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Abstract: Global Navigation Satellite System Reflectometry (GNSS-R) is a rapidly developing Earth
observation technology that makes use of signals of opportunity from Global Navigation Satellite
Systems that have been reflected off the Earth’s surface. The Cyclone Global Navigation Satellite
System (CyGNSS) is a constellation of eight small satellites launched by NASA in 2016, carrying ded-
icated GNSS-R payloads to measure ocean surface wind speed at low latitudes (±35◦ North/South).
The ESA ECOLOGY project evaluated CyGNSS v3.0 products, which were recently released follow-
ing various calibration updates. This paper examines the performance of the new calibration by
evaluating CyGNSS v3.0 Level-1 Normalised Bistatic Radar Cross Section (NBRCS) and Leading
Edge Slope (LES) data from individual CyGNSS units and different GPS transmitters under constant
ocean wind conditions. Results indicate that L1 NBRCS from individual CyGNSS units are well
inter-calibrated and remarkably stable over time, a significant improvement over previous versions
of the products. However, prominent geographical biases reaching over 3 dB are found in NBRCS,
linked to factors including the choice of GPS transmitter and the bistatic geometry. L1 LES shows
similar anomalies as well as a secondary geographical pattern of biases. These findings provide a
basis for further improvement of CyGNSS Level-2 wind products and have wider applicability to
improving the calibration of GNSS-R sensors for the remote sensing of non-ocean Earth surfaces.

Keywords: global navigation satellite system; GNSS; GNSS reflectometry; GNSS-R; CyGNSS; ocean
remote sensing; calibration; validation; wind speed

1. Introduction

Following the first proposal of the GNSS-R principle for scatterometry in the late
1980s [1], and later in the early 1990s for ocean altimetry [2], the technology was later
demonstrated from low-Earth-orbit altitudes by the UK-Disaster Monitoring Constellation
(UK-DMC) [3] and UK TechDemoSat-1 (TDS-1) missions [4,5]. It has since been imple-
mented as a dedicated mission with the NASA CyGNSS constellation of small satellites [6].
GNSS-R receivers detect and correlate reflected GNSS signals with the direct signals from
the same GNSS transmitter to produce delay Doppler maps (DDMs). GNSS-R is particu-
larly promising as it does not require a dedicated transmitter, thereby reducing the cost,
mass, and power requirements of the instrument. These advantages offer the potential to
deploy GNSS-R sensors as payloads of opportunity aboard other missions or as low-cost
multi-satellite constellations.

Examining the correlation between the reflected and direct signals allows inference of
a number of Earth surface parameters, which can be broadly categorised as being associated
with surface reflectivity (scatterometry) or surface elevation (altimetry). GNSS-R has been
particularly well demonstrated for the remote sensing of ocean wind speed [5,7–9], and
also for other geophysical variables including sea ice and soil moisture [10,11]. Retrieval
of ocean wind speed works on the principle of increased wind speed driving an increase
in the mean square slope (MSS) of waves. The normalised bistatic radar cross-section
(NBRCS) describes the strength of the signal scattered of the rough surface in the direction
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of the receiver’s antenna, which will decrease with an increase in MSS, as detailed by the
bistatic radar equation [12].

NASA CyGNSS is a constellation of eight small satellites (aka flight models, or FM)
with GNSS-R receivers as the unique scientific payload. CyGNSS has the primary ob-
jective of measuring wind speed in hurricanes and tropical cyclones with high temporal
frequency [13]. This goal is addressed by using a constellation of eight satellites in a low
inclination orbital plane to enable rapid revisit times (of the order of hours). In addition,
the use of L-band microwave signals (GPS L1 wavelength ~19 cm) should make GNSS-R
less sensitive to attenuation due to the presence of water vapour or liquid rain in the atmo-
sphere, as in the case of tropical cyclones. Since launch, CyGNSS GNSS reflections have
also been shown to be sensitive to other geophysical parameters, including soil moisture
content, aboveground biomass, and inundation [11,14], providing an opportunity to also
demonstrate the potential of GNSS-R for the remote sensing of land and hydrological
properties.

A new version of the CyGNSS products (v3.0) was recently released by NASA. v3.0
uses an improved calibration approach that aims to address some of the anomalies observed
in previous versions of CyGNSS Level-2 winds, including anomalous temporal trends and
biases between GPS blocks (production generations of GPS satellites) [15]. For the first
time, CyGNSS v3.0 data processing includes signal calibration sub-modules that make use
of data collected by the up-pointing zenith antenna to directly measure the power of direct
signals available from GPS satellites [16] following previous efforts to characterise GPS
transmit power and antenna patterns using ground-based data [17]. This paper presents an
assessment of these latest CyGNSS products at Level 1, with particular attention given to
the temporal stability and spatial homogeneity of CyGNSS calibrated Level-1 observables.

2. Data and Methods

Level-1 GNSS-R data from the CyGNSS v3.0 pre-release (Sandbox 210) dataset were
used in this analysis. This experimental dataset was made available to the CyGNSS Science
Team for testing and validation prior to public release. Minimal differences are expected
between the pre-release and public release of version v3.0. The CyGNSS L1-to-L2 ocean
inversion algorithms currently adopt a combination of two GNSS-R observables for the
retrieval of ocean wind speed, both of which are assessed here. The first is the NBRCS,
which is linked to the peak power of the reflected signals in the DDM; the second is the
leading edge slope (LES), associated with the slope of the delay waveform of correlated
forward-scattered power.

CyGNSS L1 DDMs are calibrated to account for a number of system and instrument
effects, including platform attitude, receiving antenna pattern, viewing geometry, satellite
vehicle number (SVN, i.e., the identifier for individual GPS transmitters), and available
direct GPS power. The signal calibration scheme adopted in CyGNSS v3.0 relies on the
use of estimates of direct GPS power data collected from the zenith front-end in order to
(a) compensate for differences in GPS transmitter antenna patterns and (b) compensate
for changes in transmit power over time, which is crucially important when GPS flex
modes are enabled [16]. Up until the previous release (CyGNSS v2.1), transmitter antenna
calibration was based on information made available by the GPS satellite manufacturer;
however, significant discrepancies are known to exist between pre-launch and actual GPS
transmitter antenna patterns. In-flight estimates of direct power are only available starting
from August 2018, when the automatic gain control mode of the zenith GPS receivers flown
on the CyGNSS constellation was switched off [18]. Available CyGNSS L1 records from
August 2018 until December 2019 are examined in this study. CyGNSS L1 data are posted
at 1 Hz until approximately June 2018, when the posting rate doubles to 2 Hz (Figure 1).
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Figure 1. Temporal availability of CyGNSS records by flight model (FM01-FM08).

The scattering of GNSS signals over the ocean is known to be primarily controlled by
the mean square slope of the ocean surface, which is driven (to first order) by the wind
speed above the surface. By using reference ocean data to characterise ocean conditions,
CyGNSS L1 observables will be assessed independently of ocean wind speed. Our analysis
of the response of reflected GPS signals collected by the CyGNSS constellation is thus
based on the use of verification data from ECMWF ERA-5 model output. ERA-5 is a global
climate reanalysis product released by ECMWF and accessible freely from apps.ecmwf.
int/data-catalogues/era5. For the assessment of CyGNSS L1 products, the ERA-5 HRES
(high-resolution realisation) output is used. The HRES atmospheric data have a spatial
resolution of 31 km and a temporal resolution of 1 h. ERA-5 outputs a multitude of ocean,
atmosphere, and surface geophysical parameters. Previous validation work on ERA-5 wind
speed products has shown stable temporal performance relative to observations, as well
as favourable spatial performance [19,20]. In order to isolate any possible residual effects
associated with non-geophysical parameters, whilst maintaining a large volume of data,
model data from ERA-5 were used to select CyGNSS records collected within a limited
range of surface conditions centred around the global ocean average wind speed (~7 m/s);
specifically, only data with associated ERA-5 wind speeds of between 6 and 8 m/s were
selected for analysis. ERA-5 data were collocated with CyGNSS specular points using the
nearest point in space and time, which corresponds to a maximum spatial offset to the
specular point of half a grid cell (15.5 km), although it should be noted that the size of
the glistening zone is approximately 25 km in average ocean conditions. The maximum
temporal offset is 30 min.

3. Results
3.1. Temporal Stability

The temporal stability of NBRCS from the CyGNSS v3.0 Sandbox 210 dataset was
assessed at average surface wind speed conditions (U10 ~7 m/s). Results presented in
Figure 2 show remarkable temporal stability (within ~0.2 dB) across the entire time-series
for all receivers, apart from an initial phase seen in FM05 only. An ~0.2 dB magnitude
deviation would be expected to lead to minimal biases in wind speed at average conditions,
although it may become more significant in high wind speeds [21]. Calibration between
the individual receivers also appears to be excellent, with a variability between CyGNSS
units within a range of less than 0.1 dB.

apps.ecmwf.int/data-catalogues/era5
apps.ecmwf.int/data-catalogues/era5
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3.2. Geographical Homogeneity

Following the assessment of temporal stability, an assessment of geographical stability
was carried out, again at fixed wind speed conditions (U10 ~7 m/s). The analysis presented
here considers a single transmitter–receiver pair, but similar results were found using
other configurations. Figure 3 top shows a global map of NBRCS reported by the bistatic
radar consisting of SVN70 (GPS transmitter) and FM03 (CyGNSS receiver). A well-defined
geographical pattern of NBRCS is found around the globe, repeating every 90 degrees in
longitude, which cannot be directly attributed to an origin of geophysical nature. A map
of the average incidence angle (the vertical angle between the signal path and the line
perpendicular to the surface at the specular point) between the transmitter and receiver
reveals a similar pattern to NBRCS (Figure 3 bottom). Similar longitudinal NBRCS patterns
were found in other transmitter–receiver pairs, albeit varying in magnitude and location.
Given the strong correlation between the spatial patterns of NBRCS (Figure 3 top) and
the corresponding incidence angle (Figure 3 bottom), it can be speculated that most of the
observed NBRCS spatial inhomogeneity can be attributed to the residual dependence of
NBRCS on geometry. Thus, further investigation of the relationship between NBRCS and
geometry was conducted.

The residual dependence of NBRCS on the incidence angle was examined (Figure 4)
for each individual CyGNSS unit and averaged across all GPS transmitters. Overall, as
found above, the consistency between different CyGNSS units is good, with similar sen-
sitivity to viewing geometry. However, NBRCS variability with incidence angle exceeds
2 dB, for all CyGNSS receivers. The NBRCS relationship shows a large drop at incidences
beyond 50◦ and a smaller drop is observed in the range of 5◦–15◦.

Finally, the dependence on the azimuth angle (the angle, in the horizontal plane, of the
specular point relative to the receiver’s path of travel) is assessed, with results (Figure 5)
showing a non-negligible residual effect in NBRCS of up to ~1 dB for all FMs. In light of
these findings, it can be concluded that the observed geographical NBRCS biases can be
primarily attributed to residual sensitivity to both azimuth and incidence angle.

3.3. Analysis by GPS Transmitter

Residual dependence on geometry is found to play a prominent role in v3.0 CyGNSS
data, with the effect observed to be relatively consistent between receivers (Figure 4).
To further understand the geometric dependencies, additional investigations segmented
by GPS transmitter (SVN) were performed. Figure 6 shows the dependence of NBRCS
estimates on the incidence angle for one CyGNSS receiver (FM03), segmented by individual
GPS transmitters (and coloured by the GPS block). At a given wind speed (U10 ~7 m/s), a
substantial range (of up to ~3 dB) of NBRCS estimates can be seen between the individual
SVNs across 0◦–65◦ incidence.
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angle; each line represents a different GPS transmitter/SVN and is coloured by the GPS block to
which the transmitter belongs.

Further, the dependency on geometry seems to depend on both the individual GPS
transmitter and the GPS blocks. More specifically, all SVNs within a given block show a
similar relationship with incidence; however, individual SVNs within each block show
slight variations around this relationship, as well as overall differences in average NBRCS.
This difference between blocks is most marked in Block IIR(A) at incidence angles <30◦,
where NBRCS estimates can be ~2 dB higher than those found in the other blocks. Addi-
tionally, only Block IIF shows approximately constant NBRCS estimates at incidence angles
>50◦, whereas the other blocks are associated with NBRCS decreases. Significant variability
between SVNs is also seen within a given block (up to ~1 dB), which counters the general
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expectation that similar hardware designs within blocks should lead to similar transmitted
power levels at a given geometry.

3.4. Leading Edge Slope (LES)

In addition to NBRCS, the current CyGNSS ocean wind speed retrieval algorithms
use a second observable, the LES of the waveform of reflected GPS power. In view of
the findings relating to NBRCS, similar investigations of CyGNSS LES data were per-
formed, temporally and in relation to SVN/block and geometry, with very similar results
(Appendix A). However, some additional dependencies were found, which are presented
here. It needs to be noted that, although the analysis shows LES values converted to dB
(i.e., 10 log10), these are not directly representative of any power property and, as such, are
not directly comparable to equivalent NBRCS values.

Global maps of LES for a given bistatic configuration show similar geographical
patterns as for NBRCS in Figure 4 (not shown). However, the geographical distribution
of average LES (Figure 7 top) reported by a single receiver (FM03), averaged across all
transmitters, reveals the presence of an additional spatial pattern. Well-defined areas of
high and low LES are observed across the global ocean, with differences reaching ~1.5 dB.
These patterns show strong resemblance to the contours of the geoid (Figure 7 bottom).
This is likely related to how the LES is estimated from the DDMs and suggests that the
calculation needs to be further refined in order to prevent the sea surface height from
contaminating the LES observable and, subsequently, the L2 ocean wind products.
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4. Discussion
4.1. Posting Rate

As was seen in Figure 1, the data posting rate appears to have changed to 2 Hz from
July 2019, approximately simultaneously on all CyGNSS satellites (although FM02 appears
to change in August, after an earlier abortive attempt in June). It should be noted that this
change does not appear to be currently documented, although publications in the literature
note the potential that this change offers for improved observations over land waterbodies,
e.g., rivers [23], in terms of on-ground resolution. Over ocean, no change is seen in the
time-series of average NBRCS at U10 ~7 m/s, although a corresponding change in DDM
SNR along with increased NBRCS variability are expected due to the shorter time available
for incoherent accumulation of the signal (500 ms).

4.2. Potential Impacts of Observable Biases on Geophysical Retrievals

Large-magnitude deviations are seen in both L1 observables at average ocean wind
speed (U10 ~7 m/s), primarily related to changes in viewing geometry, as well as to the
GPS transmitter (Figures 4–6). However, when looking at global climatologies, the effect
of these residual dependencies is likely to be partly obscured due to averaging across
the large variability of ocean surface conditions, the number of GPS transmitters, and the
number of CyGNSS receivers. However, significant biases are to be expected on shorter
spatiotemporal scales, also depending on the transmitter–receiver pair considered. Such
L1 deviations are likely to have a significant impact on ocean wind speed retrieval. In
particular, given the known inverse relationship between NBRCS and U10 [24], the 3 dB
range in NBRCS across geometries is expected to introduce a bias of several m/s already at
low-to-moderate wind speeds, with an increasingly stronger impact at higher speeds [21].
The impact on LES is expected to be similar. As such, it is important that steps are taken
towards the mitigation of these residual calibration inaccuracies ahead of the release of
future versions of the CyGNSS products.

4.3. Potential Origins of Observable Biases

The primary effect on NBRCS and LES is shown to be associated with geometry
(Figures 4–6), and the primary cause of this likely relates to inaccuracies in the knowledge
of antenna gain patterns on both the receiving and transmitting ends. Because of the
bistatic nature of the GNSS-R system, two separate antennas are involved in the signal
calibration process: one of the two nadir antennas on each CyGNSS receiver, and one
from the individual GPS transmitter where the signal originates [25]. The nadir CyGNSS
antennas seem to be well inter-calibrated across the constellation, but the consistency of the
NBRCS bias pattern might indicate that some of the geometry effect also originates from
the receiver end (Figures 4 and 5). It should be noted that the current CyGNSS L2 ocean
wind speed algorithm also accounts for the incidence angle [26]; therefore, some of the L1
biases found in this study might well be compensated in the L1-to-L2 inversion process,
although L1 data users would need to implement their own corrections prior to inversion.
However, calibration inaccuracies originating from differences between individual GPS
transmitters appear to dominate (Figure 6). Part of this seems to be related to the GPS block,
as similar patterns are seen in each block, which likely relates to differences in antenna
design. There is a further component that shows as a bias of up to ~1dB between individual
transmitters within a block (although with a similar relationship with geometry), which
likely relates to differences in actual transmit power between the individual SVNs, perhaps
due to differences in hardware age.

One additional biasing effect is seen spatially; this, however, is only seen in the LES
observable, which shows ~1.5dB variation linked to mean sea surface height (Figure 7).
This is suspected to relate to inaccuracies in the identification of the waveform peak location
within the delay Doppler map (DDM).
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5. Conclusions

This work provides an assessment of CyGNSS L1 v3.0 products, which have been
recently updated to feature a novel calibration approach that includes the capability to
exploit data collected from the zenith front-end to account for the variability of available
GPS power.

Analysis of the CyGNSS L1 NBRCS shows good temporal stability and negligible
inter-receiver and inter-antenna biases, which are constrained to ~0.1 dB and <0.1 dB,
respectively. However, prominent geographical biases are found in the global climatologies
of NBRCS at given ocean surface conditions. Further examination of the dependence of
such biases reveals a strong correlation with viewing geometry, including a marked drop-
off at high incidence angles and some variability at lower ones, leading to the observed
geographical pattern. Detailed examination of this effect, further segmented by SVN
and GPS block, reveals that each block shows different relationships with geometry, with
marked biases even between individual SVNs belonging to the same GPS block, indicating
the persistence of issues linked to the power calibration of signals originating from different
transmitters at different angles.

As current CyGNSS L2 wind products are based on the use of two separate L1 ob-
servables (LES and NBRCS), the analysis conducted for NBRCS was extended to LES.
The examination of the LES observable led to very similar results as found for NBRCS in
terms of temporal stability, inter-FM bias, inter-antenna bias, and dependence on viewing
geometry (shown in the Appendix A). However, spatial maps of composite average LES
over all bistatic configurations revealed an additional geographical pattern that appears to
be correlated with the contours of the geoid. This additional pattern is likely associated
with inaccuracies in the current estimation process of the LES of the reflected waveform.

In summary, a number of biases and residual dependencies were found in the latest
CyGNSS v3.0 L1 NBRCS and LES products. All appear to be associated with issues either
related to unresolved instrument and processing effects or to inaccuracies in the process
of direct signal calibration. To avoid such issues in future GNSS-R missions and datasets,
particular attention should be given to how bistatic geometry as well as individual GPS
transmit powers are handled in the calibration process. Although only ocean-reflected
data were analysed here, the calibration effects found in this study are likely to similarly
affect land reflections. Given the growing interest in the community in the exploitation
of GNSS-R also for land and ice applications, these results highlight the need for further
improvements in our understanding of GNSS-R calibration ahead of future releases of the
CyGNSS products, as well as in preparation for future missions.
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