0.75(5) 49.95±0.35(4) 60.75±1.03(2) 60.88±0.60(1) 
Yea-10 33.13±0.00(4) 33.39±0.86(3) 30.53±0.41(5) 35.51±1.69(2) 40.91±1.76(1) 
Veh-1 40.51±0.00(5) 53.44±1.35(1) 52.89±0.65(3) 49.43±1.51(4) 52.90±0.73(2) 
Veh-2 42.89±0.00(5) 53.94±1.09(2) 54.47±0.31(3) 52.12±0.82(4) 55.29±0.61(1) 
New-1 76.64±0.00(5) 81.25±0.67(4) 88.54±0.90(2) 86.78±0.85(3) 91.63±1.71(1) 
New-2 78.34±0.00(5) 81.12±0.64(4) 86.55±0.69(3) 88.04±0.85(2) 90.31±1.04(1) 

Pim 53.85±0.00(5) 62.54±0.23(3) 60.15±0.67(4) 63.41±0.41(1) 63.21±0.37(2) 
Average rank 3.27 4.31 3.58 2.19 1.58 
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Table 5. Comparison of average G-mean for traditional and ensemble EBRB decision models 

Dataset  
Traditional EBRB decision model  Ensemble EBRB 

decision model Cnone CADAS  CBORD  CSAFE 
Eco-1 88.63±0.00(2) 88.41±0.48(4) 87.79±0.10(5) 88.77±0.39(1) 88.49±0.17(3) 
Eco-2 92.79±0.00(2) 86.52±0.10(5) 91.06±0.12(4) 94.42±0.19(1) 91.85±0.08(3) 
Eco-3 71.70±0.00(5) 87.39±0.11(4) 89.72±0.07(2) 88.45±0.78(3) 89.89±0.07(1) 
Eco-4 83.29±0.00(5) 88.22±0.26(4) 91.76±0.13(3) 91.94±1.44(2) 93.75±0.00(1) 
Eco-5 85.22±0.00(4.5) 88.08±1.03(2) 86.87±1.24(3) 85.22±0.00(4.5) 90.83±0.09(1) 
Eco-6 82.82±0.00(4) 82.49±0.89(5) 86.23±1.98(2) 84.34±0.88(3) 90.70±0.19(1) 
Eco-7 84.00±0.00(3) 85.51±0.31(2) 82.73±0.00(5) 83.88±0.10(4) 90.93±0.10(1) 
Eco-8 88.42±0.00(2) 86.26±1.11(5) 90.54±0.00(1) 88.23±0.11(3) 87.70±0.15(4) 
Eco-9 85.01±0.00(3) 85.51±1.96(2) 83.72±0.12(5) 84.84±0.14(4) 90.13±0.24(1) 
Eco-10 78.35±0.00(5) 81.23±0.99(3) 80.86±0.19(4) 82.62±0.09(2) 85.58±1.51(1) 
Eco-11 87.47±0.00(2) 83.51±0.17(5) 86.88±0.20(4) 87.22±0.06(3) 87.95±1.04(1) 
Yea-1 45.62±0.00(5) 66.74±0.22(4) 68.94±0.24(1) 69.54±0.44(3) 69.71±0.16(2) 
Yea-2 31.07±0.00(5) 86.08±0.07(3) 86.24±0.02(2) 73.37±0.38(4) 92.50±0.14(1) 
Yea-3 27.59±0.00(5) 84.75±0.06(1) 84.37±0.43(2) 42.85±0.96(4) 81.06±0.46(3) 
Yea-4 51.87±0.00(5) 86.13±0.07(3) 89.21±0.02(1) 69.30±0.87(4) 86.17±0.75(2) 
Yea-5 32.66±0.00(5) 67.23±0.31(1) 64.89±0.84(2) 40.42±2.39(4) 62.25±1.77(3) 
Yea-6 72.94±0.00(5) 89.41±0.53(1) 89.03±0.08(2) 82.77±0.57(4) 85.27±0.09(3) 
Yea-7 72.68±0.00(2.5) 71.64±0.30(4) 70.80±0.07(5) 72.68±0.00(2.5) 72.77±0.05(1) 
Yea-8 88.15±0.00(4) 83.12±0.14(5) 89.56±0.09(2) 88.40±0.04(3) 89.95±0.51(1) 
Yea-9 65.93±0.00(5) 72.83±0.84(4) 76.81±0.28(2) 73.39±0.87(3) 78.02±0.43(1) 
Yea-10 46.46±0.00(5) 72.20±0.92(1) 66.60±0.56(3) 50.29±1.39(4) 67.55±0.71(2) 
Veh-1 56.05±0.00(5) 69.03±1.21(1) 68.24±0.56(4) 66.51±1.27(3) 68.32±0.64(2) 
Veh-2 57.92±0.00(5) 70.39±0.51(2) 69.90±0.21(3) 67.00±0.80(4) 70.57±0.50(1) 
New-1 78.99±0.00(5) 95.26±0.67(2) 97.15±0.26(1) 87.80±0.72(4) 95.11±1.26(3) 
New-2 80.53±0.00(5) 95.07±0.22(3) 96.50±0.22(1) 88.87±0.72(4) 96.06±1.12(2) 

Pim 63.29±0.00(5) 70.66±0.13(3) 68.80±0.57(4) 71.37±0.36(1) 71.27±0.31(2) 
Average rank 4.19 3.04 2.81 3.15 1.81 

From Tables 4 and 5, it can be seen that there are some substantial improvements for the proposed ensemble EBRB 

decision model over the traditional EBRB decision models, which is in line with the conception that ensemble learning is 

applicable for improving the performance of EBRB decision model under imbalanced classification problems. Specifically, 

two preliminary conclusions are drawn based on F1 score and G-mean: 

(1) In the comparison of F1 score, the proposed ensemble EBRB decision model obtains the best F1 score in 15 of the 

26 datasets and its average rank is 1.75. The traditional EBRB decision model with CSAFE obtains the second best F1 

score, owing to its cautious sampling process that only synthesizes the data with minority class in the safety region 

far away from the borderline. As for the traditional EBRB decision model with CBORD and CADAS, they all focus on 

the borderline area to weaken the dominance of the data with majority class in overlapping area. Thus, the error of 

the data with minority class can be increased, leading to a rather inferior performance on F1 score. As for the 

ensemble EBRB decision model which is constructed by three data oversampling methods, its performance can be 

improved significantly better than the traditional EBRB decision models with different options. 

(2) In the comparison of G-mean, Table 5 shows that any one of the three data oversampling methods can bring 
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considerable improvements compared to the traditional EBRB decision model without data oversampling. For the 

traditional EBRB decision model with CADAS, it obtains the second-best G-mean. This means that this data 

oversampling method has advantage in increasing the recall rate of EBRB decision model with a relatively low cost 

of decreasing the specificity. As for the traditional EBRB decision model with CSAFE, it is useful to sample the data 

with minority class in the safe region for guaranteeing preferable precision, but the recall rate may not get sufficient 

improvements, namely, a small improvement in G-mean. Owing to the diverse data oversampling methods and 

consistency-based combination methods, the proposed ensemble EBRB decision model has the highest G-mean in 

almost half of the selected datasets. 

In summary, the proposed ensemble EBRB decision model can handle imbalanced classification problems better than 

other traditional EBRB decision models in some selected imbalanced datasets. To further evaluate the effectiveness of the 

proposed ensemble EBRB decision model the next section aims to compare ensemble EBRB decision models in the respect 

of different component generation and combination methods. 

 

5.3. Comparison of different construction and inference processes for ensemble EBRB decision model 

In this subsection, the construction and inference options detailed in Section 5.1 are investigated to illustrate the 

effectiveness of the proposed ensemble EBRB decision model. Tables 6 to 7 show the experimental results regarding F1 score 

and G-mean. Noting that each kind of ensemble EBRB decision model shown in Tables 6 to 7 has only one difference 

comparing to the proposed ensemble EBRB decision model, including the ensemble EBRB decision model with Cnone means 

that the construction of base EBRBs without data oversampling techniques, the ensemble EBRB decision model with CADAS, 

CBORD, or CSAFE means that the construction of base EBRBs using only one kind of data oversampling technique, and the 

ensemble EBRB decision model with Iavg means that the average-based integrated belief degree is used to replace the 

consistency-based integrated belief degree in the inference process of ensemble EBRB decision model. 

Table 6. Comparison of average F1 score for different ensemble EBRB decision models 

Dataset 
Ensemble EBRB decision model 

Cnone CADAS  CBORD  CSAFE Iavg This paper 
Eco-1 81.52±0.77(1) 76.19±0.75(6) 76.25±0.39(5) 77.98±0.20(2) 76.69±0.30(4) 77.23±0.29(3) 
Eco-2 87.51±0.00(1) 70.66±0.63(6) 74.84±0.66(5) 85.43±0.46(2) 77.83±0.65(3) 77.21±0.35(4) 
Eco-3 65.68±1.62(2) 55.95±0.28(6) 63.37±0.78(5) 70.17±1.15(1) 63.91±0.33(4) 64.06±0.27(3) 
Eco-4 84.14±1.87(1) 52.71±2.03(6) 75.59±0.94(5) 82.06±0.00(3) 79.71±1.20(4) 82.11±0.00(2) 
Eco-5 77.60±2.10(5) 72.15±0.96(6) 80.06±1.38(4) 81.65±1.32(3) 82.89±0.97(2) 83.20±0.85(1) 
Eco-6 74.29±2.69(5) 67.81±1.98(6) 77.33±1.04(4) 78.78±5.87(3) 80.82±1.47(2) 80.94±0.89(1) 
Eco-7 79.70±0.89(4) 74.16±1.61(6) 75.80±2.27(5) 84.62±3.89(1) 81.16±0.84(3) 81.83±0.71(2) 
Eco-8 79.41±1.35(2) 64.27±1.30(6) 78.13±1.59(3) 80.87±1.24(1) 72.27±1.09(5) 72.85±1.45(4) 
Eco-9 79.59±1.74(4) 65.89±1.81(6) 79.26±2.08(5) 80.30±2.80(2) 80.17±1.68(3) 80.63±1.46(1) 
Eco-10 78.23±1.96(2) 64.81±2.57(6) 70.88±1.51(5) 79.30±1.07(1) 75.08±1.49(4) 76.43±1.76(3) 
Eco-11 79.82±0.73(1) 64.00±3.29(6) 75.16±1.03(5) 76.38±1.32(4) 77.38±1.18(2) 76.81±1.18(3) 
Yea-1 31.26±0.14(6) 56.00±0.10(5) 57.51±0.35(1) 56.60±0.42(4) 57.40±0.38(2) 57.30±0.20(3) 
Yea-2 5.88±0.00(6) 50.74±0.13(4) 54.16±0.28(3) 48.73±0.68(5) 67.34±0.32(2) 69.94±0.32(1) 
Yea-3 11.82±1.74(6) 32.06±0.27(4) 33.89±0.43(3) 12.56±1.59(5) 37.23±0.38(2) 39.91±0.81(1) 
Yea-4 25.34±0.27(6) 25.76±0.34(5) 32.27±0.17(4) 46.41±2.73(1) 34.92±0.32(3) 36.71±0.39(2) 
Yea-5 19.89±2.85(6) 24.22±0.43(5) 34.79±3.32(3) 24.95±2.85(4) 40.37±2.91(2) 45.72±2.13(1) 
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Yea-6 65.74±1.30(6) 68.00±1.16(5) 71.95±1.68(4) 73.19±0.37(3) 76.43±0.78(2) 77.25±0.81(1) 
Yea-7 64.72±1.52(5) 23.26±0.77(6) 64.81±0.82(4) 65.75±0.53(1) 65.07±0.65(3) 65.15±0.67(2) 
Yea-8 81.31±0.30(1) 61.87±0.18(6) 69.93±0.16(5) 81.23±0.24(2) 77.45±0.77(4) 78.16±0.62(3) 
Yea-9 53.43±1.61(5) 51.91±0.54(6) 59.06±0.58(4) 60.23±0.40(3) 61.57±0.47(1) 60.88±0.60(2) 
Yea-10 31.26±0.94(6) 33.53±0.62(4) 34.83±0.48(3) 33.09±0.00(5) 38.98±1.18(2) 40.91±1.76(1) 
Veh-1 41.77±1.13(6) 55.03±0.13(1) 50.94±0.66(4) 49.47±0.26(5) 52.15±0.83(3) 52.90±0.73(2) 
Veh-2 40.63±2.24(6) 56.89±0.42(1) 52.55±0.98(4) 52.38±0.81(5) 55.31±0.63(2) 55.29±0.61(3) 
New-1 72.73±0.00(6) 75.39±0.79(5) 86.44±1.03(3) 78.67±0.85(4) 90.54±0.60(2) 91.63±1.71(1) 
New-2 71.55±0.00(6) 77.78±1.03(4) 85.26±1.37(3) 76.58±0.72(5) 90.18±0.75(2) 90.31±1.04(1) 

Pim 52.16±0.54(6) 64.28±0.44(1) 61.91±0.31(5) 63.46±0.46(2) 62.67±0.35(4) 63.21±0.37(3) 
Average rank 4.27 4.92 4.00 2.96 2.77 2.08 

From Table 6, the ensemble EBRB decision model proposed in this paper achieved first place with an average rank of 

2.21, ahead of the runner-up (Iavg) 0.65. CSAFE was third, but the average rank of it is close to Iavg. Based on the performances 

in the F1 score of the different kinds on ensemble EBRB decision models on each dataset and the average ranks, several 

interesting issues can be concluded as follows: 

(1) It is not difficult to find out that CADAS, CBORD and CSAFE have a distinguished performance in F1 score on the listed 

datasets according to their average ranks. CSAFE has superior performance over its peers. The reason behind this 

phenomenon is probably that CSAFE only oversamples the minority examples far from the class boundary, leading to 

a rather good performance of ensemble EBRB decision model generated by CSAFE in precision and thus a higher 

value in F1. However, none of the above three ensemble schemes outperform the proposed method, in other words, 

owing to the combination of CADAS, CBORD, and CSAFE simultaneously, the proposed EBRB decision model is able to 

provide an advanced performance because of the diversity enhancement of the base EBRB decision models. 

(2) Noting that the proposed EBRB decision model outperformed other EBRB decision models on 10 listed datasets 

while Iavg, which utilized average-based instead of consistency-based integration belief degree in the inference 

process, only obtains the first place once on Yea-9. The results from the cases investigated indicates that the proposed 

consistency-based ensemble inference method brings considerable improvements for ensemble EBRB decision 

model to handle class imbalance. By distinguishing the reliabilities of each component’s outputs, it can be found 

that inconsistent activated rules have few contributions to the final outputs. From Table 6, although CSAFE gets the 

best result in six datasets, its average rank is still lower than that of Iavg, which implies that the diversity-based base 

EBRB decision model generation method plays a more fundamental role in learning from the imbalanced datasets 

while diversity-based ensemble inference strategy can be treated as an enhancement method to improve the 

performance of ensemble EBRB decision model. 

Table 7. Comparison of average G-mean for different ensemble EBRB decision models 

Dataset 
Ensemble EBRB decision model  

Cnone CADAS  CBORD  CSAFE  Iavg This paper 
Eco-1 87.07±0.58(6) 88.32±0.45(3) 88.00±0.20(5) 88.84±0.11(1) 88.20±0.16(4) 88.49±0.17(2) 
Eco-2 92.10±0.00(2) 89.76±0.21(6) 91.11±0.21(5) 93.40±0.35(1) 92.03±0.18(3) 91.85±0.08(4) 
Eco-3 75.97±1.19(6) 87.35±0.06(5) 89.74±0.19(4) 89.84±0.47(3) 89.86±0.09(2) 89.89±0.07(1) 
Eco-4 87.24±1.55(6) 91.63±0.54(4) 95.46±0.15(1) 88.85±0.00(5) 93.53±0.11(3) 93.75±0.00(2) 
Eco-5 81.39±1.70(6) 89.58±0.12(4) 90.50±0.15(3) 85.49±1.27(5) 90.78±0.09(2) 90.83±0.09(1) 
Eco-6 79.41±2.03(6) 88.04±0.33(4) 90.25±0.16(3) 83.75±3.98(5) 90.31±0.86(2) 90.70±0.19(1) 
Eco-7 84.39±0.10(6) 89.68±0.30(3) 89.10±1.58(4) 88.89±2.74(5) 90.30±1.18(2) 90.93±0.10(1) 
Eco-8 85.76±1.11(6) 91.85±0.23(2) 93.27±1.03(1) 88.53±0.11(3) 87.64±0.11(5) 87.70±0.15(4) 
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Eco-9 86.74±1.42(6) 87.60±0.39(4) 88.98±1.52(3) 87.37±1.34(5) 90.09±0.26(2) 90.13±0.24(1) 
Eco-10 83.44±1.55(5) 84.86±0.63(3) 82.54±1.44(6) 84.27±1.01(4) 84.97±1.22(2) 85.58±1.51(1) 
Eco-11 87.64±0.08(4) 87.65±1.17(3) 87.41±0.78(5) 87.38±0.17(6) 88.74±0.86(2) 87.95±1.04(1) 
Yea-1 44.02±1.22(6) 66.44±0.07(5) 69.87±0.25(1) 68.48±0.37(4) 69.83±0.33(2) 69.71±0.16(3) 
Yea-2 15.49±0.00(6) 86.90±0.08(4) 88.13±0.16(3) 57.82±0.60(5) 92.30±0.21(2) 92.50±0.14(1) 
Yea-3 21.20±3.09(6) 83.49±0.45(2) 83.57±0.42(1) 26.58±2.95(5) 81.87±0.38(3) 81.06±0.46(4) 
Yea-4 36.44±0.00(6) 88.08±0.11(2) 89.19±0.67(1) 60.98±2.99(5) 87.31±0.05(3) 86.17±0.75(4) 
Yea-5 29.44±4.00(6) 70.61±0.62(1) 62.14±2.70(3) 35.27±2.51(5) 61.18±2.41(4) 62.25±1.77(2) 
Yea-6 73.58±0.66(6) 88.65±0.46(1) 86.33±0.25(2) 80.66±0.44(5) 85.41±0.60(3) 85.27±0.09(4) 
Yea-7 72.14±1.27(6) 77.02±2.37(1) 72.74±0.05(4) 72.69±0.02(5) 72.75±0.04(3) 72.77±0.05(2) 
Yea-8 86.79±0.28(6) 88.82±0.15(4) 90.67±0.28(1) 87.67±0.25(5) 90.13±0.73(2) 89.95±0.51(3) 
Yea-9 63.75±1.29(6) 78.32±0.33(1) 77.74±0.38(4) 73.73±0.28(5) 78.15±0.52(2) 78.02±0.43(3) 
Yea-10 44.31±0.80(6) 72.93±0.64(1) 70.87±0.66(2) 45.90±0.00(5) 68.97±0.95(3) 67.55±0.71(4) 
Veh-1 56.18±0.95(6) 70.40±0.11(1) 66.47±0.58(4) 65.09±0.24(5) 67.69±0.71(3) 68.32±0.64(2) 
Veh-2 54.17±1.89(6) 72.30±0.35(1) 67.76±0.58(4) 67.43±0.72(5) 70.50±0.53(3) 70.57±0.50(2) 
New-1 75.59±0.00(6) 93.32±0.29(4) 96.77±0.29(1) 80.59±0.72(5) 95.51±0.13(2) 95.11±1.26(3) 
New-2 74.94±0.00(5) 93.87±0.66(3) 96.03±0.75(2) 79.07±0.64(4) 94.93±0.73(3) 96.06±1.12(1) 

Pim 61.38±0.42(6) 72.08±0.35(1) 70.22±0.25(5) 71.44±0.38(2) 70.82±0.29(4) 71.27±0.31(3) 
Average rank 5.69 2.81 3.00 4.35 2.73 2.31 

From Table 7, it can be seen that the proposed ensemble EBRB decision model and its variant Iavg outperform their rivals 

again while CSAFE only get the second worst place which is just better than Cnone in G-mean. Two preliminary conclusions can 

be drawn: 

(1) When G-mean is considered as a performance measure, CADAS outperforms CSAFE and CBORD, this is mainly because 

CADAS focuses on the borderline area and aims to rebalance each hard-to-learn area detected by the kNN algorithm 

to degrade the dominance of majority class. However, as the experimental results shown in Table 5, when CADAS is 

applied on the single EBRB decision model, the performance is still inferior. The reason is that CADAS may increase 

the risk of overfitting since the synthetic positive sample generation and hard-to-learn area detection process, leading 

to an inferior performance in G-mean. When CADAS and EBRB decision model are used to develop an ensemble 

model, the generation ability is improved thus enabling it to provide more robust prediction results. 

(2) Since the proposed ensemble EBRB decision model gets the best result in both G-mean and F1 score comparing to 

its variants, one thing can be guaranteed is that the diversity-based base EBRB construction method and diversity- 

based ensemble inference method are effective to help EBRB decision model learn from the imbalanced datasets, in 

which the former method let the ensemble EBRB decision model have more diverse components comparing to the 

EBRB decision models which combines with one kind of oversampling technique; the latter method can enhance 

the robustness of prediction results as they can be treated as the perturbation in the combination process. 

In summary, the effectiveness of diversity-based base EBRB construction method is demonstrated by the comparison 

result that the ensemble EBRB decision model outperforms the ensemble EBRB decision model only considering one kind 

of oversampling technique. For the proposed consistency-based ensemble inference, it can be treated as an enhancement 

method to strengthen the robustness of the unified prediction by distinguishing the reliabilities of each component output. 

5.4. Comparison of ensemble EBRB decision models with and without attribute weights calculation 

In this subsection, the proposed attribute weight calculation method is investigated to demonstrate the effectiveness of 
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the proposed ensemble EBRB decision model. For this propose, the ensemble EBRB decision model with the average- based 

integrated belief degree is used as a baseline classifier. Tables 8 and 9 show the experimental results regarding F1 score and 

G-mean. 

Table 8. Comparison of F1 score for ensemble EBRB decision models with or without attribute weights calculation 

Dataset 
Without attribute weight calculation  With attribute weight calculation 

Ensemble EBRB+Iavg Ensemble EBRB  Ensemble EBRB+Iavg Ensemble EBRB 
Eco-1 77.31±0.50(1.5) 77.31±0.50(1.5)  76.69±0.30(4) 77.23±0.29(3) 
Eco-2 77.45±0.54(3) 81.07±0.44(1)  77.83±0.65(2) 77.21±0.35(4) 
Eco-3 64.71±0.70(2) 64.81±0.49(1)  63.91±0.33(4) 64.06±0.27(3) 
Eco-4 79.42±1.46(4) 79.53±0.71(3)  79.71±1.20(2) 82.11±0.00(1) 
Eco-5 81.16±1.86(4) 81.49±1.63(3)  82.89±0.97(2) 83.20±0.85(1) 
Eco-6 78.18±2.35(4) 80.50±3.16(3)  80.82±1.47(2) 80.94±0.89(1) 
Eco-7 77.30±2.37(4) 80.11±1.41(3)  81.16±0.84(2) 81.83±0.71(1) 
Eco-8 72.32±0.62(3) 72.34±0.41(2)  72.27±1.09(4) 72.85±1.45(1) 
Eco-9 74.25±2.32(4) 74.30±2.58(3)  80.17±1.68(2) 80.63±1.46(1) 
Eco-10 71.81±0.93(3) 70.01±1.71(4)  75.08±1.49(2) 76.43±1.76(1) 
Eco-11 74.66±0.54(4) 75.11±0.44(3)  77.38±1.18(1) 76.81±1.18(2) 
Yea-1 57.08±0.29(3) 57.05±0.47(4)  57.40±0.38(1) 57.30±0.20(2) 
Yea-2 67.18±0.48(4) 67.53±0.34(2)  67.34±0.32(3) 69.94±0.32(1) 
Yea-3 37.12±0.60(4) 37.33±0.33(2)  37.23±0.38(3) 39.91±0.81(1) 
Yea-4 36.56±0.58(3) 37.23±0.33(1)  34.92±0.32(4) 36.71±0.39(2) 
Yea-5 37.81±2.66(4) 43.40±2.53(2)  40.37±2.91(3) 45.72±2.13(1) 
Yea-6 76.58±0.45(2) 76.39±0.34(4)  76.43±0.78(3) 77.25±0.81(1) 
Yea-7 63.13±1.33(4) 63.81±0.00(3)  65.07±0.65(2) 65.15±0.67(1) 
Yea-8 76.29±0.38(3) 77.24±0.27(3)  77.45±0.77(2) 78.16±0.62(1) 
Yea-9 60.60±0.49(4) 60.80±0.23(3)  61.57±0.47(1) 60.88±0.60(2) 
Yea-10 40.62±0.94(3) 43.81±1.85(1)  38.98±1.18(4) 40.91±1.76(2) 
Veh-1 50.99±0.73(4) 51.21±0.91(3)  52.15±0.83(2) 52.90±0.73(1) 
Veh-2 52.82±0.70(4) 53.06±0.73(3)  55.31±0.63(1) 55.29±0.61(2) 
New-1 95.14±0.00(2) 96.17±0.00(1)  90.54±0.60(4) 91.63±1.71(3) 
New-2 94.00±0.98(2) 94.93±0.55(1)  90.18±0.75(4) 90.31±1.04(3) 
Pima 62.45±0.33(3) 62.39±0.60(4)  62.67±0.35(2) 63.21±0.37(1) 

Average rank 3.29 2.48  2.54 1.65 

Table 9. Comparison of G-mean for ensemble EBRB decision models with or without attribute weights calculation 

Dataset 
Without attribute weight calculation  With attribute weight calculation 

Ensemble EBRB+Iavg Ensemble EBRB  Ensemble EBRB+Iavg Ensemble EBRB 
Eco-1 88.21±0.39(2.5) 88.21±0.39(2.5)  88.20±0.16(4) 88.49±0.17(1) 
Eco-2 91.93±0.13(3) 92.89±0.13(1)  92.03±0.18(2) 91.85±0.08(4) 
Eco-3 89.96±0.17(2) 90.05±0.13(1)  89.86±0.09(4) 89.89±0.07(3) 
Eco-4 93.49±0.14(3) 93.41±0.08(4)  93.53±0.11(2) 93.75±0.00(1) 
Eco-5 89.65±1.30(4) 90.19±1.06(3)  90.78±0.09(2) 90.83±0.09(1) 
Eco-6 88.89±0.97(4) 89.25±1.09(3)  90.31±0.86(2) 90.70±0.19(1) 
Eco-7 88.19±1.37(4) 89.63±1.47(3)  90.30±1.18(2) 90.93±0.10(1) 
Eco-8 87.64±0.06(2.5) 87.54±0.06(4)  87.64±0.11(2.5) 87.70±0.15(1) 
Eco-9 85.43±1.59(4) 86.89±1.82(3)  90.09±0.26(2) 90.13±0.24(1) 
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Eco-10 83.60±0.73(3) 82.26±0.87(4)  84.97±1.22(2) 85.58±1.51(1) 
Eco-11 86.96±0.07(4) 87.00±0.06(3)  88.74±0.86(1) 87.95±1.04(2) 
Yea-1 69.49±0.23(4) 69.48±0.39(3)  69.83±0.33(1) 69.71±0.16(2) 
Yea-2 92.17±0.28(3) 89.63±0.13(4)  92.30±0.21(3) 92.50±0.14(1) 
Yea-3 81.86±0.60(2) 79.48±0.88(4)  81.87±0.38(1) 81.06±0.46(3) 
Yea-4 87.54±0.09(1) 85.85±0.03(4)  87.31±0.05(2) 86.17±0.75(3) 
Yea-5 62.32±1.08(2) 62.60±1.88(1)  61.18±2.41(4) 62.25±1.77(3) 
Yea-6 86.04±0.06(1) 85.46±0.48(2)  85.41±0.60(3) 85.27±0.09(4) 
Yea-7 72.65±0.06(4) 72.68±0.00(3)  72.75±0.04(2) 72.77±0.05(1) 
Yea-8 88.96±0.25(4) 89.09±0.24(3)  90.13±0.73(1) 89.95±0.51(2) 
Yea-9 77.76±0.36(4) 78.14±0.46(2)  78.15±0.52(1) 78.02±0.43(3) 
Yea-10 68.68±0.53(3) 69.19±1.38(1)  68.97±0.95(2) 67.55±0.71(4) 
Veh-1 66.45±0.67(4) 66.62±0.79(3)  67.69±0.71(2) 68.32±0.64(1) 
Veh-2 68.21±0.63(4) 68.43±0.61(3)  70.50±0.53(2) 70.57±0.50(1) 
New-1 98.89±0.00(2) 99.16±0.00(1)  95.51±0.13(3) 95.11±1.26(4) 
New-2 98.48±0.56(2) 98.70±0.51(1)  94.93±0.73(4) 96.06±1.12(3) 
Pima 70.60±0.28(3) 70.56±0.49(4)  70.82±0.29(2) 71.27±0.31(1) 

Average rank 3.04 2.71  2.25 2.04 

As Tables 8 and 9 show, the proposed attribute weight calculation method is helpful to improve the performance of the 

ensemble EBRB decision models in both F1 score and G-mean. Preliminary conclusions are drawn based on the experimental 

results: 

(1) For F1 score, the ensemble EBRB decision model with attribute weights calculation get the best result in 19 datasets, 

which is about 68 percentages of all the given datasets. Apart from New-1, New-2, Veh-1, and Veh-3, the ensemble 

EBRB decision model with attribute weight calculation can achieve better performance in F1 score, especially for 

Eco-5, Eco-9, Eco-10; For G-mean, the ensemble EBRB decision model with attribute weight calculation has the 

best result on 18 datasets. Additionally, the attribute weight calculation method is more effective when the given 

datasets have median scale of features but it is low effective for large or small scale of features because of 

dimensionality curse and over-fitting problems. 

(2) From Table 9, the ensemble EBRB + Iavg with attribute weight calculation has a better average rank than that without 

attribute weight calculation, which can manifest the effectiveness of attribute weights calculation. Apart from the 

diversity enhancement of each base EBRB, this is because the information gain-based attribute weight calculation 

is useful to highlight the relevant attributes in rule activation process. Besides, comparing to the feature selection 

methods proposed for the conventional EBRB decision model, the reason why the attribute weight calculation works 

properly is because the calculation process of attribute weights comes after the class rebalancing process thus 

alleviating or even eliminating the bias of conventional feature engineering techniques to the majority class. 

In summary, the comparative study demonstrates that the attribute weight calculation method based on the information 

gain can bring significant improvements for ensemble EBRB decision model by increasing the diversity of components and 

alleviating the impacts of class overlap.  

5.5. Comparative analysis with ensemble EBRB decision model and conventional classifiers 

To further verify the validity of the proposed ensemble EBRB decision model, some commonly used machine learning- 

based classifiers, including support vector machine (SVM), decision tree (DT), artificial neural network (ANN), and k- nearest 
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neighbor (KNN), are used as the baseline component to construct ensemble classifiers, where SVM is defined to use radial 

basis function (RBF) as the kernel function and the reciprocal of the attribute in dataset as coefficient, and the penalty 

coefficient is set as 0.5; DT is defined to use Gini coefficient to choose split feature and the maximum number of leaf nodes 

is not limited; ANN is defined to use ReLU as activation function and each hidden layer has 10 neurons, the maximum number 

of iterations is set to 1000; KNN is defined to use Euclidean distance to measure the similarity between data under k=5. For 

the sake of fairness, Step 1 and Step 2 in Section 4.2 will also be applied to the above baselines to construct the ensemble 

models. The ensemble classifiers are abbreviated as E-SVM, E-DT, E-ANN, and E-KNN, respectively. Tables 10 and 11 show 

the experimental results of F1 scores and G-mean. 

Table 10. Comparison of average F1 score for ensemble EBRB decision models with ensemble classifiers 
Dataset EBRB E-SVM  E-DT E-MLP E-KNN Ensemble EBRB 
Eco-1 84.17±0.00(1) 77.96±0.49(4) 78.44±0.69(3) 76.39±0.64(6) 79.50±0.66(2) 77.23±0.29(5) 
Eco-2 86.84±0.00(2) 88.14±0.42(1) 82.28±0.45(4) 81.92±1.33(5) 84.44±0.47(3) 77.21±0.35(6) 
Eco-3 60.94±0.00(6) 65.29±1.90(2) 64.19±1.06(3) 66.94±1.17(1) 62.53±1.27(5) 64.06±0.27(4) 
Eco-4 79.76±0.00(3) 81.72±2.84(2) 76.91±4.05(4) 76.76±1.59(5) 76.57±2.31(6) 82.11±0.00(1) 
Eco-5 79.81±0.00(5) 87.11±0.94(1) 74.28±1.30(6) 81.34±1.89(4) 82.10±1.79(3) 83.20±0.85(2) 
Eco-6 74.51±0.00(5) 75.97±1.31(4) 74.26±4.41(6) 82.23±1.07(1) 77.13±0.69(3) 80.94±0.89(2) 
Eco-7 75.78±0.00(6) 84.02±0.95(2) 80.04±1.49(5) 80.70±2.61(4) 86.30±1.65(1) 81.83±0.71(3) 
Eco-8 79.84±0.00(3) 79.96±2.39(2) 85.56±1.68(1) 79.81±1.68(4) 77.97±1.40(5) 72.85±1.45(6) 
Eco-9 78.57±0.00(6) 83.73±1.68(1) 82.14±2.52(2) 81.43±2.52(3) 80.34±2.28(5) 80.63±1.46(4) 
Eco-10 71.00±0.00(3) 71.21±1.80(2) 68.97±2.56(5) 70.88±1.53(4) 68.35±2.32(6) 76.43±1.76(1) 
Eco-11 78.36±0.00(3) 82.42±1.04(1) 74.94±2.78(6) 76.86±1.78(5) 79.82±1.88(2) 76.81±1.18(4) 
Yea-1 33.09±0.00(6) 59.33±0.60(2) 57.72±1.07(4) 60.42±0.48(1) 58.14±0.47(3) 57.30±0.20(5) 
Yea-2 18.29±0.00(6) 73.42±0.81(4) 77.34±0.81(1) 74.58±0.66(3) 74.98±0.50(2) 69.94±0.32(5) 
Yea-3 16.41±0.00(6) 38.79±0.74(4) 33.91±3.07(5) 41.41±1.81(2) 43.44±2.48(1) 39.91±0.81(3) 
Yea-4 37.48±0.00(5) 47.32±1.08(4) 52.37±0.51(1) 48.82±1.15(3) 51.65±0.78(2) 36.71±0.39(6) 
Yea-5 22.86±0.00(6) 29.04±2.27(4) 29.61±4.51(2) 29.21±2.35(3) 25.53±4.38(5) 45.72±2.13(1) 
Yea-6 64.60±0.00(6) 72.74±1.16(3) 72.30±2.51(4) 70.38±1.55(5) 77.00±0.81(2) 77.25±0.81(1) 
Yea-7 63.81±0.00(5) 21.55±1.72(6) 65.04±0.00(4) 65.14±0.67(2) 65.07±0.65(3) 65.15±0.67(1) 
Yea-8 82.82±0.00(1) 76.29±0.80(6) 82.54±0.89(2) 77.17±0.80(5) 79.32±0.81(3) 78.16±0.62(4) 
Yea-9 55.63±0.00(6) 61.23±0.53(1) 59.79±1.18(4) 57.91±1.35(3) 59.13±0.75(5) 60.88±0.60(2) 
Yea-10 33.13±0.00(5) 39.52±0.82(4) 37.40±1.81(5) 43.52±2.52(2) 45.72±1.19(1) 40.91±1.76(3) 
Veh-1 40.51±0.00(6) 49.42±0.23(5) 54.25±0.72(1) 52.01±1.20(4) 52.04±0.43(3) 52.90±0.73(2) 
Veh-2 42.89±0.00(6) 49.01±0.24(5) 55.04±1.46(2) 51.26±1.35(3) 49.84±0.69(4) 55.29±0.61(1) 
New-1 76.64±0.00(6) 81.92±1.83(5) 94.64±1.51(2) 97.02±1.00(1) 85.30±1.51(4) 91.63±1.71(3) 
New-2 78.34±0.00(6) 81.09±2.90(5) 93.44±1.52(2) 95.61±1.46(1) 82.10±1.28(4) 90.31±1.04(3) 
Pima 53.85±0.00(6) 63.63±0.43(2) 64.46±0.76(1) 63.20±0.66(4) 62.53±0.34(5) 63.21±0.37(3) 

Average rank 4.81 3.15 3.27 3.23 3.38 3.12 

From Table 10, all the listed classifiers have the similar F1 scores because each of them can outperform others in some 

specific situations. For instance, the proposed ensemble EBRB decision model has a significant F1 score measure in Yea-5 

and Eco-10; E-MLP and E-DT perform much well than others in New-1 and New-2. Although the ensemble EBRB decision 

model fails to obtain the best F1 score, it does not have the time- consuming training process and has a great interpretability 

comparing to other classifiers. Thus, the proposed ensemble EBRB decision model can also be treated as more suitable and 

preferable option to handle imbalanced classification problems. 
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Table 11. Comparison of average G-mean for ensemble EBRB decision models with conventional ensemble classifiers 

Dataset EBRB E-SVM E-DT E-MLP E-KNN Ensemble EBRB 
Eco-1 88.63±0.00(3) 89.38±0.18(2) 86.37±0.47(6) 87.77±0.40(5) 89.98±0.48(1) 88.49±0.17(4) 
Eco-2 92.79±0.00(3) 94.53±0.08(1) 88.41±0.63(6) 91.46±0.34(5) 93.66±0.08(2) 91.85±0.08(4) 
Eco-3 71.70±0.00(6) 88.99±0.82(3) 86.57±0.98(5) 89.39±0.23(2) 88.43±0.99(4) 89.89±0.07(1) 
Eco-4 83.29±0.00(6) 91.23±0.28(3) 90.76±1.83(5) 90.82±0.16(4) 93.24±0.26(2) 93.75±0.00(1) 
Eco-5 85.22±0.00(5) 91.16±0.09(1) 82.58±1.24(6) 88.67±1.83(4) 90.67±0.17(3) 90.83±0.09(2) 
Eco-6 82.82±0.00(5) 83.72±1.05(4) 81.78±3.10(6) 88.70±0.91(2) 84.67±0.09(3) 90.70±0.19(1) 
Eco-7 84.00±0.00(6) 88.98±1.17(3) 85.22±1.80(5) 88.61±1.37(4) 91.44±0.16(1) 90.93±0.10(2) 
Eco-8 88.42±0.00(2) 88.00±1.79(3) 90.60±0.94(1) 87.11±1.19(6) 87.98±0.93(4) 87.70±0.15(5) 
Eco-9 85.01±0.00(6) 90.59±0.22(1) 87.22±2.12(5) 87.90±1.78(4) 90.03±0.27(3) 90.13±0.24(2) 
Eco-10 78.35±0.00(6) 80.24±1.07(4) 78.48±1.19(5) 81.44±0.93(3) 81.77±1.56(2) 85.58±1.51(1) 
Eco-11 87.47±0.00(5) 89.77±0.13(1) 84.13±1.94(6) 88.37±1.18(3) 89.06±1.55(2) 87.95±1.04(4) 
Yea-1 45.62±0.00(6) 71.52±0.53(2) 68.74±0.88(5) 72.45±0.41(1) 70.56±0.39(3) 69.71±0.16(4) 
Yea-2 31.07±0.00(6) 92.24±0.29(2) 87.33±0.71(5) 91.50±0.46(3) 89.54±0.37(4) 92.50±0.14(1) 
Yea-3 27.59±0.00(6) 79.05±0.58(2) 51.98±2.92(5) 74.19±0.91(3) 70.90±1.58(4) 81.06±0.46(1) 
Yea-4 51.87±0.00(6) 87.04±0.66(1) 68.20±2.80(5) 80.94±0.79(4) 85.08±1.10(3) 86.17±0.75(2) 
Yea-5 32.66±0.00(6) 49.11±5.68(3) 38.06±4.88(5) 56.39±4.04(2) 48.17±5.63(4) 62.25±1.77(1) 
Yea-6 72.94±0.00(6) 87.80±1.10(1) 83.06±1.89(5) 85.06±1.07(4) 86.80±1.17(2) 85.27±0.09(3) 
Yea-7 72.68±0.00(4) 74.76±2.58(1) 72.18±0.00(5) 72.16±1.23(6) 72.75±0.04(3) 72.77±0.05(2) 
Yea-8 88.15±0.00(6) 89.42±0.33(4) 88.74±0.69(5) 89.62±0.58(2) 89.57±0.28(3) 89.95±0.51(1) 
Yea-9 65.93±0.00(6) 81.07±0.10(1) 71.90±1.20(5) 78.42±0.69(2) 77.58±0.47(4) 78.02±0.43(3) 
Yea-10 46.46±0.00(6) 68.64±1.39(1) 52.63±1.17(5) 68.66±2.07(2) 68.54±0.79(3) 67.55±0.71(4) 
Veh-1 56.05±0.00(6) 65.42±0.20(5) 67.34±0.67(4) 67.61±1.01(3) 67.73±0.39(2) 68.32±0.64(1) 
Veh-2 57.92±0.00(6) 65.14±0.21(5) 67.68±1.21(2) 66.86±1.27(3) 66.08±0.62(4) 70.57±0.50(1) 
New-1 78.99±0.00(6) 89.16±0.96(5) 97.92±1.14(2) 98.90±0.69(1) 92.68±1.07(4) 95.11±1.26(3) 
New-2 80.53±0.00(6) 90.66±0.89(5) 96.73±0.82(2) 98.11±1.41(1) 90.69±0.85(4) 96.06±1.12(3) 
Pima 63.29±0.00(6) 71.67±0.37(2) 72.17±0.61(1) 71.04±0.56(4) 70.69±0.28(5) 71.27±0.31(3) 

Average rank 5.42 2.54 4.50 3.19 3.04 2.31 

From Table 11, the proposed ensemble EBRB decision model obtains the best G-mean and it is significantly better than 

the other listed classifiers. This is due to the enhancement of the diversity of each base EBRB constructed by the diverse data 

oversampling methods, the calculation of attribute weights based on information gain, and the combination process based on 

the consistency of activated rules.  

Preliminary conclusions are summarized based on the comparative results: 

(1) The proposed ensemble EBRB decision model obtains the best F1 score. Although the winning margin is not large, 

an overwhelming performance was provided by the ensemble EBRB decision model on some of the datasets, e.g., Yea-5 and 

Eco-10, comparing to other machine learning algorithms. For G-mean, the ensemble EBRB decision model outperforms other 

classifiers. Hence, it is believed that the proposed model can handle imbalanced classification problems properly. 

(2) It is impossible to find the classifier that can produce the best performance for all datasets because many factors, such 

as structure, noise, and the size of training data may impact the performance of the classifier. Thus, decision-makers should 

make choices according to the different situations. 

In summary, the proposed ensemble EBRB decision model provides a satisfying evaluation result in F1 score and 

outperforms other machine learning classifiers in G-mean with a large winning margin. Hence, for a specific imbalanced 
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classification scenario, the ensemble EBRB decision model can be considered as an option to give the accurate predictions.  

6. Conclusions 

In this study, a novel ensemble classifier based on EBRB decision model, called ensemble EBRB decision model, was 

proposed for imbalanced classification problems, where the ensemble EBRB decision model consists of two components: 

diversity-based base EBRB construction and consistency-based ensemble EBRB inference. 26 imbalanced classification 

datasets were used to validate the effectiveness of the proposed ensemble EBRB decision model by comparing with some 

popular classifiers. The main conclusions of this study can be summarized into the following three aspects: 

(1) A diversity-based base EBRB construction method was proposed to improve the conventional EBRB construction 

scheme in the aim of increasing the diversity of the ensemble EBRB decision model, because the diversity of components is 

of great importance but hard to be achieved in an ensemble classifier. In the proposed construction method, the diversity of 

base EBRBs is enhanced by using random sampling and oversampling techniques to rebalance the original imbalanced dataset, 

as well as the use of information gain to calculate the attribute weights of each base EBRBs. 

(2) A consistency-based ensemble EBRB inference method was proposed to improve the conventional EBRB inference 

scheme in the aim of increasing the consistency of activated rules, because the class overlap is the direct cause of the activated 

rules’ inconsistency and it tends to be more serious in the context of class imbalance. In the proposed inference method, the 

integrated belief distributions are used together with the consistency of activated rules to produce a final belief distribution, 

so that the classification performance of the ensemble EBRB decision model can be improved. 

(3) Experimental comparisons on imbalanced datasets demonstrated that the proposed ensemble EBRB decision model 

has better performance than other EBRB decision models. Compared to traditional machine learning algorithm-based ensemble 

classifiers, the proposed model showed promising performance in F1 score and outperformed the others with a large winning 

margin in G-mean. From those experimental comparisons, the ensemble EBRB decision model could be a competent option 

to tackle imbalanced classification problems. 

For future researches, the number of reference values for each antecedent attribute and their corresponding utility values 

is worth further in-depth study, because they are important elements to construct an effective and efficient EBRB but failed 

to be considered in the proposed diversity-based base EBRB construction method. Additionally, future research can focus on 

how to adaptively set activation factor for determining the suitable activated rules when an EBRB decision model is applied 

to handle practical problems with imbalanced data. 
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