

Deep Semi-Supervised Learning via Dynamic Anchor Graph Embedding in Latent
Space

Tu, E., Wang, Z., Yang, J., & Kasabov, N. (2022). Deep Semi-Supervised Learning via Dynamic Anchor Graph
Embedding in Latent Space. Neural Networks, 146, 350-360. [NN5051].
https://doi.org/10.1016/j.neunet.2021.11.026

Link to publication record in Ulster University Research Portal

Published in:
Neural Networks

Publication Status:
Published (in print/issue): 28/02/2022

DOI:
10.1016/j.neunet.2021.11.026

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 28/02/2023

https://doi.org/10.1016/j.neunet.2021.11.026
https://pure.ulster.ac.uk/en/publications/d48caf89-958a-467a-bc00-034374c499fd
https://doi.org/10.1016/j.neunet.2021.11.026

Deep Semi-Supervised Learning via Dynamic Anchor
Graph Embedding in Latent Space

Enmei Tu, Zihao Wang, Jie Yang

Department of Automation, Shanghai Jiao Tong University, Shanghai, China

Nikola Kasabov

School of Engineering, Computing and Mathematical Science, Auckland University of
Technology, New Zealand and Intelligent Systems Research Center, Ulster University UK

Abstract

Recently, deep semi-supervised graph embedding learning has shown much promise
on text and image recognition tasks when the number of labeled data is limited.
By introducing an auxiliary unsupervised task of predicting the neighborhood
context in the graph, these approaches effectively mine the structure informa-
tion provided by abundant unlabeled data. However, existing methods usually
adapt to datasets whose graph is explicitly given or predefined, which cannot
handle large-scale datasets with unknown graphs. Besides, the edge connections
and weights are fixed during the training process in these methods, which fails
to use the current feature information extracted by the model. In this paper, we
propose a novel deep semi-supervised dynamic anchor graph embedding learn-
ing algorithm. More specifically, we build a two-branch architecture to learn
the single-sample local features and the global features in the graph simulta-
neously. The first branch constrains its outputs to be consistent with different
perturbations of the same single sample. And the output features are dedicated
to constructing the dynamic anchor graph. The second branch utilizes the an-
chor graph and the model prediction to sample the context, based on which the
global graph embeddings are learned. Finally, the outputs of the two branches
are aggregated to jointly predict the class labels. Extensive experimental results
on several image and text datasets have shown that the proposed method is able
to improve the performance of existing graph embedding learning methods and
outperform many state-of-the-art methods on image classification.

Keywords: Grap Embedding, Semi-Supervised Learning, Dynamic Anchor
Graph, Image / Text Classification

1. Introduction

Deep neural networks leveraging a large number of labeled data have achieved
remarkable performance on computer vision [1, 2] and natural language pro-

Preprint submitted to Neural Networks June 28, 2021

cessing [3, 4] applications in recent years. However, labeling numerous data
manually is extremely expensive or even impossible for many practical applica-5

tions (e.g., medical image segmentation [5], destructive product testing [6]). In
these situations, deep learning models are prone to overfitting and generalize
badly on new data, due to that the labeled training data are scarce. To mit-
igate this problem, deep semi-supervised learning (DSSL) that utilizes a small
amount of labeled data plus many easily-available unlabeled data to train the10

model has achieved very promising performance. For comprehensive reviews of
traditional and recent semi-supervised learning (SSL) approaches, readers are
referred to [7, 8, 9]. Among the existing DSSL algorithms, graph-based deep
semi-supervised learning (GDSSL) is particular interesting because of the solid
mathematical background of graph theory, efficient matrix computational im-15

plementation and the great success of tradition graph-based SSL [7]. Different
from traditional grid-structured data (such as vectors, time sequences and im-
ages), the emergence of graph-structured data in many applications (such as
social media data [10], paper citation graph [11]) is not in Euclidean domain
data and seeking new approaches to process them drives the study of graph20

based algorithms [12].
GDSSL usually formulates a classification task as a graph node classifica-

tion problem. Recall that a graph, denoted as G(V,E,W), is a data structure
which consists of a node set (or vertex set) V to represent a group of instances
(samples), an edge set E to indicate the pairwise connections of the nodes, and25

a weight matrix W whose elements are the respective weights of the edges1.
Given a graph G that only a few of its nodes are tagged by some categorical
labels, GDSSL algorithms aims to leverage the graph structural information
and the correlation between the labeled and unlabeled nodes to train a deep
model and then classifies all nodes into the categories of the labels. The aim30

has broadly been accomplished with two philosophies. The first one is based
on graph similarity regularization [13] (mainly graph Laplacian), which explic-
itly forces the model’s predictions to be consistent with the graph structure
(i.e. strong connected graph nodes must produce similar model outputs). For
example, [14, 15, 16, 17]. However, a recent study shows that the asymptotic35

behavior of graph Laplacian regularization tends to be unstable [18] while the
graph grows to large. The second philosophy is to transform the graph data into
grid data, i.e. embedding the graph into a Euclidean space (called embedding
space, which is a latent space to encode the graph nodes.), using node context on
the graph (such as neighborhood structure, random walks sequences) and then40

predicts node categorical labels in the embedding space [19, 20, 21]. However,
existing embedding approaches in this category mostly utilize “static graph”,
which means the graph is given or predefined and the structure of the graph is
fixed during training. This cause at least two possible limitations. First, the
static graph usually contains noisy nodes/edges (especially for complex data45

1A graph can also be denoted simply as G(V,W), in which edge set E is implicitly repre-
sented by the non-zero elements in W .

2

such as natural image) which are likely to mislead the learning process. Second,
model can hardly benefit from the useful information in the abstract features
mined by itself. This is inefficient and not consistent with our knowledge about
human learning, in which past experiences play important roles [22].

To address these issues, we propose a latent space Dynamic Anchor Graph50

Embedding (DAGE) semi-supervised learning approach in this paper. Our key
observation is that for classification purpose, the sequential random walk on a
full graph in latent space can be approximately represented by a random walk on
an anchor graph. This enables us to include model extracted information flexibly
and, meanwhile, to reduce the embedding learning problem size dramatically. To55

be more specific, we build a two-branch network architecture including a single-
sample consistency branch and a dynamic graph embedding branch, as shown
in Fig. 1. We construct a dynamic bipartite graph using hidden-layer features
of the consistency branch and perform bipartite random walks on the graph to
generate random sequences representing graph structural information. Then, we60

train the embedding branch utilizing node labels and random walk sequences
jointly to generate more accurate node embedding features. Finally, the two
branches are aggregated to accomplish the classification task. The single-sample
consistency branch learns local information of a sample under a consistency
regularization constraint. The graph embedding branch learns graph structural65

information using the context generated from both the anchor graph and the
model prediction. So, the final model prediction incorporates both local sample
consistency information and global graph structural information to classify a
sample. To summarize, our contributions are as follows:

� We propose a dynamic anchor graph embedding learning approach in70

the latent-space trained by an improved context sampling strategy, which
combines graph structural information and model discriminant informa-
tion of both labeled and unlabeled samples. Based on this, we present
a novel semi-supervised learning framework to achieve graph embedding
and node classification simultaneously for both graph-structured data and75

grid-structured data.

� We develop a new explicit weight decay technique to improve training effi-
ciency and model performance. Comparing with previous weight-ensembling
techniques such as fast-SWA [23], the new technique could enhance sig-
nificantly model diversity within a few training epochs and yield better80

model generalization.

� We perform extensive experiments to compare the proposed method with
existing state-of-the-art methods on popular image and text benchmark
datasets. The results demonstrate the superiority of our approach on both
tasks.85

3

Figure 1: The proposed neural network framework for dynamic anchor graph embedding
(DAGE) learning.

2. Related works

2.1. Consistency-Based Models

Consistency means that given different perturbed versions of a sample (e.g.
adding noises or transformations, etc.), model output should be consistent,
i.e. generate same outputs, because the inputs are essentially the same thing90

[24, 25, 26, 27]. In these approaches, a student model is enforced to output sim-
ilar predictions to that of a teacher model when fed different perturbed versions
of the same sample. Teacher model can be same as student model [24, 28] or
different from student model [26, 27]. Main perturbations include added input
Gaussian noise, dropout and data augmentation for images. Later, there are two95

directions to improve consistency-based models. One is to improve the quality
of the teacher model. For instance, Temporal Ensembling (TempEns)[26] cal-
culates the temporal average values of model predictions as consistency target.
MT [27] averages model weights instead of predictions. Fast-SWA [23] obtains
the ensemble “teacher” by averaging weights at different epochs directly. The100

other is to improve the quality of perturbations. To name a few, Adversarial
perturbation is regarded as a new, effective perturbation in VAT [29] and VAdD
[30]; WCP [31] uses additive and DropConnect perturbations and AutoAugment
[32] automatically generates perturbations by learning operations in a designed
search space.105

2.2. Graph Embedding Learning

Graph embedding is to assign a unique coordinate to each graph node so that
the graph can be transformed to grid data and embedded into a Euclidean space

4

(called embedding space), because graph structural data are not Euclidean (i.e.
not possess natural coordinates arranged in regular grids like vectors or images).110

Ideally, to facilitate subsequent learning tasks such as node classification or link
prediction, the embedding space should be low dimensional and the properties
of the graph (such as topology, subgraphs, adjacency, etc.) should be maximally
preserved in the embedding space.

Early graph embedding learning methods (e.g. Deepwalk [33], LINE [34],115

etc.) are purely unsupervised and do not leverage label information during
training. To the best of our knowledge, Planetoid [20] firstly combines su-
pervised classification with unsupervised graph embedding learning task and
shows preferable performance on semi-supervised text recognition. Graph Con-
volutional Networks (GCN) recently have been shown to be effective to learn120

graph embeddings [35, 19, 36]. However, as mentioned above, most of these
algorithms are designed to use “static graph”, which is explicitly given or pre-
constructed using coarse hand-craft features. Besides, GCN also suffers from
over-smoothing effect and high computational burden on large datasets due to
the nature of Laplacian graph filtering [37].125

3. Preliminaries

In this section we first define the semi-supervised learning problem. Then
we review briefly basics of consistency regularization and Planetoid [20] which
are related to the proposed approach.

3.1. Semi-Supervised Learning130

We mainly focus on semi-supervised classification problem. Suppose fθ is a
classifier parameterized by θ defined by a neural network. X = {xi}ni=1 with
xi ∈ Rd is a sample dataset for grid-structured data, or the node feature set V
for graph-structured data G(V,W)2. Without loss of generality, we assume the
first l samples in X are labeled and denoted as XL. The rest are unlabeled and135

denoted as XU (l � n in most cases). YL = {yi}li=1 (with yi ∈ C = {j}cj=1)
are categorical labels corresponding to XL. The binary label matrix of YL is
denoted as Y , whose elements are Yij = 1 if and only if sample xi is from class
j. Semi-supervised learning is usually achieved by optimizing (1).

min
θ

l∑
i=1

Ls(fθ(xi), yi) + Lu(fθ(XL,XU)) (1)

where Ls is the supervised classification loss (e.g. cross-entropy loss). Lu is140

usually the unsupervised regularization term (e.g. consistency regularization,
context prediction term, etc.) which fully leverages unlabeled samples’ infor-
mation.

2We will use sample and node interchangeably to mean the same x.

5

3.2. Consistency Regularization

In consistency-based models, consistency regularization term is usually for-145

mulated as (2).
Lcons(x, θ) = Ex‖f(x, θ)− f(x̃, θ′)‖2 (2)

where x̃ is a different perturbed version of sample x, θ, θ′ are model parameters
of student model and teacher model respectively, f is hidden layer feature or
classification output. Except for Mean Squared Error, one can also use KL
divergence to measure the perturbation difference.150

The teacher model’s parameter set θ′ is exponential moving average value of
θ in MT [27], as shown in (3).

θ′t = αθ′t−1 + (1− α)θt (3)

where θt is the student parameter set at time step t. α is smoothing coefficient,
which is usually 0.99 or 0.999.

3.3. Graph Embedding Loss155

Given a sample xi, its corresponding context ct is sampled based on random
walk strategy (for all training samples) or ground truth (for labeled samples).
Planetoid [20] trains graph embeddings to jointly predict class labels and context
in the graph. To do this, a graph embedding loss is defined in (4).

Lemb =
∑
i

−I(γ = 1) log σ(wTctg(xi))

− I(γ = −1) log σ(−wTctg(xi)) (4)

where I(·) is indicator function that outputs 1 when the condition in paren-
theses is true, otherwise 0. γ = 1(−1) means ct is positive (negative) con-
text, wct are model weights of context prediction, g(·) is graph embedding.
σ(x) = 1/(1 + exp(−x)) is sigmoid function, which represents the probability
that xi matches context ct. Lemb measures the cross entropy between sample160

pair (i, c) and binary label γ. Note that to evaluate the embedding loss for
all training data, Plantoid has to define an output for each training sample to
predict node context. This could be burdensome for large scale dataset.

4. Dynamic Anchor Graph Embedding

In this section, we present our Dynamic Anchor Graph Embedding (DAGE)165

learning approach for semi-supervised classification for both graph-structured
data and grid-structured data. The key idea is to construct a dynamically up-
dated bipartite graph in latent space to capture the model extracted information
and simplify graph embedding prediction capacity. First, we elaborate the idea
and construction of dynamic anchor graph in latent space. Following, we will170

describe in details the components of the framework and training techniques,
namely, the single-sample consistency branch, dynamic graph embedding branch
and model optimization techniques.

6

4.1. Dynamic Anchor Graph in Latent Space

The wisdom of traditional unsupervised graph embedding learning such as175

DeepWalk [33] first generates a sequence of random walks for each node (called
the context of the node) and then trains a model to predict the context of each
node correctly. While this strategy has been very successful for intrinsic graph
structured data (”born” with a well-defined graph, e.g. social networks, paper
citation graph), it generally does not perform equally well on general data tasks180

such as image classification, because constructing a semantically meaningful
graph for the data can be as difficult as the node classification problem itself
[38].

So, instead of predicting the context in original data space, we consider the
problem of predicting the context of a node in latent space3 and utilize random185

walks on a bipartite graph to further simplify the problem. Previous studies
have shown that classification/clustering in the latent space (or hidden layer
space) of a neural network model is more advantageous since the algorithm
could exploit the model extracted and abstract information to improve results
[39, 17]. The motivation of our approach is illustrated in Fig 2. Suppose an190

embedding model maps samples into latent space and are organized into clique
structure. We can select from each clique some points as anchoring points (i.e.
representatives, for examples, by using k-means/k-medoids clustering center, or
simply random selected samples), the distribution of which well summarizes the
distribution of to full data. Then, we construct a bipartite graph (anchor graph)195

between anchoring points and non-anchoring points. In this case, local random
walks on full data distribution can be well represented by random walks on the
bipartite graph, because two samples who are more likely to hit each other on
full distribution will also be more likely to share the same anchoring point on the
anchor graph. So, rather than training an embedding model to predict random200

walk sequences on full data distribution, as in DeepWalk [33] and Plantoid [20],
we train the model to predict the anchor sequences in a random walk on the
bipartite graph. This enables us to reduce the prediction problem from full
dataset size (of predicting nearby neighbors of each node) to anchor set size (of
predicting nearby anchors of each node), which can be a fixed and much smaller205

number than the graph node number.
To implement DAGE, we propose a neural network framework in Fig 1.

The feature extraction network (e.g. a CNN or MLP) maps an input sample x
into hidden feature space, followed by a consistency branch and an embedding
branch in parallel. The consistency branch enforces its output to be invariant210

to input perturbations (i.e. noise and transformations on x) and thus learns
node local information. The outputs of f(·) are used to construct an anchor
graph as shown in Fig 2. The embedding branch performs graph embedding
learning using context information from both the anchor graph and predicted

3Because graph embedding is implemented by a neural network mapping, so here we do
not distinguish embedding space or latent space, which are the same thing that is defined by
neural network hidden layers.

7

Figure 2: Anchor graph in latent space. Different colors indicate different cliques and big dots
are anchors.

pseudo labels and thus learns graph structural information. The outputs of215

the two branches are concatenated to pass a softmax function to obtain pre-
dicted pseudo labels. By encouraging output consistency of the same sample,
single-sample local features are optimized but global features, which imply rela-
tionships between different samples in the graph, are not considered in previous
consistency-based models, and vice versa for existing graph embedding learning220

methods. In our framework, we combine them together to make use of their
complementary characteristics. We explain each part in details in the following
subsections.

4.2. Single-Sample Consistency Branch

Consistency has been an important technique in many state-of-the-art DSSL
algorithms [15, 28, 40]. We apply the same consistency constraint and model
ensembling technique for f(·) as in (2). Notice that ν is a subset of parameter
θ (i.e. the consistency branch).

Lcons = Ex‖f(x, ν)− f(x̃, ν′)‖2

ν′t = αν′t−1 + (1− α)νt (5)

To construct the anchor graph, we denote U = {uj}mj=1 as anchoring point
set of size m in the input space. We then calculate the anchor graph similarity
matrix Z at each training step using normalized features fnorm(·) by (6). Notice
that the elements of Z are dynamically adjusted during training, which enables
the model to utilize newer and more accurate connections in latent space than
that of the predefined static graph.

Zij =

{
Kβ(fnorm(xi),fnorm(uj))∑

j′∈〈i〉Kβ(fnorm(xi),fnorm(u′
j))
, ∀j ∈ 〈i〉

0, otherwise

fnorm(xi) =
f(xi)

(
∑
k(f(xi)k)2)

1
2

(6)

8

where Z ∈ Rn×m denotes the relationship between samples X and anchors U .225

fnorm(·) is normalized with the output feature f(x) of single-sample consistency
branch. Kβ(x, y) = exp(−‖x − y‖2/2β2) is Gaussian kernel function with a
coefficient hyperparameter β. 〈i〉 ⊂ [1 : m] is the s nearest anchors’ index set
of sample xi. Since we only consider s closest anchors to xi and s � m, the
similarity matrix Z is highly sparse. An anchor graph representation of our230

method is shown in Fig. 3.

Figure 3: An anchor graph representation of samples x1, · · · , x6 and anchors u1, u2, u3 with
normalized features fnorm(·), Zij captures the relationships between samples and anchors.

The construction process of matrix Z formulated in (6) is based on features
learned by the model. For some datasets (e.g. citation graph data), if a pre-
existed graph is given, then we firstly construct the matrix Z using the given
graph, as shown in (7).235

Zij =

{
Wij∑
l∈U Wil

, if j ∈ U ∧ ∃ l ∈ U ,Wil 6= 0

0, otherwise
(7)

where Wij denotes the edge weight of the given graph. Then, we use matrix
Z defined above to pre-train our model and thereafter replace it with (6) to
establish new connections between samples and anchors.

4.3. Dynamic Graph Embedding Branch

In this branch, the anchor graph constructed in previous subsection is used240

to learn graph embedding dynamically. To do so, two types of context (positive
context ctp and negative context ctn) can be sampled based on the anchor graph
and pseudo labels jointly. Finally, we could calculate the graph embedding loss
to train graph embeddings.

More specifically, we treat m anchors as context space C (target space of245

models) that graph embeddings need to predict. Consequently, the dimension
of context prediction layer connected with graph embedding layer g(·) is reduced
from b×n to b×m, where b is batch size. Since the number of anchor points
m is a fixed hyperparameter, the width of context prediction layer is fixed, no
longer increases with the data size. Therefore our approach is more suitable to250

large-scale datasets.

9

A key step of graph embedding learning is to generate the context of a
node. Different from existing context generation strategy as in Planetoid [20],
we propose an improved sampling strategy based on anchor graph structure and
pseudo labels that makes use of both labeled and unlabeled data. The anchor255

graph similarity matrix Z in (6) and (7) represents the probability p that a
certain point moving from sample x to anchor u (i.e., a one-step random walk
from a sample point to an anchoring point). We select both positive contexts
from nearest anchors and negative contexts from farthest anchors according to
Z. In this case, the embedding not only pull similar nodes close, but also push260

dissimilar nodes far. We also further utilize pseudo labels of all training samples
instead of just using labeled samples. This enriches training data and provide
much richer discriminant information to guide the model learning process.

All of the above lead to our context generation strategy, which is given in
Algorithm 1. Given a sample xi, there are two types of context in the algorithm265

that need to be sampled, i.e. ctp and ctn representing the positive and negative
context, respectively. Each type of context can be generated in either two ways
(represented by γ = +1 and γ = −1, respectively):

� The first one is based on the anchor graph similarity matrix Z, which
encodes the underlying graph structural information of data.270

� The second one is based on the pseudo labels, which injects the model
discriminant information into the graph embeddings.

The model leverages both of the two types of information when training em-
beddings. The ratio of positive and negative contexts is controlled by parame-
ter r1 ∈ (0, 1), and the ratio of two sampling ways is controlled by parameter275

r2 ∈ (0, 1). The algorithm’s sampling strategy on the well-known “two moons”
synthetic dataset is illustrated in Fig. 4 (in the case of ctp).

Figure 4: The strategy sampling ctp on “two moons” dataset. The figure illustrates two
different sampling ways based on Z and pseudo labels.

Given triplet (xi, ct, γ), we could use graph embedding loss (4) to train the
dynamic graph embedding branch. In this way, the global features which rep-

10

Algorithm 1 Sampling Context Triplet (xi, ct, γ)

Require: anchor graph similarity matrix Z, pseudo labels {ỹi}ni=1, number of
neighbors s and non-neighbors o, hyperparameters r1, r2
if random < r1 then
γ = +1

else
γ = −1

end if
if random < r2 then

Choose s closest anchors to sample xi, uniformly sample positive context
ctp according to Zij , j ∈ 〈i〉
if γ = −1 then

Choose o farthest anchors to sample xi, uniformly sample negative con-
text ctn

end if
else

if γ = +1 then
Uniformly sample positive context ctp with ỹi = ỹct

else
Uniformly sample negative context ctn with ỹi 6= ỹct

end if
end if
return triplet (xi, ct

p, γ) or (xi, ct
n, γ)

11

resent relations between samples and anchors are learned because neighboring280

positive sample-context pairs are encouraged to be closer and negative sample-
context pairs are pushed farther. Since the context space C is composed of
anchor set U here, (4) could also be regarded as a multi-label classification loss
with m labels. As will be shown in experiments, the improved context genera-
tion strategy could significantly enhance model performance.285

4.4. Model Optimization Process

As elaborated above, the two branches are trained to learn sample-perturbed
local features and the graph-structured global features, respectively. Then, we
concatenate the outputs of f(·) and h(·) to predict the class labels of the input
sample x. The overall semi-supervised objective function is defined in (8).290

L = Ls(fθ(x), y) + λ1Lemb + λ2Lcons (8)

where Ls is supervised cross-entropy loss, λ1, λ2 are balancing coefficients trad-
ing off between supervised and unsupervised loss terms. For a labeled sample,
we compute all loss terms to update model weights and for an unlabeled sample,
we compute the last two unsupervised loss terms to update model weights.

To improve learning efficiency, we introduce a new method to increase the295

diversity of model weights directly. Fast-SWA [23] shows that weight diversity
is crucial for model generalization. However, it applies the averaging strategy to
epochs with a large training interval in order to maintain the diversity of student
model parameters. Therefore it needs longer training length to integrate more
diverse models. As a result, the training efficiency of fast-SWA is extremely low.300

Here, we propose an explicit weight decay model ensembing method calculated
by (9).

θt = (1− ε)θt−1 (9)

where ε is a coefficient hyperparameter. Note that it is decoupled with learning
rate when using SGD optimizer [41] and different from L2 regularization when
applying Adam optimizer [42]. Comparing with [43], we remove the scaling305

factor ηt, aiming to add a larger penalty that greatly improves the parameters’
diversity. Equation (9) could be applied to the online teacher model ensembling.
At each training step, we first take a gradient descent step on θt−1. Then we
use (9) to update the parameters of student model directly. Finally, we apply
(3) to integrate the teacher model with more diverse “students” generated by310

(9). Notice that we apply (9) and (3) to the whole parameter set θ, which could
increases the quality of consistency target f(x̃, ν′) in (5).

To understand why the new method could improve parameters’ diversity of
the student model at each iteration and enhance training efficiency, the per-
formance gains of fast-SWA and our proposed method with the same training315

length are depicted in Fig. 5. In experiment we will show that the ensemble
teacher model’s performance and training efficiency is dramatically improved
by combining (9) and (3).

Given these, the training process are as follows. Firstly, taking a randomly
selected batch of samples and m anchors as network’s input, we could obtain320

12

(a) Fast-SWA [23] (b) Ours

Figure 5: Train error surface (orange) and test error surface (blue) (approximately convex
refer to [44]). Red dots depict different model weights, blue star represents the ensemble
model. C denotes the performance gain. Our method could integrate more diverse models
than fast-SWA with the same training length to achieve a larger C.

their output features and pseudo labels ỹ. Here, we simply select m samples
randomly from training data to make the anchoring point set and the rest
samples are treated as non-anchoring points, because k-means or k-medoids
cost significant computations on large dataset but the final results are similar
to random selection. Then we sample corresponding triplets (xi, ct, γ) based on325

(6) and Algorithm 1. Finally we take the batch of samples as input again and
calculate loss L in (8) to update the parameters of student models and teacher
models.

5. Experiments

In this section, we conduct experiments on two image datasets (SVHN [45]330

and CIFAR-10 [46]) and three text datasets (Citeseer, Cora and Pubmed [47])
to demonstrate the effectiveness of our approach. We compare our results with
popular methods, including recently proposed state-of-the-art methods.

5.1. Datasets and Preprocessing

Image Datasets. In SVHN, there are 73257 training samples and 26032 test335

samples of size 32×32×3. Each sample is any digit from 0 to 9. We scale each
image to zero mean and unit variance. CIFAR-10 has a training set of 50000
samples and a test set of 10000 samples, with the same size as SVHN. There
are also 10 classes including dog, bird, car, etc. We normalize the samples in
CIFAR-10 by per-channel standardization. In addition, we perform standard340

data augmentation for SVHN and CIFAR-10 (2-pixel random translation on
both datasets and random horizontal flip on CIFAR-10).

Text Datasets. In text datasets, sample features are bag-of-words representa-
tions of documents (i.e., binary vectors that represent corresponding words
whether appear or not in Citeseer and Cora, TF-IDF vectors in Pubmed). Ci-345

tation links between the documents are also given. We set Wij = Wji = 1 in
(7) if document xi cites xj . The details of text datasets are listed in Table 1.

13

Table 1: Details of Text Datasets

Dataset Train Test Classes Features Edges
Citeseer 2312 1000 6 3703 4732

Cora 1708 1000 7 1433 5429
Pubmed 18717 1000 3 500 44338

5.2. Implementation Details

For image datasets, we evaluate the test error rate with different number of
labels. The labeled samples are randomly selected with a random seed. And we350

run the model for 5 times with different seeds to report the mean and standard
deviation of the test errors. We adopt the commonly used “CNN-13” architec-
ture [26, 27, 23, 31] as the feature extraction model in Fig. 1 for fair comparison.
The dimension of its output is b×6×6×128. fcons(·) is obtained by global aver-
age pooling of the output. The parameter settings of image datasets are tuned355

by cross validation and listed in Table 2. Since we randomly select a batch of
samples from the training set, the number of labels in a batch is various (’vary’).
And we define a epoch when the batch traverses all training samples. Because
the model is inaccurate at early training stage, we ramp up λ1, λ2 and learning
rate from 0 to their maximum values at the first 80 epochs. And the learning360

rate is ramp down to 0 at the last 50 epochs. We tune the parameters according
to the technique in [48].

Table 2: Parameter Settings of Image Datasets

Parameters Value
Dimension of f(·) b×128
Dimension of g(·) b×1024
Dimension of h(·) b×128

Anchors m 500
Neighbors and non-neighbors (s, o) (5, 100)

β 1.0
(r1, r2) (0.5, 0.2)
Max λ1 0.2

Max λ2 for SVHN, CIFAR-10 1.5, 8.0
Batch size and labels in a batch (b, bl) (100, ’vary’)

Explicit weight decay ε 0.0001
Optimizer Adam

Max learning rate 0.003
Training length 400 epochs

For text datasets, we use the same data splits as in [20]. Specifically, we

14

randomly select 20 samples from each class as labeled data, 1000 samples as
test data, and the rest remain as unlabeled data. We compute the average365

accuracy here. Notice that our approach is inductive (i.e., model could predict
unobserved samples when testing) similar to Planetoid-I [20]. We use direct
connections instead of MLP in Fig. 1 because we find complicated MLP leads
to overfitting. Similarly, the parameter settings of text datasets are tuned by
cross validation and listed in Table 34. Similarly, we ramp up λ1 from 0 to370

its maximum value at the first 4000 iterations. Besides, we do not use data
augmentation on text datasets for fair comparison. Thus Lcons hardly works
(|f(x, ν)−f(x, ν′)| → 0). We set λ2 ≡ 0. And dynamic anchor graph embedding
loss Lemb acts as the only unsupervised regularization of the model.

Table 3: Parameter Settings of Text Datasets

Parameters Value
Dimension of f(·) for 3 datasets 6, 7, 3

Dimension of g(·) b×20
Dimension of h(·) for 3 datasets 6, 7, 3

Anchors m 200
Neighbors and non-neighbors (s, o) (5, 50)

β 1.0
(r1, r2) (0.5, 0.2)
Max λ1 3.25
λ2 0.0

Batch size and labels in a batch (b, bl) (100, 20)
Explicit weight decay ε 0.00005

Optimizer SGD, Momentum=0.5
Max learning rate 0.1
Training length 30000 iterations

5.3. Image Classification Results375

We perform experiments on SVHN with 250, 500, 1000 labels and CIFAR-
10 with 1000, 2000, 4000 labels respectively. The number of labeled samples
are balanced referring to other DSSL algorithms. We compare our method
with recently state-of-the-art consistency-based DSSL models (i.e., Π model [26],
TempEns [26], MT [27], VAT [29], VAdD [30], fast-SWA [23], WCP [31]) and380

GDSSL models (i.e., LPDSSL [16], SNTG [15]). Notice that we use the same
CNN model and data augmentation as these algorithms for fair comparison.
And the results of LPDSSL on SVHN are reproduced by us. The test error
rates are listed in Table 4 and Table 5 respectively. Numbers in parentheses
indicate the training length (epochs).385

4We use a different “o” in vision tasks because there are more samples on image datasets.

15

Table 4: Test Error Rates (%) on SVHN

Method 250 labels 500 labels 1000 labels
Π model [26] 9.93 ± 1.15 6.65 ± 0.53 4.82 ± 0.17
TempEns [26] 12.62 ± 2.91 5.12 ± 0.13 4.42 ± 0.16

MT [27] 4.35 ± 0.50 4.18 ± 0.27 3.95 ± 0.19
VAT [29] - - 5.42 ± 0.22

VAdD [30] - - 4.26 ± 0.14
WCP [31] 4.29 ± 0.10 3.75 ± 0.11 3.58 ± 0.19

LPDSSL [16] 18.45 9.49 7.38
Π+SNTG [15] 5.07 ± 0.25 4.52 ± 0.30 3.82 ± 0.25

TempEns+SNTG [15] 5.36 ± 0.57 4.46 ± 0.26 3.98 ± 0.21
Oursa (400) 3.70 ± 0.21 3.68 ± 0.24 3.51 ± 0.12

aTeacher model.

Table 5: Test Error Rates (%) on CIFAR-10

Method 1000 labels 2000 labels 4000 labels
Π model [26] 31.65 ± 1.20 17.57 ± 0.44 12.36 ± 0.31
TempEns [26] 23.31 ± 1.01 15.64 ± 0.39 12.16 ± 0.24

MT [27] 21.55 ± 1.48 15.73 ± 0.31 12.31 ± 0.28
VAT [29] - - 11.36 ± 0.34

VAdD [30] - - 11.32 ± 0.11
WCP [31] 17.62 ± 1.52 11.93 ± 0.39 9.72 ± 0.31

fast-SWA (480)[23] 16.84 ± 0.62 12.24 ± 0.31 9.86 ± 0.27
fast-SWA (1200)[23] 15.58 ± 0.12 11.02 ± 0.23 9.05 ± 0.21

LPDSSL [16] 22.02 ± 0.88 15.66 ± 0.35 12.69 ± 0.29
Π+SNTG [15] 21.23 ± 1.27 14.65 ± 0.31 11.00 ± 0.13

TempEns+SNTG [15] 18.41 ± 0.52 13.64 ± 0.32 10.93 ± 0.14
Oursa (400) 14.00 ± 0.49 10.70 ± 0.43 9.01 ± 0.24

aTeacher model.

16

Notably, our approach achieves state-of-the-art results on SVHN and CIFAR-
10 with standard data augmentation. The error rates are 0.59%, 0.07% and
0.07% lower than WCP on SVHN and 1.58%, 0.32% and 0.04% lower than
fast-SWA (1200) on CIFAR-10. The superiority of our approach becomes more
obvious as the number of labels decreases. The strong performance suggests390

that the local output features of single-sample consistency branch and global
outputs of graph embedding branch could effectively cooperate to predict class
labels in our model. Besides, explicit weight decay in (9) largely improves the
parameters’ diversity of the student model, which in turn improves the teacher’s
performance. Specifically, our model is much more efficient than fast-SWA. We395

obtain better results with a training length of 400 than fast-SWA with 1200
epochs.

The t-SNE [49] visualizations of our method and Planetoid [20] on CIFAR-
10 with 4000 labels are depicted in Fig. 6. From the figure one can see that in
our method, different classes are better separated than Planetoid.400

(a) Planetoid (b) Ours

Figure 6: t-SNE Visualizations of graph embeddings of our model and Planetoid on the test
set of CIFAR-10 respectively. Each color denotes a class.

We also provide ablation studies on CIFAR-10 with 4000 labels to verify
the effectiveness of explicit weight decay and the combination of two sampling
branches, which is shown in Table 6 and Table 7 respectively.

Table 6: Ablation Studies with Different ε

Explicit Weight Test Error Rates
Decay Coefficient Teacher Model Student Model
ε = 0 11.51 12.53
ε = 0.00005 9.46 10.63
ε = 0.0001 8.77 19.07

Table 6 indicates that as ε increases, the prediction ability of student model
is reduced to some extent. However, the performance gains of teacher model405

greatly improves since the parameters’ diversity of the “student” increases. And
Table 7 shows that combination of two sampling branches makes the model

17

Table 7: Ablation Studies with Different Sampling Branches

Sampling Branch Test Error Rates
Only based on matrix Z 9.32
Only based on pseudo labels 8.96
Combination of two branches 8.77

generalize better.

5.4. Text Classification Results

We compare our approach with three inductive graph-based semi-supervised410

learning approaches including manifold regularization (MR) [50], semi-supervised
embedding (SSEmb)[14] and Planetoid-I [20]. The results are displayed in Ta-
ble 8. “Feat” is a baseline method, which is a linear softmax model taking the
feature x as input directly.

Table 8: Average Classification Accuracy (%) on Text Datasets

Method Citeseer Cora Pubmed
Feat 57.2 57.4 69.8

MR [50] 60.1 59.5 70.7
SSEmb [14] 59.6 59.0 71.1

Planetoid-I [20] 64.7 61.2 77.2
Ours 67.1 65.1 76.5

From Table 8, we can see that our dynamic anchor graph embedding learning415

approach outperforms other approaches by a large margin on Citeseer and Cora
dataset. Specifically, an accuracy improvement of 2.4% and 3.9% compared to
Planetoid-I respectively. And on Pubmed, the performance of our model is very
close to Planetoid-I (only 0.7% lower). Notice that we do not use augmentation
or consistency regularization. All of these demonstrate that dynamic graph420

could discover new, accurate connections between samples and anchors.
We also conduct parameter sensitivity experiment with different number of

anchors on Citeseer dataset, as presented in Fig. 7. When the number of anchors
is small, they cannot cover the whole dataset, which has a bad influence on
model performance. However, as the anchor size m increases, the performance425

gradually improves and finally tends to be saturated, which conforms to the
statement in the above section.

6. Conclusions

Recently, different DSSL algorithms have been developed to classify grid-
structured data or graph-structured data [9, 51], but most of them force on one430

18

Figure 7: Parameter sensitivity experiment with different number of anchors m. We set
m = 200 (star) in our experiment.

type data or the other. In this paper, we proposed a dynamic anchor graph
embedding learning algorithm which is capable of classifying both types and is
verified on image and text data classification. The model is trained jointly by lo-
cal features of single-sample consistency branch and global features of dynamic
graph embedding branch. The main contributions include: a) in contrast to435

previous graph embedding learning approaches, we dynamically construct an
anchor graph using the stronger outputs of single-sample consistency branch,
then graph embeddings are trained utilizing both the graph and the pseudo
labels using labeled and unlabeled data; b) we introduce an explicit weight de-
cay that largely increases student model’s diversity, and its combination with440

model ensembling (temporal weight averaging) dramatically improves training
efficiency and generalization performance. Experimental results on five bench-
mark datasets have demonstrated the effectiveness of our approach.

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-445

nition, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[2] M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional
neural networks, in: International conference on machine learning, 2019,
pp. 6105–6114.450

[3] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, in: Proceedings of
the 2019 conference of the north american chapter of the association for
computational linguistics: human language technologies, volume 1 (long
and short papers), 2019, pp. 4171–4186.455

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
et al., Language models are few-shot learners, in: Advances in neural in-
formation processing systems, 2020.

19

[5] Z. Xie, E. Tu, H. Zheng, Y. Gu, J. Yang, Semi-supervised skin le-
sion segmentation with learning model confidence, in: ICASSP 2021-2021460

IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2021, pp. 1135–1139.

[6] P. Baguley, R. Roy, J. Watson, Cost of physical vehicle crash testing, in:
Collaborative Product and Service Life Cycle Management for a Sustain-
able World, Springer, 2008, pp. 113–121.465

[7] X. J. Zhu, Semi-supervised learning literature survey.

[8] J. E. Van Engelen, H. H. Hoos, A survey on semi-supervised learning,
Machine learning 109 (2) (2020) 373–440.

[9] G.-J. Qi, J. Luo, Small data challenges in big data era: A survey of recent
progress on unsupervised and semi-supervised methods, IEEE Transactions470

on Pattern Analysis and Machine Intelligence.

[10] I. Pitas, Graph-based social media analysis, Vol. 39, CRC Press, 2016.

[11] W. Lu, J. Janssen, E. Milios, N. Japkowicz, Y. Zhang, Node similarity
in the citation graph, Knowledge and Information Systems 11 (1) (2007)
105–129.475

[12] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, P. Vandergheynst,
Graph signal processing: Overview, challenges, and applications, Proceed-
ings of the IEEE 106 (5) (2018) 808–828.

[13] A. J. Smola, R. Kondor, Kernels and regularization on graphs, in: Learning
theory and kernel machines, Springer, 2003, pp. 144–158.480

[14] J. Weston, F. Ratle, H. Mobahi, R. Collobert, Deep learning via semi-
supervised embedding, in: Neural networks: Tricks of the trade, 2012, pp.
639–655.

[15] Y. Luo, J. Zhu, M. Li, Y. Ren, B. Zhang, Smooth neighbors on teacher
graphs for semi-supervised learning, in: Proceedings of the IEEE conference485

on computer vision and pattern recognition, 2018, pp. 8896–8905.

[16] A. Iscen, G. Tolias, Y. Avrithis, O. Chum, Label propagation for deep semi-
supervised learning, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2019, pp. 5070–5079.

[17] K. Kamnitsas, D. Castro, L. Le Folgoc, I. Walker, R. Tanno, D. Rueckert,490

et al., Semi-supervised learning via compact latent space clustering, in:
International conference on machine learning, 2018, pp. 2459–2468.

[18] A. El Alaoui, X. Cheng, A. Ramdas, M. J. Wainwright, M. I. Jor-
dan, Asymptotic behavior of\ell p-based laplacian regularization in semi-
supervised learning, in: Conference on Learning Theory, PMLR, 2016, pp.495

879–906.

20

[19] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolu-
tional networks, arXiv preprint arXiv:1609.02907.

[20] Z. Yang, W. Cohen, R. Salakhudinov, Revisiting semi-supervised learning
with graph embeddings, in: International conference on machine learning,500

2016, pp. 40–48.

[21] X. Yan, L. Zhang, W.-J. Li, Semi-supervised deep hashing with a bipartite
graph., in: Proceedings of the international joint conference on artificial
intelligence, 2017, pp. 3238–3244.

[22] B. M. Wagar, M. J. Dixon, Past experience influences object representation505

in working memory, Brain and Cognition 57 (3) (2005) 248–256.

[23] B. Athiwaratkun, M. Finzi, P. Izmailov, A. G. Wilson, There are many
consistent explanations of unlabeled data: Why you should average, in:
International conference on learning representations, 2019.

[24] A. Rasmus, H. Valpola, M. Honkala, M. Berglund, T. Raiko, Semi-510

supervised learning with ladder networks, arXiv preprint arXiv:1507.02672.

[25] M. Sajjadi, M. Javanmardi, T. Tasdizen, Regularization with stochastic
transformations and perturbations for deep semi-supervised learning, in:
Advances in neural information processing systems, 2016, pp. 1163–1171.

[26] S. Laine, T. Aila, Temporal ensembling for semi-supervised learning, in:515

International conference on learning representations, 2017.

[27] A. Tarvainen, H. Valpola, Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results,
in: Advances in neural information processing systems, 2017, pp. 1195–
1204.520

[28] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, C. Raffel,
Mixmatch: A holistic approach to semi-supervised learning, arXiv preprint
arXiv:1905.02249.

[29] T. Miyato, S.-i. Maeda, M. Koyama, S. Ishii, Virtual adversarial training: A
regularization method for supervised and semi-supervised learning, IEEE525

transactions on pattern analysis and machine intelligence 41 (8) (2018)
1979–1993.

[30] S. Park, J. Park, S.-J. Shin, I.-C. Moon, Adversarial dropout for supervised
and semi-supervised learning, in: Proceedings of the AAAI conference on
artificial intelligence, Vol. 32, 2018.530

[31] L. Zhang, G.-J. Qi, Wcp: Worst-case perturbations for semi-supervised
deep learning, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2020, pp. 3912–3921.

21

[32] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q. V. Le, Autoaug-
ment: Learning augmentation strategies from data, in: Proceedings of535

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 113–123.

[33] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, in: Proceedings of ACM SIGKDD international conference
on knowledge discovery and data mining, 2014, pp. 701–710.540

[34] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale
information network embedding, in: Proceedings of the 24th international
conference on world wide web, 2015, pp. 1067–1077.

[35] M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph
domains, in: Proceedings. 2005 IEEE International Joint Conference on545

Neural Networks, 2005., Vol. 2, IEEE, 2005, pp. 729–734.

[36] S. Zhang, H. Tong, J. Xu, R. Maciejewski, Graph convolutional networks:
a comprehensive review, Computational Social Networks 6 (1) (2019) 1–23.

[37] Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks
for semi-supervised learning, in: Proceedings of the AAAI Conference on550

Artificial Intelligence, Vol. 32, 2018.

[38] L. Qiao, L. Zhang, S. Chen, D. Shen, Data-driven graph construction and
graph learning: A review, Neurocomputing 312 (2018) 336–351.

[39] B. Yang, X. Fu, N. D. Sidiropoulos, M. Hong, Towards k-means-friendly
spaces: Simultaneous deep learning and clustering, in: international con-555

ference on machine learning, PMLR, 2017, pp. 3861–3870.

[40] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Ku-
rakin, H. Zhang, C. Raffel, Fixmatch: Simplifying semi-supervised learning
with consistency and confidence, arXiv preprint arXiv:2001.07685.

[41] L. Bottou, Large-scale machine learning with stochastic gradient descent,560

in: Proceedings of the international conference on computational statistics,
2010, pp. 177–186.

[42] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
International conference on learning representations, 2015.

[43] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in: Inter-565

national conference on learning representations, 2019.

[44] I. J. Goodfellow, O. Vinyals, Qualitatively characterizing neural network
optimization problems, in: International conference on learning represen-
tations, 2015.

22

[45] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, Reading570

digits in natural images with unsupervised feature learning, in: Advances
in neural information processing systems workshops, 2011.

[46] A. Krizhevsky, Learning multiple layers of features from tiny images, Mas-
ter’s thesis, University of Tront.

[47] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad,575

Collective classification in network data, AI magazine 29 (3) (2008) 93–93.

[48] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, I. Goodfellow, Realistic
evaluation of deep semi-supervised learning algorithms, in: Advances in
neural information processing systems, 2018, pp. 3235–3246.

[49] L. v. d. Maaten, G. Hinton, Visualizing data using t-sne, Journal of machine580

learning research 9 (Nov) (2008) 2579–2605.

[50] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples, Journal of
machine learning research 7 (Nov) (2006) 2399–2434.

[51] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and per-585

formance: A survey, Knowledge-Based Systems 151 (2018) 78–94.

23

