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The controllable assembly of plasmonic nanoparticles has developed as one of

the most significant approaches for surface enhanced Raman spectroscopy

(SERS) applications. This study developed a simple approach to improve a large-

scale ordered assembly of gold nanorods (GNRs) by controlling the droplet

evaporation mode on hydrophobic substrates. The hydrophobic substrate was

efficiently produced by spin coating the silicone oil onto the glass slides and

annealing them. The analyte molecule rhodamine (R6G) was employed as a

surface-enhanced Raman scattering probe to demonstrate the potential effects

of the synthesized arrays. This hydrophobic platform enables the concentration

and delivery of analyte molecules into the surface enhanced Raman

spectroscopy sensitive site while suppressing the coffee ring effect

generated by the smooth contraction motion of the base contact radius of

the droplet without any pinning. Thus, the limit of detection (LOD) of the R6G

analyte was lowered to 10−10 M and the homogenous dispersion of surface

enhanced Raman spectroscopy hotspots within the self-assembly reproducible

surface enhanced Raman spectroscopy signal. This new method enables a

broad range of packing patterns and mechanisms by changing the host

nanoparticles in the dispersion.
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1 Introduction

The self-assembly of nanoparticles is becoming a common and

effective approach for fabricating controlled colloidal patterns (Jana,

2004; Ko et al., 2008; Prasad et al., 2008; Grzelczak et al., 2010; Dai

et al., 2011). Several methods for fabricating GNRs arrays have been

developed to compact complicated particle structures with diverse

symmetry and assembly configurations at the nanoscale (Zhu et al.,

2011; Quan et al., 2014; Li et al., 2015; Wang et al., 2015; Lu and

Tang, 2016; Luo et al., 2017a; Luo et al., 2017b). The assembly of

anisotropic colloidal nanoparticles into complicated well-arranged

structures has long been a hot topic in nanoscience due to their

distinct collective optical and electronic properties and

incorporation into nanophotonics (Zhu et al., 2011; Lu and

Tang, 2016; Luo et al., 2017a; Quan et al., 2014; Li et al., 2015;

Wang et al., 2015; Xia et al., 2003; Cho et al., 2010;Wang et al., 2012;

Sun, 2013; Wang et al., 2015; Xu et al., 2015; Neretina et al., 2016;

Abeyweera et al., 2017; Kim et al., 2017). The successful

incorporation of such nanoparticles into efficient optoelectronic

devices needs reproducible, highly organized, and macroscopic

uniformity of performance from the structure (Zhu et al., 2011;

Li et al., 2016; Lu and Tang, 2016).

The droplet evaporation has been intensively examined among

the diverse approaches used to produce complicated structures due

along with its functionality, cost-effectiveness, and broad applicability

to numerous nanomaterials (Zhang et al., 2014; Vogel et al., 2015).

Moreover, the drying droplet commonly leaves a non-uniform solid-

ring on the substrate known as a coffee ring (Deegan et al., 1997). The

configuration of a solid ring structure is strongly related to droplet-

controlled dispersion, which is primarily focused on heat and mass

loss during evaporation (Deegan, 2000). The heat loss causes

evaporative cooling to sufficiently produce a surface tension slope

capable of driving Marangoni flow (Larson, 2014). The evaporation

process causes capillary flow outward from the center of the drop,

bringing the suspension particles to the edges. The particles are

significantly concentrated along the initial drop edge after

evaporation, resulting in a non-uniform solid ring (Deegan et al.,

2000). Recent research has focused on addressing the coffee-ring

effect by controlling important configurations including particle size,

particle shape, charges and surfactant concentration, to attain large-

area arrays of self-assembled particles (Fan et al., 2004; Bigioni et al.,

2006; Byun et al., 2010; Alvarez-Puebla et al., 2011; Singh et al., 2012;

Chen et al., 2013; Peng et al., 2013; Ye et al., 2013; Peng et al., 2014;

Zhang and Lin, 2014; Apte et al., 2015; Hamon et al., 2015; Li et al.,

2016; Lu and Tang, 2016; Luo et al., 2017a; Luo et al., 2017b; Kim

et al., 2017). Themost effectivemethod for overcoming the “diffusion

limit” of analytes in highly diluted aqueous solutions is to use super

hydrophobic surfaces, which have the dynamic ability to deliver

analytes to SERS-active sites (De Angelis et al., 2011; Gentile et al.,

2014). Moreover, the disadvantage of super hydrophobic surfaces for

these applications is that air pockets among the surface structures can

be spoiled by outward wetting pressure and could lose wetting

property by destructive the surface structure (Reyssat et al., 2007).

Recently, slippery surfaces (hydrophobic surfaces) have evolved into a

superior substitute to super hydrophobic as a fluid repellent surface

with a very small contact angle hysteresis (Bocquet and Lauga, 2011).

To our understanding, only few studies has been accompanied on the

controlled evaporation method-based SERS technique for analyte

detection on cost-effective hydrophilic substrates.

This study proposed a novel method for fabricating self-

assembled GNRs. The hydrophobic surface was fabricated in the

first step and then controlled the evaporation rate of droplets in

the second step. This method was used to reverse the coffee ring

effect during droplet evaporation of an aqueous diffusion of

GNRs assembly. The droplet evaporation process revealed GNRs

formed at the interface between solvent and air, developing

domains that improved in size and density as the solvent

evaporated under microscope light. The optical properties of

the attained superstructures were experimentally determined.

Finally, the promising application of GNRs self-assembly

arrays for analytical detection using R6G as a model analyte

based on SERS was established.

2 Material and method

2.1 Preparation of GNRs

The study synthesized the GNRs and employed a seed-

mediated growth method as described in our previous

procedure (Usman et al., 2019). After the seed solution was

formed, HAuCl4 (0.1 ml; 0.025 M) and CTAB (5 ml; 0.2 M) were

combined at room temperature. The solution of ice-cold NaBH4

(0.01 M, 0.6 ml) was promptly introduced. The color of the

solution gradually changed from yellow to brownish-yellow.

The solution continues to stirring for 20 min. The solution

was cooled down to room temperature for 30 min. The

growth solution was prepared by adding hexadecyltrimethyl

ammonium bromide (CTAB), 5 ml, 0.2 M, and different

amounts of 0.05, 0.10, 0.15, 0.20, and 0.25 ml of 0.16 mM

AgNO3 solutions at 30°C, respectively. Then, add 0.2 ml of

0.025 M HAuCl4 to the solution. Following constant stirring,

the ascorbic acid (0.08 M, 70 ml) was added and changed the

color from dark-yellow to colorless. Lastly, the seed solution of

12 ml was mixed with the growth solution at 30°C. The color of

the mixture slowly changes in 15–30 min. The GNRs were well

designed at room temperature after rapid growth.

2.2 Silicone oil-based hydrophobic
surface preparation

The glass slides were cleaned for 10 min using sonication and

plasma cleaning. The silicone oil, with a kinematic viscosity of 370 cSt,

was applied to a clean glass slide and spin-coated at 1,000 rpm for

1 min. This method was effective for removing additional lubricating
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oil. The silicone oil-coated glass slide was then annealed at 150°C for

120min. As a result, the surface chemical propertywasmodified to be

hydrophobic and a uniform silicone oil coating was formed on the

glass slide.

2.3 Evaporation-induced assembly of
aligned GNRs arrays

The GNRs were centrifuged at 7,000 rpm for 20 min to reduce

extra CTAB. A 30-μl drop of GNRs was deposited on the

hydrophobic substrate. Then the hydrophobic substrate was

transferred onto a polystyrene Petri dish plate with dimensions

of 94 mm in width and 15 mm in height. After that, add 1 ml of

water to the Petri dish to regulate the humidity. The Petri dish was

wrapped and put inside an incubator. After the evaporation, the

GNRs solution on the hydrophobic substrate contracted into tiny

droplets without forming coffee-rings. As a result, the well-arranged

assemblies of GNRs were observed on the hydrophobic substrate.

2.4 Raman spectroscopy measurements

For the SERSmeasurements, R6G dye was working as a Raman

probe molecule and was diluted to various concentrations. The

concentrated molecules and GNRs solution of 30 μl was placed on

the SERS substrate and evaporated at room temperature. All SERS

measurements were carried out using a 633 nm laser excitation and

a laser power of about 1.5 mW. A confocal Raman microscope

(Renishaw PLC., England, United Kingdom) with a 50-microscope

objective and a numerical aperture (NA) of 0.6 was used to detect

in-elastically scattered radiation.

2.5 FEM simulation

We used the commercial program COMSOL Multiphysics

5.5 for numerical simulation to do electromagnetic analysis.

Comsol uses the finite element method (FEM) to solve the

following differential form of the Maxwell equation:

∇ ×
1
μr

∇ × E( ) −K2
0 εr − jσ

ωε0
( )E � 0 (1)

where µr and εr are the medium’s relative permittivity and

permeability, respectively, and K is the wave’s propagation

vector defined for all mediums in the model, ω is the angular

frequency, and σ is the medium’s conductivity. A 3D frequency-

domain model is used to solve the problem in the wave optics

module. A perfect matching layer PML is applied at the top and

bottom of the model to secure the physical domain from any

background fields. Furthermore, periodic boundary conditions

FIGURE 1
(A) A diagram showing the enrichment and self-assembly of GNRs on a hydrophobic surface. (B) Contact angles advancing and (C) receding on
a hydrophobic surface.
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are applied in the X and Y directions to simulate light

propagation through the hexagonal unit cell of the standing

GNRs. Physic controlled fine meshing used for GNRs and

physical domain. The whole structure is irradiated vertically

with a transverse electric polarized light with an electric field

intensity of 1V/m. The GNRs array in the simulations has a

surface-to-surface separation p = 7 nm, diameter D of 17 nm, and

a height of 30 nm. P. B. Johnson and R. W. Christy

experimentally determined values for gold permittivity was

utilized for the model. The dielectric constants of the silicone

layer and quartz glass were also sourced from the comsol material

library.

3 Results and discussion

The hydrophobic surface and high humidity environment

are critical for GNRs self-assembly and enrichment. A lubricated

substrate containing a silicon oil-coated glass slide is a simple

depiction followed by spin coating and annealing. Hence, this

would make the substrate hydrophobic because the high surface

energy of silicon dioxide changes the surface energy of the glass

through covalent bonding of silicone oil molecules with the glass

surface. The hydrophobic surface played an important part in the

development and self-assembly of GNRs. It is extremely

important to keep droplet evaporation in a steady-state

assembly process, which is primarily a thermodynamic

procedure, in imperative to produce homogeneous self-

assembled particle arrays. As a result, the environmental

parameters must be carefully monitored, including the

temperature and humidity of the substrates during the

evaporation process. When the temperature falls below 25°C,

the CTAB surfactant in the droplets crystallizes and precipitates

from the solution. This clearly devastates the self-assembly

process, resulting in poor quality GNRs arrays. When the

temperature rises to 50°C, however, the convection in the

droplet intensifies, causing serious damage in large non-

uniform accumulations (Ming et al., 2008). The evaporation

FIGURE 2
(A) The UV-vis spectrum of GNRs in aqueousmedium (B) TEM image of GNRs demonstrating good size uniformity. The histogram figures show
the (C) length and (D) diameter of GNRs from TEM images.
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was carried out in a controlled environment with a high humidity

level in maintenance. The high humidity environment slowed the

evaporation of the GNRs droplets, allowing the solvent to

evaporate at the same rate from the contact line to the droplet

centers (Zhang and Lin, 2014). The slow evaporation could

reduce the convection and inhibit GNRs from following from

the center to the contact line, thus preventing the formation of a

coffee-ring structure (Hu and Larson, 2006). The solution

contracted into smaller droplets owing to the homogeneous

evaporation speed and the absence of a pinned edge across

the surface of the droplets. Figure 1A depicts a schematic

demonstration of the fabrication method of the hydrophobic

platform.

After optimizing the conditions, we investigated the effects of

substrate hydrophobicity and repellency by contact angle (θ) and

contact angle hysteresis (CAH) (Δθ � θa − θr), the difference

between the advancing (θa) and receding contact angle (θr)

measured by optical Goniometer (OCA35, Data Physics

Germany). Figure 1B showed substrates with GNRs contact

angles of 108.5°, indicating the value of the fabricated

hydrophobic surface was tremendous. Contact angle hysteresis

(Δθ) is associated with the pinning of the contact line and

characterizes the droplet evaporation process. In the case of

contact line pinning, the contact angle decreases as the

droplet volume decreases and the contact line starts to

withdraw. Contact-angle hysteresis during droplet evaporation

reflects the contact line receding in this way. In our case, Δθ on a

hydrophobic surface was only 2.4°, as shown in Figure 1C, which

demonstrated that the fabricated hydrophobic surface was of

high quality. The small contact angle hysteresis of the dispersion

of GNRs on the hydrophobic surface helps to reverse the coffee-

ring effect. It can be established that Marangoni flow and contact

line receding can efficiently control the final configuration of

GNRs on the substrate. This process avoids the coffee-ring effect

that occurs during nanoparticle evaporation, resulting in

uniform deposition and adjacent packing of GNRs.

This study used an evaporation-induced self-assembly

approach to obtain GNRs from a liquid drop containing

GNRs. The UV-vis absorption spectrum of GNRs dispersed in

water is shown in Figure 2A. The transverse and longitudinal

modes were assigned to the surface plasmon resonance peaks that

were obtained at wavelengths of 510 and 670 nm, respectively.

The previous research has shown that the maximum SERS

intensity was achieved when the laser excitation wavelength

was slightly shorter than LSPR, so the laser excitation

wavelength was in resonance with the substrate of the surface

plasmon (Hossain et al., 2009; Kumar et al., 2020). Figure 2B

depicts a transmission electron microscopy (TEM)

FIGURE 3
(A) Optical microscopy images of droplets evaporating at different times on a hydrophilic (B) hydrophobic surface. (C) The contact diameter
(CD) of a droplet on non-slippery surfaces and slippery surfaces as a function of evaporation time. SEM images of GNRs solution after evaporation
(D) on the hydrophilic surface and (E) lubricated liquid-infused hydrophobic surface.
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representation of GNRs. The distributions of GNRs particle sizes

measured in TEM images were plotted in (Figures 2C, D). The

length of 41.5 + 3.9 nm and the width of 14.1 + 1.5 nm of the

GNRs were obtained from the histogram diagram, and an aspect

ratio of about 3. According to this, GNRs had uniform

morphology and a narrow size distribution.

We investigated the effects of hydrophobicity on the

development of GNRs arrays after optimizing the evaporation

conditions, such as temperature at 30°C and humidity at 96%.

The GNRs evaporated on the hydrophobic surface in a controlled

environment, producing a highly concentrated pattern and

repellency. The 20 μl GNRs were measured using an optical

microscope at various times on hydrophilic and hydrophobic

substrates (see Figure 3).

The droplet of the initial contact diameter (d) on the non-

slippery surface (hydrophilic surface) was large (d � 4.47 mm).

The contact diameter did not change significantly over the

evaporation time due to the hydrophilic nature of the

particles and the droplet spread over a large spot with a

diameter of 4.27 mm after completely solvent drying (after

55 min), as shown in Figure 3A. On the other hand, the

contact diameter of the droplet on the hydrophobic surface

was reduced to 0.193 mm from its initial diameter of

3.154 mm after complete drying of the solvent, which was

smaller than that of a droplet of the same volume on the

hydrophilic surface due to surface hydrophobicity as revealed

in Figure 3B. The contact diameter of hydrophilic and

hydrophobic surfaces varied with the evaporation time, as

shown in Figure 3C. The hydrophobic surface reduced contact

area by approximately 98.78% when compared to the hydrophilic

surface.

The scanning electron microscopy (SEM) images suggest an

exciting effect of the enrichment and the concentration of GNRs

particles on hydrophilic and hydrophobic surfaces after

evaporation. In Figure 3D, the GNRs particles showed a

scattered pattern after complete evaporation on a hydrophilic

FIGURE 4
(A) Schematic diagram of GNRs coupling with dye analyte on a hydrophobic surface as a strategy to increase the electric field enhancement
effect (B) Raman scattering spectra of various concentrations of solutions. (C) The peak intensities of various concentrations at 1,340 cm−1 (D) SERS
spectra from R6G aqueous solution (10−6 M) dried on randomly chosen five spots of the GNRs arrays demonstrate the good reproducibility of the
substrate.
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surface, with themaximum value at the droplet edge, as described

by the “coffee ring effect.” This effect is commonly observed at

pinning sites on surfaces. As a result, GNRs particles show an

extensive configuration over a large area. However, the GNRs

solution produced interesting results on the hydrophobic surface.

The easy contraction of the droplet without pinning suppressed

the coffee ring effect to enrich all the GNRs particles into a very

small spot on the hydrophobic surface. The effective compact

self-assembly of GNRs via droplet evaporation on the

hydrophobic surface is shown in Figure 3E.

Furthermore, the condition for a high contact angle and low

CAH is critical for improving SERS performance. In former

studies has demonstrated that densely compacted metallic

nanoparticles have significant SERS enhancement factors

(Diebold et al., 2009; Huang et al., 2015). The formation of

the hot spots between neighboring particles significantly

increases SERS enhancement.

In this study, the fabricated substrate was covered by a closely

packed GNRs array, which produced a significant field

enhancement effect. The schematically Figure 4A illustrates

the encapsulated GNRs on a hydrophobic surface. Here a

rounded ends cylindrical GNRs (with orange color) coated

with dye (blue color), shined by TE polarized light. The

electric field is parallel to the plane of the hydrophobic

surface with normal K-propagation vector. The densely-

packed GNRs arrays and their uniform structure were able to

produce a SERS signal for molecular detection at concentrations

as low as 10−10 M. SERS measurements on the GNRs arrays were

carried out using a Raman spectrometer with a 633 nm

excitation. The target molecule was R6G solution, a common

dye used in biological research. Figure 4B shows the SERS spectra

of R6G at various concentrations ranging from 10−6 to 10−10 M.

The Raman spectra of R6G were attributed to C-C-C ring in

plane, out-of-plane being, and C-H in-plane bending vibrations

in the sharp peaks at 611 and 776 cm−1, respectively. It also had

Raman shift peaks at 1,180, 1,360, 1,509, and 1,650 cm−1, which

were ascribed to symmetric modes of C-C stretching vibrations

in plane. These R6G Raman peaks are consistent with those

previously reported (Lu et al., 2005; Jensen and Schatz, 2006).

The Raman spectra clearly showed the characteristic Raman

peaks of R6G even when the concentration was as low as

10−10 M. The SERS substrates for the GNRs arrays had

excellent reusability, enabling multiple detections after plasma

etching to clean the previous substrate. The Raman signal

FIGURE 5
The enhancement of the electromagnetic field in GNRs with hydrophobic and hydrophilic substrates with 7-nm gaps (A,C) and (B,D),
respectively.
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decreased gradually with the decreasing the concentration of

R6G. The previous results were also confirmed in the study of

Wei et al. (2018) using R6G detection at a concentration was as

low as 10−10 M. We obtained the calibration curves with this

result analyzed as shown in Figure 4C. Notably, it had a relatively

good linear correlation relationship (correlation coefficient, R2 =

0.9928) between the SERS signal ratio and R6G concentration.

The suggested approach might, therefore, prove helpful in the

quantitative analysis.

In order to study the uniformity and ensure a homogeneous

distribution, 10−6 M of the analyte R6G aqueous solution was

dispersed on the surface of the hydrophobic surface. After that,

we observed five random spots on the substrate with the same

exciting line and integration time (Figure 4D). The relative signal

deviation of R6G was about 10% on the GNRs arrays, revealing

the overall reliability and uniformity of such a substrate for SERS

detection. The excellent performance of the GNRs arrays could

be attributed to a number of factors. For example, the GNRs were

arranged in a regular pattern. In periodic structures, photon

density redistribution was common, causing an increase in the

density of optical modes and an improvement in the Raman

scattering of the detected molecules (Gaponenko, 2002).

To effectively understand the physical mechanism

underlying the detected SERS response, the electric field

intensity enhancement of the GNRs array was investigated

employing Comsol multiphysics simulation (see Figure 5), on

hydrophobic and hydrophilic substrates, under 540 and 670 nm

laser light. The GNRs arrays are assembled with a gap of 7 nm.

The GNRs revealed the enhancement of electromagnetic fields in

the case of the hydrophobic surface. Figure 5A indicates that at

540 nm of laser excitation, the field is a maximally localized

electromagnetic field within the GNRs array in the hydrophobic

substrate compared to the hydrophilic substrate in Figure 5B.

Similarly, Figure 5C exhibits a similar excellent local field

enhancement effect on a hydrophobic substrate as compared

to the hydrophilic substrate using 670 nm laser excitation. Hence,

when compared with the disordered substrate, the resonance of

the local electromagnetic field around the GNRs arrays is

relatively strong, and the dense “hot spots” can improve the

SERS activity of the substrate. These results further confirm and

demonstrate that the hydrophobic substrate can be used to

enhance and detect the SERS signals, which is almost

consistent with our experimental results.

4 Conclusion

In summary, we used the controlled evaporation process to

fabricate large-area ordered self-assembly arrays of GNRs on the

hydrophobic surface. The droplet contracts effectively because of the

lack of pinning sites and hydrophobicity of the substrate, which

prevent the coffee-ring effect and offer a smooth surface. Therefore,

this process effectively delivers the molecules inside the droplet to a

concentrated hot spot. The resulting arrays had constant structural

and efficient homogeneity on a macroscopic scale. We also

established that the fabricated GNRs arrays produced a SERS

signal for detecting R6G at a concentration of 10−10 M. The

exceptional results in SERS detection reproducibility are due to

the uniformity in large areas. The structure of the GNRs relied solely

on the hydrophobicity of substrates in an evaporating environment.

The limitation of hydrophobic surfaces is also observed when there

are many liquid drops sliding on them, which slowly removes the

lubricating oil. In this case, the hydrophobic performance is

degraded, but it can be rapidly recovered by coating the silicone

oil on the surface again. As a result, this technology could be easily

applied to different nanoparticle systems to produce ordered

nanoscale arrays for the integration of microscopic devices.
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