
1. Introduction
Ongoing climate change is one of the largest concerns of our time, and its largest impacts on the world's 
environment are yet to come. Global mean sea-level rise is accelerating since 1870, and is expected to con-
tinue rising over the 21st century, although acceleration may be avoided if the Paris Agreement “below 2°C 
climate warming” target is met (Church et al., 2013; Oppenheimer et al., 2019). In addition, global wave 
power is adapting to the sea surface temperature since the late 1940s (Reguero et al., 2019), and is expected 
to change along with storminess by 2100 (Morim et al., 2020).

Sandy beaches provide precious natural, structural and social-economical resources to coastal communities 
(Ghermandi & Nunes, 2013; Poumadère et al., 2015), and constitute about one third of the ice-free coasts 
worldwide (Luijendijk et al., 2018). Open sandy beaches constantly evolve in response to multiple envi-
ronmental drivers occurring on different time scales, making sandy shoreline dynamics strongly sensitive 
to sea-level rise and wave climate change (Ranasinghe, 2016, 2020). Meanwhile, the expected growth of 
population density in low-lying coastal areas during the twenty-first century (Merkens et al., 2016; Neu-
man et al., 2015) increases the need for efficient adaptation plans of coastal communities (Oppenheimer 
et al., 2019).

The spatial heterogeneity of sea-level rise (SLR), wave-climate change, time scales of adaptation, and vulner-
ability of coastal communities raises the need for shoreline projections with their related uncertainties that 
provide full support to risk-informed decision making process (Hinkel et al., 2019; Losada et al., 2019; Toimil 
et al., 2018, 2020; Wainwright et al., 2015). However, limits in our understanding and modeling capacity of 
the primary processes driving shoreline change, together with the uncertainties associated to the future cli-
mate (e.g., carbon emission scenario, SLR, storminess, etc.), undermine the confidence in future shoreline 
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estimates proportionally to the time scale of application (Ranasinghe, 2020; Toimil et al., 2020). Many stud-
ies focused on the effects of SLR uncertainties (Athanasiou et al.,  2020; Le Cozannet et al.,  2016, 2019; 
Thiéblemont et al., 2021; Vousdoukas et al., 2020) and changes in storminess based on data extrapolation 
and/or empirical models (Allenbach et al., 2015; Casas-Prat et al., 2016; Toimil et al., 2017; Vousdoukas 
et al., 2020) on future shoreline uncertainties. However, these studies do not explicitly resolve wave-driven 
shoreline change, and it is advocated that new methods have to be developed to predict the impacts of SLR 
on the coast (Cooper et al., 2020). Short- and long-term variability in wave energy, as well as the chronology 
of storm events, can strongly affect future shoreline patterns (Besio et al., 2017; Cagigal et al., 2020; Coco 
et al., 2014; Dissanayake et al., 2015; Vitousek et al., 2021). Recently, Cagigal et al. (2020) developed and 
used a stochastic climate-based wave emulator to generate ensembles of wave time series at several beaches, 
and addressed shoreline response to different wave chronologies. Based on the same emulator, Vitousek 
et al. (2021) analytically investigated the uncertainties in shoreline predictions associated to the inherent 
variability of the wave climate in the context of equilibrium shoreline modeling. Kroon et al. (2020) showed 
the significant effects of wave-climate variability and model uncertainty on the short-term (1 year) probabil-
istic assessment of coastline change at the Sand Engine (Netherlands). The authors used a one-line model, 
that is, resolving wave-driven longshore sediment transport gradients and resulting shoreline evolution, as 
this stretch of coast is longshore transport dominated.

Currently, there are no studies addressing the time evolution of the effects that uncertainties in future SLR 
and model parameters have on shoreline projections to the end of the 21st century while explicitly resolving 
wave-driven shoreline response. The recent development of equilibrium shoreline models opened the way 
to skilful simulation of wave-driven shoreline response on cross-shore transport dominated sites, which 
are ubiquitous worldwide, on time scales from hours (storm events) to decades, with low computational 
cost (Antolínez et al., 2019; Davidson et al., 2013; Lemos et al., 2018; Robinet et al., 2018; Splinter, Turner, 
et al., 2014; Vitousek et al., 2017; Yates et al., 2009). Equilibrium shoreline models are based on the principle 
that the shoreline dynamically moves toward a time-varying equilibrium condition (Wright & Short, 1984), 
which can be expressed as a function of the current shoreline position (Yates et al., 2009) or antecedent 
wave conditions (Davidson et al., 2013). While the two latter equilibrium formulations show similar skill 
against shoreline observations on a multi-year timescale (Castelle et al., 2014; Montaño et al., 2020), the 
accuracy of one approach over the other in different wave forcing scenarios is unclear, particularly on long 
timescales (multi-decadal). In addition, in this type of models, sediment transport processes are described 
by semi-empirical relationships that require site-specific calibration against observed shoreline data, intro-
ducing further uncertainty (D'Anna et al., 2020; Splinter et al., 2013). Implementations of cross-shore equi-
librium models into probabilistic frameworks recently showed that uncertainties in the calibration of model 
free parameters (D'Anna et al., 2020) and in future wave conditions (Vitousek et al., 2021) have a significant 
impact on model predictions. In addition, recent studies found an inherent connection between the season-
ality of wave climate and shoreline model parameters that defines the frequency of shoreline response, for 
several beaches along the Australian coast (Ibaceta et al., 2020; Splinter et al., 2017).

SLR-driven shoreline retreat is often estimated using the Bruun (1962) model. This model relates the rate 
of shoreline erosion to the SLR rate and the average slope of the active beach profile, defined between the 
seaward and landward limits of cross-shore sediment exchange. The seaward limit of the active beach pro-
file is commonly identified by the depth of closure (Hallermeier, 1978). As local scale bathymetric surveys 
are scarce and the estimation of the depth of closure is essentially empirical, the active beach profile slope 
is typically associated with large uncertainties (Nicholls, 1998; Ranasinghe et al., 2012).

In this work, we aim at deepening our understanding in the role and impact of different uncertainties in 
shoreline projections. We perform a global sensitivity analysis (GSA; Saltelli et  al.,  2008) to unravel the 
respective contributions of SLR, depth of closure, and shoreline model free parameters uncertainties. 
The framework is applied to the cross-shore dominated Truc Vert beach (SW France) using two different 
wave-driven shoreline models, the Bruun model, and state-of-the-art SLR and wave projections for two 
future representative concentration pathways (RCP) scenarios. The likely range provided along with medi-
an SLR estimates in IPCC reports does not cover the full uncertainty range of mean sea level projections. 
Hence, there remains a probability of up to 33% that sea-level rise exceeds the likely range. Therefore, we 
also assess shoreline projections in the deterministic high-end SLR scenario, which remains unlikely but 
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plausible and is associated with large impacts (Stammer et al., 2019). The remainder of this paper includes: 
an outline of Truc Vert beach, the data, the shoreline models, and the method (Section 2); a description 
of the GSA input variables' probability distributions and the numerical modeling setup (Section 3); and 
the presentation of the results (Section 4). Discussion and conclusions are provided in Sections 5 and 6, 
respectively.

2. Study Site, Data and Method
2.1. Truc Vert Beach

Truc Vert is a meso-macrotidal wave dominated sandy beach located in the south of the Gironde coast, 
southwest France, which extends roughly 100 km between the Gironde river estuary and the south of the 
Arcachon basin (Figures 1a and 1b). Truc Vert is backed by a high (∼20 m) and wide (∼250 m) coastal 
dune system (Robin et al., 2021). The wave climate is characterized by strong seasonal energy fluctuations, 
and strong interannual winter energy variability (Castelle, Dodet, et al., 2018; Charles et al., 2012; Robinet 
et al., 2016), the latter associated to large-scale climate patterns of atmospheric variability in the northeast 
Atlantic region (Castelle et al., 2017). Monthly averaged significant wave height ranges from 1.1 m in Au-
gust with dominant W-NW direction to 2.4 m in January with dominant W direction. Truc Vert beach has 
been intensively monitored since 2003 with monthly to bi-monthly topographic DGPS surveys, with addi-
tional daily topographic surveys and high-resolution bathymetric surveys collected during the ECORS′08 
field campaign (Parisot et al., 2009), see Castelle et al. (2020) for detailed description of the datasets. Since 
2017, high-resolution digital elevation model covering 4 km of beach-dune are also derived seasonally from 
photogrammetry of UAV images (Laporte-Fauret et al., 2019).

The beach morphology is highly dynamic and responds primarily to cross-shore processes driven by the 
temporal variability of the incident wave climate (Castelle et al., 2014; Robinet et al., 2016, 2018). Overall, 
this segment of coastline has been observed to be reasonably stable over the past decades (Castelle, Guillot, 
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Figure 1. (a) Location of Truc Vert beach (green), wave hindcast grid point co-located with the CANDHIS in situ wave buoy (red), and wave projections grid 
point (yellow); (b) Picture of Truc Vert beach and dune landscape (photo by V. Marieu); (c) 4 km alongshore-averaged beach-dune profile from merged 2008 
topo-bathymetry (submerged beach) and 2018 UAV-photogrammetry digital elevation model (emerged beach and dune); (d) Mean shoreline (1.5-m beach 
profile elevation proxy) positions between 2011 and 2020 derived from the bimonthly topographic surveys.
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et  al.,  2018), although the interannual distribution of winter wave energy may result in episodic severe 
beach and dune erosion (Castelle et al., 2015; Masselink et al., 2016).

2.2. Wave Data: Historical and Projections

While a data set of future waves is required to simulate future shoreline change, hindcast wave data were 
also needed for the present study in order to: (a) run the shoreline models on the past period and estimate 
the distribution of the model parameters; and (b) support the correction of the wave projection data set.

2.2.1. Hindcast Wave Data (1994–2020)

Historical wave data (Hs, Tp, and Dm), from January 1994 to January 2020, was extracted from the NOR-
GAS-UG regional hindcast model (Michaud et al., 2016) at the grid point co-located with the in situ CAN-
DHIS wave buoy (44°39′9″N; −1°26′48″W) moored in ∼50 m depth offshore of Truc Vert beach (Figure 1a). 
The NORGAS-UG model covers the French Atlantic coastal area using an unstructured mesh grid with 
resolution of 10 km offshore, increasing to 200 m nearshore. The wave model was validated against sever-
al French and international wave buoy data, and showed 0.96–0.99 correlations coefficients, 0.15–0.21 m 
RMSE, and −0.02–0.04 m bias (Michaud et al., 2016). The hindcasted wave time series (1994–2020) shows 
the typical seasonal and interannual modulation of the incident wave climate at Truc Vert beach (Figure 2a).

2.2.2. Future Wave Climate (2020–2100)

Wave-driven shoreline change at cross-shore transport dominated sites is controlled by the variability in 
incident wave energy including temporal clustering and chronology of storm wave events (Angnuureng 
et al., 2017; Dissanayake et al., 2015; Splinter, Carley, et al., 2014). Thus, the assessment of future shore-
line evolution at Truc Vert requires a continuous wave time series with high resolution (e.g., few hours). 
Bricheno and Wolf (2018) (hereafter BW18) provide state-of-the-art wave projections throughout the 21st 
century in the Northeast Atlantic region for the RCP 8.5 and RCP 4.5 scenarios. As part of the Coordi-
nated Ocean Wave Climate Project (COWCLIP), BW18 wave data belong to an ensemble of global and 
regional wave climate projections, forced with several Global Climate Models and using different wave 
models. Within COWCLIP, changes were found to be robust in the North Atlantic region, suggesting a 
slight decrease of annual mean Hs and a clockwise rotation of waves off the Aquitanian coast that is, more 
pronounced for high climate forcing (Morim et al., 2019). However, amongst the COWCLIP ensemble, to 
our knowledge, only BW18 produced uninterrupted time series of wave data with sufficient spatial resolu-
tion to properly reproduce the wave climate offshore our study site. The continuous hourly time series of 
wave conditions was produced by BW18 using a dynamical downscaling approach and a nested setup of 
the WaveWatchIII® spectral wave model (Tolman, 2009). The wave model covers the Northwest European 
coastal area with a grid resolution of 0.083° (<9 km) and was forced with the downscaled EC-Earth global 
climate model (Hazeleger et al., 2012). For both RCP scenarios, BW18 model is run from 2006 to 2100 in 
a regional atmospheric model configuration (∼0.11° resolution), in the context of the EURO-CORDEX 
project. BW18 also provide the results of a historic model run, forced with the EC-Earth model climate, for 
the period 1970–2004. Such simulation is needed to estimate relative change between past and future wave 
climate or for the correction of the potential biases between the modeling results and reference wave data 
(e.g., wave buoy data or modeled wave hindcast), which result from climate models bias (see e.g., Charles 
et al., 2012). From the BW18 modeling, we extracted wave data (Hs, Tp, and Dm) over 2020–2100 (for shore-
line projections) from the nearest grid point to the CANDHIS wave buoy (∼3 km North-East; Figure 1a), 
in ∼50 m depth, for both RCP 8.5 and RCP 4.5 scenarios. To reduce the bias in modeled future waves, we 
analyzed the seasonal quantiles of the 1994–2004 portion of BW18 historic wave time series (extracted at 
the same location as the 2020–2100 wave data) and the seasonal quantiles of the NORGAS-UG hindcast, 
and set-up a seasonal quantile-quantile correction that we applied to the 2020–2100 wave data set (details in 
Text S1). The corrected BW18 wave time series for RCP 8.5 and RCP 4.5 scenarios are shown in Figures 2b 
and 2c, respectively. Hereon, we refer to BW18 as the corrected wave time series.

Here, we adopted Hs
2Tp (m2s) as a representative variable for deep-water wave energy. The RCP 8.5 and 

4.5 2020–2100 wave series show a strong interannual modulation of incident wave energy, which is in line 
with current wave climate characteristics offshore of Truc Vert. Both scenarios of the BW18 wave projec-
tions show several peaks of the 3-months average Hs

2Tp that are comparable to the 2013–2014 outstanding 
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Figure 2. Wave data offshore of Truc Vert, including: time series of Hs (black lines) and 3-months averaged Hs
2Tp (red lines) for (a) the 1994–2020 wave 

hindcast from NORGAS-UG model (44°39′9″ N; −1°26′48″ W), and (b) RCP 8.5 and (c) RCP 4.5 scenarios corrected 2020–2100 Bricheno and Wolf (2018) wave 
projections; linear trends (solid lines) of annual (d) summer and (e) winter mean Hs (dashed lines) of 2020–2100 corrected Bricheno and Wolf (2018) wave 
projections, for RCP 4.5 (blue) and RCP 8.5 (orange) scenarios. For RCP 8.5 (RCP 4.5), the trend of summer and winter mean Hs are −2 mm/year (−1 mm/year) 
and −0.05 mm/year (−0.05 mm/year). These trends were tested to be statistically significant (more than 99% significance) using Student's t-tests. (f) Quantile-
quantile comparison between RCP 4.5 and RCP 8.5's 3-months average of Hs

2Tp projections for the four seasons (black crosses) and for the full datasets (gray 
circles).
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high-energy winter (Hs
2Tp = 178 m2s) experienced at Truc Vert (Figures 2a–2c). For the RCP 8.5 (RCP 4.5) 

scenario, the projected 3-months average Hs
2Tp reaches at least 90% of the 2013–2014 peak in 2030, 2080, 

2086, and 2099 (2060, 2068, 2073, and 2085; Figures 2b and 2c). While characterized by similar integrated 
intensity, these winters are preceded by different multi-annual energy trends, with the RCP 8.5 (RCP 4.5) 
2080, 2086, and 2099 (2060 and 2068) winters following a positive trend of wave energy (similarly to the 
2013–2014 winter), and the 2030 (2060 and 2068) winter following a negative trend of winter energy. Al-
though in both RCP scenarios the incident wave energy fluctuates with a similar interannual period with 
nearly the same average Hs

2Tp (52 and 54 m2s for RCP 8.5 and RCP 4.5, respectively), the RCP 4.5 scenario 
associates slightly higher energy during Autumn, Summer and Spring (Figure 2f). The 2020–2100 sum-
mer mean wave height ( summersH ) fluctuates between 0.9 and 1.7 m, with a statistically significant decrease 
of 2 mm/year (1 mm/year) rates for the RCP 8.5 (RCP 4.5; Figure 2d). Future winter mean wave height 
( wintersH ), which is a key driver of cross-shore wave-dominated shoreline evolution (Dodet et  al.,  2019), 
varies between 1.5 and 3 m with a statistically significant decreasing trend under 0.05 mm/year in both 
RCP scenarios (Figure 2e). This is consistent with previous regional projections (Charles et al., 2012; Perez 
et al., 2015; Morim et al., 2019).

2.3. Mean Sea Level and Vertical Land Motion

2.3.1. Past Mean Sea Level Reconstruction

As SLR-driven shoreline retreat is explicitly accounted for in the calibration of the shoreline models, past 
MSL information is required. We reconstructed the geocentric MSL change in the Bay of Biscay over the 
period 2012–2020 using a Kalman filter approach assimilating available tide gauge records in this region 
(Rohmer & Le Cozannet, 2019). The resulting SLR rates are roughly constant at 2.1 ± 0.1 mm/year (medi-
an ± σ). Local relative MSL change at Truc Vert beach was calculated by adding the effect of vertical land 
motion to the relative regional sea level estimate. Vertical land motion in Truc Vert area was estimated using 
the near Cap-Ferret permanent GNSS station from the SONEL database (Santamaria-Gomez et al., 2017), 
which provides data from 2005 to 2012, when the station was decommissioned. The GNSS station measures 
the effects of Glacial Isostatic Adjustment and current gravitational, rotational and deformation changes 
associated to ongoing glaciers and ice-sheets melting (Frederikse et al., 2020). We subtract their effects from 
the observed GNSS records over the observation period to assess residual vertical ground motions obtaining 
a subsidence rate of 1.2 ± 0.6 mm/yr. This results in a roughly constant SLR rate of 3.3 ± 0.7 mm/yr over the 
past decade (see Figure S5). The observed lowering ground might be due to slow subsidence of the former 
Leyre riverbed (Klingebiel & Legigan, 1992).

The pointwise Cap-Ferret GNSS station information may not be exactly that of the surrounding area. This 
is part of the residual uncertainties of our study.

2.3.2. Future Mean Sea Level Projections

State-of-the-art GMSL projections until 2100 are available from the Special Report of Ocean and Cryosphere 
in a Changing Climate (SROCC; Oppenheimer et al., 2019). SROCC estimates build on the Fifth Assessment 
Report (AR5, Wong et al., 2014) with a revised assessment of the Antarctic dynamics contribution based on 
new evidence on marine ice-sheets instabilities since the AR5. SROCC provides median values of each sea 
level change contribution with associated likely range for several RCP scenarios. Unlike other IPCC reports, 
the SROCC defines the likely range as the 17th–83rd percentiles of the distribution of sea-level rise (Oppen-
heimer et al., 2019). We reproduced the SROCC global MSL projections to Truc Vert beach following Thiéb-
lemont et al. (2019) and considering the regional fingerprints of each mechanism contributing to sea-level 
changes, including the effect of Glacial Isostatic Adjustment (Slangen et al., 2014). This results in regional 
relative 2020–2100 SLR estimate (median and likely range) of 0.63 ± 0.26 m and 0.37 ± 0.16 m for the RCP 
8.5 and RCP 4.5 scenarios, respectively.

Residual vertical land motion, which is assumed to be due to slow-ongoing geological processes (see subsec-
tion 2.3.1 and Klingebiel & Legigan, 1992), is assumed to remain constant (1.2 ± 0.6 mm/yr) over the 21st 
century. Due to the large uncertainty (0.6 mm/yr) of the subsidence rate, the stability of the area is not ex-
cluded, but has a very low probability (2.1%). The inclusion of ground motion results in a local relative MSL 
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rise of 0.73 ± 0.27 m and 0.47 ± 0.17 m from 2020 to 2100 for RCP 8.5 and RCP 4.5 scenarios, respectively 
(see Figure S5). Further detail on future SLR is provided in Section 3.1.

2.4. Shoreline Change Models

Here, we use two equilibrium-based models to assess wave-driven shoreline response: the Yates et al. (2009) 
model, and an adaptation of the ShoreFor model (Davidson et al., 2013; Splinter, Turner, et al., 2014). As the 
Truc Vert bathymetry iso-contours are essentially shore-parallel, breaking wave conditions were computed 
directly from offshore wave conditions using the Larson et al.  (2010) formula. Chronic shoreline retreat 
induced by SLR was estimated using the Bruun (1962) model. As shoreline change at Truc Vert is known to 
be dominated by cross-shore sediment transport with negligible gradients in longshore transport (Castelle 
et al., 2014; Splinter, Turner, et al., 2014), we did not compute longshore sediment transport. The following 
subsections describe the two wave-driven shoreline models and the Bruun model.

2.4.1. Wave-Driven Shoreline Models and Free Parameters

Equilibrium shoreline models are based on the principle that local wave climate drives the shoreline toward 
a time-varying equilibrium position at a rate that depends on the instantaneous wave thrust (e.g., wave pow-
er or energy) available to move the sediment, and the dynamic disequilibrium state of the beach (Wright & 
Short, 1984). The Yates et al. (2009) model and ShoreFor differ primarily in the formulation of the respective 
disequilibrium conditions.

2.4.1.1. ShoreFor Model

The ShoreFor model (hereafter SF) adopts a disequilibrium condition based on the wave history, expressed 
as a disequilibrium of dimensionless fall velocity (ΔΩ) and its standard deviation (σΔΩ). The governing 
equation for shoreline change rate reads:


 




 / 0.5Ps

dY k b
dt

 (1)

where, ks
+/−(m s−1W−0.5) is a response rate parameter, P(W) is the wave power at breaking, and b(m/s) is a 

linear term trend. Following Robinet et al. (2018), the disequilibrium term ΔΩ at a given time is defined 
as the difference between the equilibrium dimensionless fall velocity (Ωeq(Φ)) and the offshore dimension-
less fall velocity (Ωo), where Ωeq(Φ) is a function of the sediment size, prior wave conditions, and the free 
parameter Φ. The parameter Φ (days) is a site-specific “beach memory,” and defines the time over which a 
given wave event has an impact over the equilibrium state of the beach. The ks

+/− parameter is the shoreline 
response rate, and assumes different values for accretion (ks

+, ΔΩ > 0) and erosion (ks
−, ΔΩ > 0) events, 

which are driven by different processes associating different time scales. The values of the ks
+/− parameter 

for accretion and erosion conditions are considered proportional through a coefficient r (ks
− = rks

+). The r 
coefficient is not a model free parameter but is defined by the wave forcing, and is such that no trend in wave 
forcing results in no trend in the modeled shoreline position over the simulated period:







  


  
1

1

N
i
N
i

Fr
F

 (2)

 


 
 0.5PF

 (3)

where N is the full length of the simulated period, F + and F − are the forcing during accretion (ΔΩ > 0) 
and erosion (ΔΩ > 0) events, respectively, and  .  denotes an operation that removes the linear trend. Here, 
the sign of ΔΩ does not change the absolute value of F +/−. For an extended description of SF the reader 
is referred to Davidson et al. (2013) and Splinter, Turner, et al. (2014). In SF, the model free parameters to 
be calibrated at a given site are ks

+, Φ and b. Physically, the ks
+/−(m s−1W−0.5) is a measure of the efficiency 

of wave forcing to drive shoreline change (as described by Splinter, Turner, et al., 2014), which can also be 
interpreted as a time scale of shoreline response (Vitousek et al., 2021). Indeed, a low efficiency corresponds 
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to a slow shoreline response and a longer time scale, and vice versa. Φ(days) is a time scale for the duration 
of the impact that past waves exerted on the beach, and provides the ability for the model equilibrium 
condition to evolve along with long-term wave energy trends. The parameter b(m/s) is a linear term that en-
capsulates the effect of slow processes, other than wave-driven equilibrium based, which may drive chronic 
shoreline change (e.g., wind driven sediment transport) and that are not explicitly resolved in the model. We 
note here that, while accounting for the effects of slow processes using a constant linear trend (i.e., b) can 
improve the model skill for simulated periods within the decade, the application of such trend over longer 
time scales (decades to centuries) becomes increasingly inaccurate (D'Anna et al., 2020). Therefore, given 
the long time scale of our application and the absence of secondary processes (e.g., longshore gradients in 
sediment transport) that may drive long-term shoreline trends at Truc Vert, we set b = 0.

2.4.1.2. Yates Model

In Yates' model (hereafter Y09) the disequilibrium condition is defined as a function of the current shoreline 
position, and the cross-shore rate of shoreline change is calculated as follows:

    / 0.5
y eq

dY k E E Y E
dt

 (4)

where E (m2) is the wave energy, ky
+/−(m2 s−1/m) is the response rate parameter, Y(m) is the present shore-

line position, and Eeq(Y) is the wave energy in equilibrium with the current shoreline position Y through a 
linear relationship:

   1 2eqE Y a Y a (5)

where a1 (m2/m) and a2 (m2) are free model parameters. The ky
+/− parameter is analogous to ks

+/− of SF in 
that it represents the efficiency rate of the incident wave forcing to shoreline change, or a time scale param-
eter (see the analytical derivation of the Y09 time scale of shoreline response in Vitousek et al., 2021). In 
the Y09 model no assumption is made on a possible relationship between the ky

+ and ky
−, which are both 

considered model free parameters and, as well as a1 and a2, require specific calibration for each field site 
application. Contrarily to SF, here the equilibrium state formulation (Equation 5) does not depend on recent 
wave conditions, making this model insensitive to wave-climate variability on timescales longer than the 
calibration period. Instead, Equation 5 depends on the current shoreline position (Y), introducing the po-
tential for feedbacks between Y09 and shoreline change induced by other cross-shore processes (e.g., SLR). 
Herein, such processes are resolved independently and linearly superposed, so that no feedback is enabled. 
Physically, ky

+/−, once again is a measure of the shoreline reactivity to the incident wave forcing, and is ex-
pressed in (m s−1/m). Although the dimensions of a1 and a2 are “energy/meter” and “energy,” respectively, 
the role of these parameters in the model is purely empirical. A rearrangement of the terms in Equations 2 
and 3 results in combinations of model parameters that are representative of equilibrium time and spatial 
scales (Vitousek et al., 2021). However, here we use Y09 in its original form, where a1 and a2 are treated as 
empirical parameters.

2.4.2. Sea-Level Driven Shoreline Recession

We include SLR-driven shoreline recession using the Bruun (1962) model, which is based on the equilibri-
um beach concept and cross-shore balance of sediment volume. While the reliability of this model is highly 
debated for its oversimplification of the reality (Cooper & Pilkey, 2004; Ranasinghe et al., 2012), its simple 
linear formulation has been extensively used worldwide. In addition, Truc Vert beach is a relatively undis-
turbed beach-dune environment with large accommodation space, which makes this sites in line with most 
of the Bruun Rule underlying assumptions. The Bruun model assumes that under rising sea level, on time 
scales larger than years, the average beach profile translates upwards and landwards. The resulting shore-
line retreat (dYSLR/dt) depends on SLR and the average slope of the active beach profile, here extending from 
the dune crest down to the depth of closure (DoC), defined as the depth beyond which sediment exchange 
is considered negligible (Bruun, 1988; Wolinsky & Murray, 2009):
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dY

dt

SLR rate
SLR


tan

 (6)

where SLRrate is the rate of SLR (m/time), and tanβ is the average profile slope defined between the DoC and 
the dune crest. We estimated the DoC according to Hallermeier (1978), and the corresponding tanβ = 0.023 
using the beach profile reported in Figure 1c.

2.5. Global Sensitivity Analysis

Numerical modeling of shoreline change inherits the uncertainties associated to input variables and their 
complex interactions, affecting the robustness of the shoreline projections. While numerical modeling pro-
vides a “key-hole” to observe the explicit interactions among defined sets of variables, sensitivity analysis 
provides a way to understand the role of input variables uncertainties in shoreline predictions. Here, we 
use the framework proposed by D'Anna et al. (2020), who used a variance-based Global Sensitivity Analysis 
(GSA; Saltelli et al., 2008; Sobol’, 2001) to investigate the relative contributions of the uncertainties affect-
ing input variables to the uncertainties of modeled shoreline predictions, and their evolution in time. The 
method consists in propagating the input uncertainties through the model obtaining a probabilistic esti-
mate of the shoreline projections, and performing a GSA which decomposes the variance of model results 
into several contributions, each one associated with an input variable. Each of these contributions is used to 
estimate a measure of the model results sensitivity to the input uncertainties with a sensitivity index known 
as first-order Sobol’ index (Si). The Si (0–1) quantifies the ratio of output's variance associated with the un-
certainties of a given input Xi, that is, the reduction in the output variance that would occur if the uncertain 
input Xi was set to its true value, and is defined as:

  
 


Var

Var
i

i

E Y X
S

Y
 (7)

where Var is the variance operator, E is the expectation operator, Y is the modeled shoreline position, and Xi 
is the i-th uncertain input variable. Further details on GSA and Si are provided in Text S3.

Here, we address the relative impact of uncertainties associated to SLR, DoC, and of model free parameters 
on shoreline projections (Y) and their evolution in time for the two different modeling approaches described 
in Section 2.4. Identifying the main source of model results uncertainties through time is a fundamental 
step toward improving the reliability of long-term shoreline projections. Following D'Anna et al. (2020), we 
computed the Sis using the modularized sample-based approach by Li and Mahadevan (2016), which allows 
accounting for the statistical dependence between model free parameters, and we estimate Sis for the pur-
pose of “Factors' Prioritization” (as defined by Saltelli et al., 2008). At a given time, the Factors' Prioritiza-
tion identifies the main driver of model results uncertainty (associating the largest Si), that is, the uncertain 
input variable that would most reduce the output's variance when fixed to its true value. The method can 
be summarized in three steps:

1.  Definition of probability distribution associated to each stochastic input variable (SLR, DoC and model 
free parameters);

2.  Generation of ensemble modeled shoreline projections, by means of a Monte-Carlo-based procedure 
(with accounts for dependence among the input parameters); and

3.  Computation of first-order Sobol’ index time series for each uncertain input variable.

The GSA results are interpreted as the repartition of the variance of shoreline projections into normal-
ized portions (between 0 and 1) imputed to the uncertain input variables. For instance, at a given time, 
Si,SLR = 0.3 means that uncertainties in future SLR alone are responsible for 30% of the variance in shoreline 
projections. However, the magnitude of a Si alone is not sufficient to identify the main driver of the shore-
line projections' variance, which is defined by comparing the values of Si for all input variables and ranking 
them in terms of importance.

Figure 3 synthesizes the generalized method and details for the Truc Vert probabilistic applications (exclud-
ing the additional high-end SLR deterministic scenario).
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3. Input Probability Distributions for Future Projections
3.1. Probabilistic Sea-Level Rise

Sea-level projections inherit uncertainties associated with physical unknowns and modeling of the con-
tributing processes. While many efforts were dedicated to assess such uncertainties, there is no single ap-
proach to define MSL probability distributions yet (Jackson & Jevrejeva, 2016; Jevrejeva et al., 2019; Kopp 
et al., 2014). We produced probabilistic relative MSL projections, conditional to the RCP 8.5 and 4.5 scenar-
ios, defining time varying normal probability distributions characterized by the yearly median and standard 
deviations obtained in Section 2.3.2 (Figures 4a and 4b), following Hunter et al. (2013). In the high-emission 
scenario (RCP 8.5), the large uncertainty associated with Antarctic ice sheet dynamics generates a skewness 
of the distributions in the second half of the 21st century, enhancing the amount of possible extreme SLR 
(Grinsted et al., 2015; Jackson & Jevrejeva, 2016; Kopp et al., 2014). The upper tail of the skewed probability 
distribution is very much debated (Jevrejeva et al., 2019) and is not represented by the Gaussian distribu-
tions. Therefore, in addition to the Gaussian distribution reflecting the SROCC assessment (Oppenheimer 
et al., 2019), we consider a high-impact, low probability high-end sea level scenario that might take place 
for high greenhouse gas emissions (RCP 8.5; black line in Figure 4b) following the same assumptions as 
Thiéblemont et al. (2019) (see Text S2).

The possibility that the subsidence rate revealed by the Cap-Ferret GPS station is not representative of the 
Truc Vert area (located at 8 km distance) constitutes a residual uncertainty that cannot be quantified, and 
is not accounted in this study due to the lack of quantitative information supporting an alternative scenario 
for residual vertical ground motions.

3.2. Depth of Closure

The active beach profile slope is critical to SLR-driven erosion rate (Section 2.4), and strongly depends on 
the depth of closure (DoC). The DoC was calculated from the wave climate using the Hallermeier (1978) 
formula. Given that DoC depends on the period of time over which the Hallermeier formula is applied 
(Nicholls, 1998), we iteratively applied the Hallermeier formula over a 1-year moving window of the future 
wave climate with a 30-days step. For both RCP 8.5 and RCP 4.5 scenarios, the latter procedure generated an 
ensemble of possible DoC values well fitted by a Gaussian distribution (Figure 4c). The DoC probability dis-
tribution shows higher median and standard deviation values in the RCP 4.5 (μ = 17.2 m; σ = 1.75 m) than 
in the RCP 8.5 (μ = 16.3 m; σ = 0.95 m). This results from the more frequent occurrence and larger wave 
heights associated to isolated extreme events in the RCP 4.5 scenario, compared to the RCP 8.5 scenario.
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Figure 3. Flowchart of the method applied herein, summarized for a general case (black box), and for the Truc Vert 
application (red box) in the four application scenarios.
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Figure 4.
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3.3. Model Parameters

Numerical models are associated with uncertainties owing to the choice 
of modeling approach and to the estimation of model free parameters. 
We accounted for the uncertainty conditional to the choice of modeling 
approach assessing the shoreline projections using the Y09 and the SF 
models described in Section 2.4.1, in two separated scenarios. Both mod-
els rely on shoreline observations to calibrate the respective free parame-
ters, and inherit uncertainties due to the quality and amount of available 
data (Splinter et al., 2013), to possible non-stationarity of the parameters 
in respect to the wave climate (Ibaceta et al., 2020), and to the optimiza-
tion method. Uncertainties affecting model free parameters of the Y09 
model (ky

+/−, a1, and a2) and the SF model (ks
+, Φ) are synthetized by their 

associated joined probability distribution. We follow the approach devel-
oped in D'Anna et al. (2020), who calibrated the SF model free parameters 

using the Simulated Annealing algorithm (Bertsimas & Tsitsiklis, 1993), and determined their joint prob-
ability distribution by fitting an empirical multivariate distribution (multivariate kernel function) on an 
ensemble of model parameters combinations. The authors built the latter ensemble selecting all parameters 
combinations that produced a RMSE <10 m against observed shoreline data during the optimization pro-
cess. Unlike D'Anna et al. (2020), here we calibrated the models between January 2012 and December 2019, 
where no long-term trend in shoreline position is observed, in line with the assumption of the SF parameter 
b = 0 (see Section 2.4.1). In addition, we used the Nash-Sutcliffe (Nash & Sutcliffe, 1970) efficiency score 
(NS) instead of the RMSE to determine the models' performance (as for instance in Kroon et al., 2020). The 
NS measures the model skill in comparison to the “mean model” (defined as the observed mean shoreline 
position), based on the error's variance, and it is calculated as follows:

 
 





 
 

 

2
1

2

1

NS 1
N n n
n m o

N n
n o o

Y Y

Y Y
 (8)

where N is the number of observations, Ym
n and Yo

n are the n-th modeled and observed shoreline positions, 
respectively, and oY  is the mean of the observed shoreline positions. The NS coefficient can range between 
−∞ and 1, where NS = 1 corresponds to a model perfectly reproducing the observations, NS = 0 to a mod-
el with skill comparable to the “mean model”, and NS  <  0 corresponds to models less skilful than the 
“mean model”. We obtained the probability distribution using combinations of parameters that resulted in a 
NS ≥ 0.25 (compared to the maximum NS = 0.63), which corresponds to a max RMSE of ∼10 m consistently 
with D'Anna et al. (2020). We defined the latter threshold with the iterative procedure described in Text S4. 
This procedure results in the probability distributions of ky

+/−, a1, and a2 for Y09, and ks
+ and Φ for SF shown 

in Figures 4d and 4e, with the range of possible parameters values reported in Table 1.

3.4. Model Setup of Shoreline Projections

Four ensembles of 3,000 possible shoreline trajectories from 2020 to 2100 were generated using the SF and 
Y09 shoreline change models, and the Bruun Rule, for the two RCP 8.5 and RCP 4.5 scenarios (Table 2). 
Wave-driven shoreline response (short-term) and SLR (long-term) were computed individually and then 
linearly combined, so that no feedback mechanisms occur between the models, in line with previous appli-
cations (D'Anna et al., 2020; Vitousek et al., 2017).
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Figure 4. Probability distributions of: relative mean sea level over the period 2020–2100, including the likely (dark shaded areas) and 5–95th percentile (light 
shaded areas) ranges, for (a) RCP 4.5 and (b) RCP 8.5 scenarios, with deterministic high-end sea-level projections based on 2100 high-end “highest-modeled” 
estimates following Thiéblemont et al. (2019) (black line); (c) Gaussian distributions of depth of closure values calculated over the 2020–2100 wave time series 
for RCP 4.5 (blue curve) and RCP 8.5 (red curve) scenarios; and empirical joint probability distributions of (d) ShoreFor [ks

+, Φ] parameters, and (e) Yates [ky
+/−, 

a1, and a2] parameters, obtained fitting a kernel density function (with bandwidths estimated from the marginal kernel density function for each variable) on 
6,000 combinations of model parameters producing NS > 0.25 against shoreline data.

Model Model parameter Optimized value Distribution range

ShoreFor ks
+[m1.5 s−1 W0.5] 4.4 × 10−8 [2; 7.4] ×10−8

Φ [days] 1,193 [400; 1,423]

Yates ky
+ [m2s−1/m] 0.87 [0.24; 2]

ky
− [ m2s−1/m] 0.5 [0.1; 1.5 ]

a1 [m2/m] −0.008 [−0.02; −0.004]

a2 [m2] 0.49 [0.33; 1]

Table 1 
Optimized Combinations of Cross-Shore Model Free Parameters, and 
Respective Range of Variation in the Probability Distributions
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For each model and RCP scenario, 3,000 simulations were run with dif-
ferent combinations of model free parameters, DoC and SLR time series, 
sampled from the respective probability distributions. Shoreline change 
was computed with a 3-h time step from the January 1, 2020 to the De-
cember 31, 2099 starting from the same shoreline position (Y0 = 0), and 
model outputs were recorded with a 2-weeks resolution. As the charac-
teristics of the MSL probability distribution are time-dependent, we ran-
domly sampled percentile values and extracted the corresponding MSL 
at each year. The ensemble projections character was synthetized by the 
likely range, defined here at each time step as the variance, and the enve-
lope (min and max) of modeled shoreline positions, acknowledging that 
the latter is dependent on the number of simulations and the tails of the 
probability distributions. The impact of individual winters on shoreline 
projections is qualitatively discussed observing the distributions of shore-
line positions corresponding to the most seaward and landward median 
shoreline position within each simulated annual cycle (September 1–31, 

August). We analyzed the decadal shoreline trends by filtering the modeled shoreline time series with a 
5-years running mean. In addition, for RCP 8.5 scenario, a deterministic high-end-SLR simulation was run 
with both shoreline models using the optimized model parameters (Table 1) and the median DoC. It is to 
be noted that the GSA results (i.e., Sis) are calculated on the likely range (variance) of the model results, 
regardless of the envelope of modeled shoreline positions.

4. Results
4.1. Shoreline Projections

The four future scenarios in Table 2 resulted each one in 3,000 shoreline evolution simulations spanning 
2020–2100 (Figures 5 and 6). Figures 5c, 5d and 6c, 6d represent the distribution of 3,000 modeled shoreline 
positions at each recorded output time. All scenarios show a net erosion by 2100, mostly driven by SLR 
(Table 3). All model ensembles also show large interannual variability that is, essentially enforced by the 
interannual variability in incident winter-mean wave height (Figures 5a and 5b and 6a and 6b). In the RCP 
8.5 (RCP 4.5) scenario we observe a long-term shoreline change pattern responding to alternating sequences 
of high- and low-energy winters with a period of ∼20 years (∼10 years) and even longer (Figures 5a, 5e, 5f 
and 6a, 6e, 6f).

Figures 5c and 5d (Figures 6c and 6d) show several episodes of rapid erosion driven by isolated extreme 
energy winters, for instance for the RCP 8.5 (RCP 4.5) scenario in winter 2030, 2076, and 2086 (2068, 2073, 
and 2085). The two wave-driven shoreline models (Y09 and SF) produce consistent short- and long-term 
shoreline cycles, with larger tendency to accretion in SF than in Y09 during extended periods of low energy 
winters, for instance during 2050–2055 for RCP 4.5 and 2060–2070 for RCP 8.5 (Figures 5a, 5e, and 5f and 
6a, 6e, and 6f).

In the RCP 4.5 emission scenario, the modeled 2020–2100 Truc Vert shoreline trend leads to a likely (en-
velope) retreat of 15–33 m (4–75 m) with Y09, and 10–23 m (6–65 m) with SF. On a yearly time scale, the 
shoreline position is likely (envelope) to be farther landward from the initial position, by 76 m (123 m) 
with Y09, and 43 m (74 m) with SF (Figures 5c and 5d, Table 3). Indeed, the occurrence of extreme win-
ters can produce significant landward shifts of the envelope of shoreline positions, as observed during the 
2084–2085 winter (Figures 5c and 5d).

When forced with RCP 8.5 scenario's wave and MSL projections, from 2020 to 2100 simulations indicate an 
average likely (envelope) erosion of 27–48 m (16–83 m) using Y09, and 14–33 m (2–67 m) using SF (Fig-
ures 6d and 6e). In this scenario, over the simulated period the likely (envelope) most landward shoreline 
position reaches up to 70 m (108 m) from the initial shoreline position with Y09 model, and 48 m (76 m) 
with SF (Figures 6c and 6d, Table 3). Similarly to the RCP 4.5, here we observe for both models some im-
portant shifts in shoreline position distribution owing to extreme winters such as 2086s winter (Figures 6c 
and 6d).
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Future 
scenario

SLR-driven 
shoreline change

Wave-driven 
shoreline change

# Combinations of 
uncertain variables

RCP 4.5 Bruun Rule ShoreFor (SF) 3,000

Yates (Y09) 3,000

RCP 8.5 Bruun Rule ShoreFor (SF) 3,000

Yates (Y09) 3,000

Abbreviation: SLR, sea-level rise.

Table 2 
Probabilistic Future Scenarios for Two Representative Concentration 
Pathways (RCP) and Two Different Wave-Driven Modeling Approaches, 
Using the Bruun Rule and 3,000 Different Combinations of Model 
Parameters, SLR Percentile and DoC
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In the high-end SLR scenario, both models predict a shoreline position within the envelope of probabilistic 
projections until 2090, before the shoreline moves further inland during the last decade (Figures 6d and 6e). 
The modeled 5-years averaged shoreline position in 2100 is of 88 and 74 m for Y09 and SF, respectively (Ta-
ble 3). The most landward shoreline position observed throughout the simulation is 107 m with Y09, and 
86 m with SF (black dashed line in Figures 6c and d).

The likely (envelope) ranges erosion produced by the combined Y09+Bruun models at the end of the sim-
ulated period are comparable (larger) to the standalone application of the Bruun Rule (Table 3, and in Fig-
ures 5 and 6e, 6f with Bruun model predictions in green). With the combined SF + Bruun models, the likely 
(envelope) ranges of shoreline positions obtained show ∼10 m (∼15 m) less erosion than the Bruun Rule.
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Figure 5. (a) Time series of winter mean wave height of the BW18 RCP 4.5 projections (dashed line) with corresponding 5-years average (solid line); (b) BW18 
RCP 4.5 wave height time series (black line), and 3-months average Hs

2Tp time series (red line); RCP 4.5 scenario 2020–2100 shoreline projections at 14-days 
resolution obtained using (c) Y09 and (d) SF; and 5-years running mean shoreline projections modeled with (e) Y09, (f) SF, and the standalone Bruun Rule 
(green bars). Dark (light) blue shaded areas indicate the likely (envelope) range, that is, variance (min-max), of shoreline position, and solid light line median 
shoreline position. The dashed vertical line indicates the most landward shoreline position over the simulated period. Yellow shaded areas indicate examples of 
years including high-energy winters.
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4.2. Global Sensitivity Analysis

In both RCP 8.5 and 4.5 scenarios and for both shoreline model applications, the GSA shows that over the 
first 30 years of simulation the variance of modeled shoreline projections is driven primarily by the un-
certainties in model free parameters, while the effects of SLR uncertainties on shoreline position become 
increasingly significant after 2050 (Figures 7 and 8). The Sis of the Y09 and SF response rate parameters 
(ky

+/− and ks
+, respectively) and the SF beach memory parameter (Φ) show seasonal (6 months) and decad-

al modulation with a decreasing trend as shoreline projections become more sensitive to SLR (Figures 7c 
and 7d and 8c and 8d). Variations in ky

+/− and ks
 + are the primary source of shoreline projection uncertain-

ties during accretion periods. However, the response rate parameters' uncertainties have a stronger impact 
on seasonal scale when using the Y09 model (Figure 7c), and a larger impact on interannual scale when 
using the SF model (Figure 8c), due to the different response of the models to incident wave energy varia-
bility. Seasonal modulation is also observed for the Sis of the Y09 empirical parameters (a1 and a2), although 
the correlation between the variability in incident wave conditions and the parameters' Sis, (both filtered 
of their seasonal signal with a 1-year running mean) is negligible (R2 = ∼0.06 for a1, and R2 = ∼0.03 for 
a2). However, the estimated a1's and a2's Sis remain below 20% during most of the simulated period with 
occasional peaks up to 45% (Figures 7e and 7f). The primary effects of SLR uncertainties emerge at different 
times, which depend both on the RCP scenario and on the shoreline model. When using Y09, a positive 
trend in SLR's Si emerges in the 2050–2060 period, with SLR's Si exceeding those of model parameters since 
approximately 2060–2070, for both RCP scenarios (Figure 7g). Instead, with SF in the RCP 8.5 (RCP 4.5) sce-
nario, such quasi-monotonic trend appears later, approximately during the 2070s (2060s) and only exceeds 
the model parameters' Sis after 2085 (2080; Figure 8e). For all scenarios, DoC's Si slowly increases, with 
similar trends as SLR's Si, and reaches approximately 5% and 10%, in the RCP 8.5 and 4.5 scenarios, respec-
tively. This difference is probably due to the larger uncertainties of SLR in the RCP 8.5 scenario (Figure 4b), 
and to the larger variance of the DoC probability distribution obtained for the RCP 4.5 scenario (Figure 4c).

5. Discussion
5.1. Sea-Level Rise

While observed shoreline erosion in Aquitaine is not yet attributed to SLR, sooner or later a SLR-driven sig-
nal will emerge from the current shoreline change variability, as sea levels are committed to rise by meters 
over the coming centuries (T. R. Anderson et al., 2015; Oppenheimer et al., 2019). Our results suggest that 
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Scenario

2100 5-years averaged shoreline position Most landward shoreline position

likely range (m) envelope (m) likely (m) envelope (m)

RCP 4.5 Y09 + B −15–−33 −4–−75 −76 −123

SF + B −10–−23 −6–−52 −43 −74

B −21–33 −17–−60 −33 −60

RCP 8.5 Y09 + B −27–−48 −16–−83 −70 −108

SF + B −14–−33 −2–−65 −48 −76

B −28–−49 −21–−86 −49 −86

Deterministic scenario 2100 5-years averaged shoreline position (m) Most landward shoreline position (m)

High-end RCP 8.5 Y09 + B −95 −111

SF + B −74 −84

B −81 −81

Abbreviation: SLR, sea-level rise.

Table 3 
Likely (Modeled Shoreline Variance) and Envelope (Min-Max) Values of the 5-Years Averaged Projected Shoreline 
Position in 2100, and 2020–2100 Most Landward Shoreline Position, Obtained Using the Standalone Bruun Rule 
(B), and the Combined B With Y09 and SF Equilibrium Shoreline Models, for the RCP 4.5 and RCP 8.5 Probabilistic 
Scenarios, and the Deterministic High-End SLR Scenario
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these times of emergence of a SLR-driven erosive trend could be visible during the second half of the 21st 
century, possibly by 2070. This is consistent with the fact that uncertainty (17−83th percentiles) in future 
sea level grows from roughly 15 cm by the mid 21st century to 30 cm (RCP 4.5) and 50 cm (RCP 8.5) in 2100. 
Yet, this result relies on our modeling assumptions, including the Bruun Rule and the Yates or ShoreFor 
models.

The GSA applications to four simulated scenarios indicate that uncertainties in the modeled 2020–2100 
shoreline projections at Truc Vert are primarily caused by uncertainties in model free parameters between 
the present day and 2050. The effects SLR uncertainties always emerge as a significant contribution to the 
shoreline change uncertainties in the second half of the century. We also observed that the time evolution 
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Figure 6. (a) Time series of winter mean wave height of the BW18 RCP 8.5 projections (dashed line) with corresponding 5-years average (solid line); (b) 
BW18 RCP 8.5 wave height time series (black line), and 3-months average Hs

2Tp time series (red line); RCP 8.5 scenario 2020–2100 shoreline projections at 
14-days resolution obtained using (c) Y09 and (d) SF; and 5-years running mean shoreline projections modeled with (e) Y09, (f) SF, and the standalone Bruun 
Rule (green bars). Dark (light) shaded areas indicate the likely (envelope) range, that is, variance (min-max), of shoreline position. Black solid lines indicate 
shoreline projections in the RCP 8.5 high-end sea-level rise (SLR) scenario. The dashed vertical line indicates the most landward shoreline position over the 
simulated period. Yellow shaded areas indicate examples of years including high-energy winters.
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of Sis and the onset of SLR uncertainties effects are conditional to the RCP scenario (in agreement with Le 
Cozannet et al., 2019), the choice of shoreline model, and the variability of forcing wave climate.

The shoreline trajectory obtained in the deterministic high-end SLR scenario exceeds the envelope of prob-
abilistic projections in the last simulated decade. Truc Vert beach is remote and backed by a high (∼20 m) 
and wide (∼250 m) dune system, so that shoreline retreat is not limited by non-erodible geological outcrops 
or coastal structure. While such large erosion does not threaten any human assets close to Truc Vert beach, 
such scenario, though unlikely, questions adaptation planning in other eroding urbanized coastal areas 
with limited accommodation space in southwest France.
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Figure 7. Global Sensitivity Analysis results over the period 2020–2100 using the Yates model in the RCP 4.5 (blue 
lines) and RCP 8.5 (orange lines) scenarios. (a) RCP 4.5 and (b) RCP 8.5 Ensemble shoreline projections (shaded areas) 
over 2020–2100; First-order Sobol’ index time series for (c) ky

+, (d) ky
−, (e) a1, (f) a2, (g) sea-level rise, and (h) depth of 

closure, with respective linear fit (solid straight lines).
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5.2. Shoreline Models

While the SF and Y09 models are both based on the equilibrium beach concept, the respective model struc-
tures and parameters associate different physical interpretations and shoreline behaviors (Section 2.4.1). 
Therefore, the uncertainty associated with the choice of the equilibrium modeling approach cannot be 
measured by direct confrontation of the Sis obtained with the two models, but requires consideration of the 
different model responses to the forcing conditions.

The results obtained for the two disequilibrium approaches (Y09 and SF) show similar seasonal and in-
terannual shoreline cycles, although with notably different amplitudes. Such behaviors are rooted in the 
different expressions of the equilibrium physics adopted in the two wave-driven models (i.e., the mecha-
nism that would drive the shoreline to an equilibrium position under constant wave conditions). Vitousek 
et al. (2021) analytically show that the type of equilibrium condition is critical for the short- and long-term 
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Figure 8. Global Sensitivity Analysis results over the period 2020–2100 using the ShoreFor model in the RCP 4.5 (blue lines) and RCP 8.5 (orange lines) 
scenarios. (a) RCP 4.5 and (b) RCP 8.5 Ensemble shoreline projections (shaded areas) over 2020–2100; First-order Sobol’ index time series for (c) ks

+, (d) Φ, (e) 
sea-level rise, and (f) depth of closure, with respective linear fit (solid straight lines).
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response of the shoreline model. On one hand, Y09's equilibrium condition depends on the current shore-
line position, and is not influenced by storm events that occurred prior to a given time scale that is, implic-
itly defined by the model calibration (see “Appendix A” of Vitousek et al., 2021). On the other hand, SF's 
equilibrium state is determined by the (time varying) past wave conditions with an explicit “beach memory” 
function, and evolves in time accordingly. This means that, in absence of other processes, the Y09 modeled 
shoreline oscillates persistently around the same position regardless of the temporal variability of wave en-
ergy. Instead, SF can only achieve such a stable mean shoreline trend when forced with a periodic long-term 
wave climate (Vitousek et al., 2021). Hence, in presence of long-term trends of wave energy, Y09 emphasizes 
the short-term shoreline erosion/accretion in order to re-establish the equilibrium shoreline position, while 
SF adapts to the wave climate pattern. The latter results in larger amplitudes of seasonal fluctuations and in 
attenuation of long-term fluctuations, compared to SF.

The combined Y09 and Bruun models simulated shoreline ranges at 2100 are overall comparable to the 
ranges of the standalone Bruun Rule, indicating that in this scenario the net erosion modeled by 2100 is 
essentially driven by SLR. In fact, Y09 constrains the shoreline response to long-term wave climate shifts to 
a limited range (as described above) while the linearly added contribution of the Bruun model determines 
the shoreline trend. Instead, SF can produce wave-driven long-term shoreline trends that are combined 
with the Bruun retreat. This effect is observed in both RCP 4.5 and 8.5 scenarios, where the decreasing wave 
energy trend (Figures 2d and 2e) is translated by SF into shoreline accretion trends, resulting in less erosion 
than the Buun model alone (Table 3).

Such properties of the two model behaviors highlight the different model sensitivities to long-term variabili-
ty of the wave climate, which can have implications on the uncertainties in shoreline projections. Including 
the uncertainty of long-term wave climate variability in the ensemble projections would allow investigating 
the uncertainties related to the different behaviors of the shoreline models.

5.3. Model Free Parameters

Resolving process-based shoreline response to time-varying incident wave energy revealed that uncer-
tainties in model parameters have the largest impact over the first simulated 30 years, regardless of the 
cross-shore shoreline model choice. Over this period, Y09 and SF uncertainties in response rate parameters 
(ky

+/−and ks
+, respectively) are responsible for most of the results uncertainties, which increases during low 

energy winters (on seasonal scale), and is particularly emphasized for SF in correspondence of extended 
low energy periods. This suggests that the assumption of a linear relationship between SF's response rate 
parameters (ks

− = r ks
+) may not hold in the context of long-term simulations, as it might depend on the evo-

lution of waves properties (Ibaceta et al., 2020). In fact, Ibaceta et al. (2020) found that, such relation is not 
necessarily linear, indicating that the value of r may vary dynamically with changes in wave regimes. While 
the Sis of the remaining model parameters (Φ for SF; a1 and a2 for Y09) show a definite seasonality, their 
variability on longer time scales is unclear. However, Φ’s Si, which exhibit relatively high values (up to 90%) 
at the beginning of the simulation, shows an overall decaying trend for both RCP scenarios applications. 
The a1 and a2's Sis remain weak, though not negligible, (<20%) over all the simulated period.

The behavior of the model free parameters' Sis highlights, once again, the importance of wave energy var-
iability in determining the impact of the parameters uncertainties on shoreline projections. This was also 
observed in previous studies, which showed that changes in wave regime can alter the model parameters 
and the functional relations between them (Ibaceta et al., 2020; Splinter et al., 2017). As a perspective of 
future work, one way to reduce the effects of model free parameters' uncertainties on modeled shoreline 
may be to employ non-stationary parameters that can adjust to changes in wave-climate regimes (Ibaceta 
et al., 2020). The use of non-stationary parameters would also imply a dynamic value of the r parameter, 
reducing uncertainties associated to the assumption of a linear relationship, between SF's response rate 
parameters. In addition, rearranging the Y09 parameters so that the new parameters have a similar order 
of magnitudes may increase the efficiency of model calibration, reducing model parameters uncertainties 
(Vitousek et al., 2021).
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5.4. The Role of Wave Time Series

Our results indicate that the shoreline erosion is not only associated with large winter energy, but also de-
pends on the trends of past winter wave energy and the internal variability of high-energy events within the 
season. For instance, in the RCP 4.5 scenario the winters 2084–2085 and 2059–2060 show similar 3-months 
averaged Hs

2Tp peak (164 and 172 m2s, respectively), but they are preceded by several years of negative and 
positive winter energy trend, respectively (Figure 2b). This results in the winter 2084–2085 producing a 
rapid landward shift of shoreline position distribution, and the winter 2059–2060 driving more moderate 
annual changes while contributing to a long-term erosive trend (Figures 5c and 5d). We also observe that 
the interannual patterns of shoreline evolution are clearly correlated to those of winter wave energy. These 
behaviors underline the critical role of high/low energy winters interannual cycles, as well as storms se-
quencing, in wave-driven shoreline response, in line with previous studies (Besio et al., 2017; Dissanayake 
et al., 2015; Dodet et al., 2019). In addition, the temporal variability of wave climate (e.g., seasonal distribu-
tion of storm events) has been observed to affect the frequency (or “mode”) of shoreline response (Ibaceta 
et al., 2020; Splinter et al., 2017).

Therefore, we further investigated the potential role of future waves uncertainties in shoreline projections 
performing the GSA on an additional ensemble of 3,000 simulations forcing the Y09 and SF models with 
100 different wave time series. We generated 100 random synthetic wave series using the method proposed 
by Davidson et al.  (2017), which consists in building continuous series of wave conditions by sampling 
1-month portions from a reference data set of existing wave data (e.g., historic wave data) at a given loca-
tion. The method generates synthetic wave time series with random, though realistic, chronology of wave 
events, while maintaining the seasonal and yearly character of the wave climate. However, this assumes 
a long-term stationarity of the generated wave time series. We used the BW18 projections for the RCP 8.5 
scenario as reference wave data. We individually applied the Davidson et al. (2017) method over 8 windows 
of 10 years from 2020 to 2100 in order to preserve the long-term (>10 years) characteristics of the reference 
time series while providing enough sampling reference data (Figure  9a). For instance, all the synthetic 
events from 2030 to 2040 were generated using monthly samples from the 2030–2040 reference data set.

When using the latter approach to generate ensemble waves the SF model shows some limitations. There-
fore, here we exploit only the test results obtained with Y09. The results of the SF test application and the 
aforementioned limitations are illustrated in Text S5 and Figure S4 of Supporting Information.

The GSA shows that introducing uncertainties in the temporal distribution of wave events (Figure 9a) has 
a large impact on the variance of model results (Figure 9b) and, in turn, on the relative contributions of the 
remaining uncertain input parameters (Figures 9c–9h). In fact, accounting for uncertainty in wave events 
chronology (though in a simplistic way) increases the overall model variance throughout the entire simulat-
ed period (Figures 6c and 9b), and associates a dominating Si (up to 0.3) over the first half of the simulated 
period (Figure 9i). However, SLR's Si still emerges after 2060 and dominate shoreline projections uncertain-
ties over the last two simulated decades. We also observe that the inclusion of wave chronology uncertainty 
attenuates the interannual variability of all Sis while preserving the seasonal and 10-years signals (Fig-
ures 9c–9h). This is a natural consequence of the method used to generate the wave series ensemble. In fact, 
the Davidson et al. (2017) method is designed to preserve the seasonal variability, while its application to 
fixed time windows of the reference time series constrains the ensemble members to maintain the 10-years 
variability. The black lines in Figures 9c–9i show the time evolution of Sis obtained removing the seasonal 
signal from the model results with a 1-year running average. When the seasonal variability of the results is 
removed, the SLR's Si compensates the fluctuations of the model parameter's Sis, resulting in an increased 
trend.

The test application illustrated above suggests that including uncertainties in short-term wave chronology 
can significantly impact the uncertainties of shoreline projections and the relative contributions of the 
remaining uncertain input variables. Further, introducing uncertainties on long-term non-stationarity of 
wave conditions would overcome the SF limitations occurring in this specific application, and may unveil 
new implications of the different Y09 and SF equilibrium approaches in the context of probabilistic long-
term shoreline projections.
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Figure 9. Ensemble of 3,000 Yates simulations forced using (a) 3-months average energy (Hs
2Tp) of 100 random wave time series from 2020 to 2100 generated 

with the Davidson et al. (2017) method based on the BW18 wave projections for the RCP 8.5 scenario; (b) Ensemble shoreline projections over the analyzed 
period (dark/light shaded areas indicate the likely/envelope range, that is, variance (min-max), of shoreline position); First-order Sobol’ index time series for (c) 
ky

+, (d) ky
−, (e) a1, (f) a2, (g) sea-level rise, (h) depth of closure, and (i) wave energy, with respective time series calculated on the 1-year running average of model 

results (black lines).
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5.5. Assumptions and Limitations

Wave projections are affected by uncertainties owing to the choice of the Global Climate Model (Morim 
et al., 2020) and random variability of wave events. Although our results are based on deterministic BW18's 
wave projections, in the northeast Atlantic region the estimated future wave statistics have been observed to 
be mostly sensitive to the RCP scenario (Morim et al., 2020). Yet, the use of deterministic wave projections 
hides a potentially large impact of the uncertain wave-climate variability on both shoreline predictions 
uncertainty and behavior of the shoreline models.

In addition, accounting for uncertainties in wave projections may also increase the uncertainties in DoC, 
which were based on one deterministic wave time series in the present study. However, to the authors' 
knowledge there is no other data set of continuous 2020–2100 wave projections, over the north Atlantic 
area, with a sufficient spatial resolution to resolve the site-specific regional scale processes. This underlines 
the need of continuous wave time series (obtained with different wave models of fine enough spatial resolu-
tion, different climate models, for different RCP scenarios), as well as tools allowing generating continuous 
realistic future wave time series, such as climate based stochastic wave emulators (D. Anderson et al., 2019; 
Cagigal et al., 2020).

In the current work, we assumed that MSL 2020–2100 projections are normally distributed. However, the 
MSL distribution may be skewed toward higher values due to additional uncertainty related to Antarctic 
ice-sheet melting in the RCP 8.5 scenario. We simulated a deterministic RCP 8.5 high-end SLR scenario to 
define a low-probability/high-impact scenario for projected shoreline erosion. Yet, our high-end SLR sce-
nario is based on a particular combination of high-end contributions to sea-level rise, which makes no con-
sensus in the scientific community (Bamber et al., 2019; Edwards et al., 2021; Stammer et al., 2019). While 
this is not included in the GSA, the use of a skewed probability distribution may lead to an earlier onset of 
SLR uncertainties in shoreline projections.

The Bruun Rule, used in our application to estimate SLR-driven shoreline recession, builds on several strong 
assumptions that reduce the applicability of this model to a limited range of beaches (Cooper et al., 2020). 
As the Truc Vert is an uninterrupted natural cross-shore transport dominated beach, with large sediment 
availability, most underlying assumption of the Bruun model are satisfied. However, alternative models to 
address beach response to SLR, such as ShoreTrans (McCarroll et al., 2020), can be implemented in this 
framework.

Coupling the Bruun Rule with Y09 and SF allows accounting for long-term effects of SLR while resolving 
short-term shoreline response to the wave climate. The Y09 and SF models do not explicitly resolve sedi-
ment sediment exchange between the different beach compartments (e.g., upper beach and dune), and may 
fail reproducing episodic shoreline changes such as short-term accretion following to dune erosion events. 
However, if such events occur during the model calibration period, as in our applications (i.e., winter 2013–
2014), their influence on the bulk shoreline response is partially accounted.

Here, we investigated the main effect of the uncertainties in input variables (Sis). While the estimated Si 
of the DoC remains relatively low over the simulated period, in all simulated scenarios, the interaction of 
DoC and SLR uncertainties (i.e., second-order Sobol’ index) may have a larger impact. However, estimat-
ing robust interaction terms would require a larger ensemble of simulations (several tens of thousands). 
Furthermore, in order to rigorously conclude on the negligible character of some uncertainties, GSA 
should be conducted within the factors' fixing setting (i.e., investigating the “total effect” of uncertain var-
iables, Saltelli et al., 2008). In the presence of dependence among the inputs, more advanced GSA indices 
should be used for this purpose. In particular, a method that employes the so-called Shapley effects has 
recently been proposed and showed very promising results (Iooss & Prieur, 2019). While the direct appli-
cation of this method requires computational cost of several order of magnitudes larger than the Sobol’ 
indices (see Iooss & Prieur, 2019), Broto et al. (2020) successfully implemented a more computationally 
efficient sampling-based method for GSA using Shapley indices. This may be an interesting perceptive 
for future works.
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6. Conclusions
We performed a Global Sensitivity Analysis on probabilistic 2020–2100 shoreline projections at the cross-
shore transport dominated Truc Vert beach in southwest France. Time varying first-order Sobol’ indices 
were calculated for sea-level rise, depth of closure, and model free parameters for two different cross-shore 
shoreline models (Yates and ShoreFor) and two RCP scenarios (RCP 4.5 and RCP 8.5). We show that uncer-
tainties in shoreline projections are initially driven by uncertainties in model free parameters, with the ef-
fects of SLR uncertainties only emerging in the second half of the 21st century. However, the relative effects 
of SLR and model parameters uncertainties on shoreline projections do not only depend on the shoreline 
modeling approach and RCP scenarios, but their time evolution is also related to the forcing wave-climate 
variability. We also emphasize the importance of accounting for uncertainties related to the temporal distri-
bution of wave energy, and therefore the need of ensembles of synthetic wave time series that account for 
the inherent variability of the wave climate.
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