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Second-generation antipsychotics (SGAs) are the mainstay of treatment for
schizophrenia and other neuropsychiatric diseases but cause a high risk of
disruption to lipid metabolism, which is an intractable therapeutic challenge
worldwide. Although the exact mechanisms underlying this lipid disturbance are
complex, an increasing body of evidence has suggested the involvement of the gut
microbiota in SGA-induced lipid dysregulation since SGA treatment may alter the
abundance and composition of the intestinal microflora. The subsequent effects
involve the generation of different categories of signalingmolecules by gut microbes
such as endogenous cannabinoids, cholesterol, short-chain fatty acids (SCFAs), bile
acids (BAs), and gut hormones that regulate lipidmetabolism. On the one hand, these
signaling molecules can directly activate the vagus nerve or be transported into the
brain to influence appetite via the gut–brain axis. On the other hand, thesemolecules
can also regulate related lipid metabolism via peripheral signaling pathways.
Interestingly, therapeutic strategies directly targeting the gut microbiota and
related metabolites seem to have promising efficacy in the treatment of SGA-
induced lipid disturbances. Thus, this review provides a comprehensive
understanding of how SGAs can induce disturbances in lipid metabolism by
altering the gut microbiota.
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Introduction

The use of antipsychotic medications as a treatment for patients with schizophrenia is
surging, and the incidence of schizophrenia is also rising dramatically worldwide (Hert et al.,
2011; Gonçalves et al., 2015). However, long-term use of these drugs can cause numerous
adverse effects on patients, especially the disruption of lipid levels, including high-density
lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), and total cholesterol (TC)
(Jaberi et al., 2020). Although individuals with schizophrenia may exhibit dyslipidemia before
the initiation of treatment, mounting evidence has shown that antipsychotics can
independently induce further abnormalities. It has been noted that patients with first-
episode schizophrenia have abnormal lipid profiles, and those with multiple-episode
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schizophrenia are more likely to have dyslipidemia (Mackin et al.,
2007; Vancampfort et al., 2015; Mhalla et al., 2018; Pillinger et al.,
2019; Yang et al., 2022). Notably, second-generation antipsychotics
(SGAs) have stronger associations with lipid abnormalities than first-
generation antipsychotics (FGAs) have (Buhagiar and Jabbar, 2019).
Metabolic abnormalities especially lipid metabolism disorders, are
major risk factors contributing to cardiovascular events (Fan et al.,
2013). They also play a role in the pathophysiological process of
systemic organ damage and are causative factors in the development
and progression of atherosclerotic cardiovascular disease. According
to previous reports, patients with schizophrenia have a life expectancy
that could be 15 years shorter than that of the general population.
Additionally, more than two-thirds of patients with schizophrenia die
from coronary heart disease, which is significantly higher than the
mortality rate in the general population (Hennekens et al., 2005). A
growing body of research indicated that SGA-induced disturbances of
lipid metabolism and other metabolic abnormalities are the key factor
linking to an increased risk of cardiovascular disease in patients with
schizophrenia, in addition to some confounding risk factors such as
smoking, physical inactivity, unhealthy lifestyle, and poor dietary
habits (Arias et al., 2018).

Although the particular processes by which SGAs cause
dysfunctional lipid metabolism are complex, a growing body of
evidence suggests that the gut microbiota is involved in SGA-
induced defects in lipid metabolism. From birth, humans have
microbes in their digestive tract (Yatsunenko et al., 2012).
Hundreds of millions of microorganisms, including bacteria, fungi,
and viruses, exist in the healthy human gastrointestinal system,
forming a microbial community that has a major impact on the
body (Mirzaei and Maurice, 2017). A large number of these bacteria
make up the collective intestinal flora. The intestinal flora contains
1000 to 1500 species of bacteria, which outnumber the body’s cells by
more than 10 times (Kim and Jazwinski, 2018) and have more than
100 times the total number of genes as humans (Cox et al., 2019).
These bacteria play important roles in host metabolism, digestion, the
immune system, and the central nervous system (John and Mullin,
2016; Rogers et al., 2016; Dinan and Cryan, 2017; Ipci et al., 2017;
Kanji et al., 2018). The theory that the gut microbiota affects lipid
metabolism has been extensively studied in mice. For example, germ-
free (GF) mice on a chow diet showed lower fasting systemic TG, TC,
HDL cholesterol, and portal vein TG (Martinez-Guryn et al., 2018), as
well as higher liver cholesterol and lower TG levels, than
conventionally raised (Conv-R) mice (Rabot et al., 2010). Rabot
et al. found that Conv-R mice had increased blood TG, HDL, and
TC levels after consuming a high-fat diet (Rabot et al., 2010). To
maintain the same weight as Conv-R mice, GF mice had to increase
their caloric intake by at least 30% (Hsiao et al., 2008). Further
evidence that the intestinal flora affects lipid metabolism has been
observed in fecal transplantation experiments. Peter et al. showed for
the 1 time that the ability of the gut microbiota to harvest energy from
the diet was a transmissible trait. GF mice colonized with an ‟obesity
microbiota” had a much higher increase in total fat than GF mice
colonized with a ‟lean microbiota” (Turnbaugh et al., 2006). Similarly,
obese patients with reduced microbial gene abundance (40%) showed
more pronounced metabolic disturbances and had increased total
serum cholesterol and serum TG levels (Cotillard et al., 2013).

The sex and age of the host as well as the site in the gastrointestinal
tract influence the makeup and variety of the intestinal flora (Kim and
Jazwinski, 2018; Cox et al., 2019). Independent of host variables, diet,

lifestyle, and medicine can alter the composition of the gut flora (Kanji
et al., 2018). Studies in recent years have shown that SGAs have some
antibacterial activity and can alter the gut microbiota of patients with
psychosis (Nehme et al., 2018; Ait Chait et al., 2020). Olanzapine can
have direct antibacterial in vitro effects against the mammalian gut
bacteria Escherichia coli and Enterococcus faecalis, which are the two
most common species in the intestine (E. coli: Proteobacteria; E.
faecalis: Firmicutes) (Morgan et al., 2014). Similarly,
chlorpromazine (Kristiansen, 1979) has shown antibacterial effects
against Mycobacterium tuberculosis in vitro, and thioridazine
(Thorsing et al., 2013) acts against methicillin-resistant
Staphylococcus aureus. These medications targeted a more
comparable pattern of species than their degree of chemical
similarity would suggest (Maier et al., 2018). This raises the
possibility that direct bacterial inhibition by SGAs is not merely a
side effect but also a part of their molecular mechanism.

The effect of gut microbes on lipid metabolism has been supported
by many in vivo and in vitro studies, and evidence of the effect of SGAs
on gut microbes is gradually emerging with the advancement of
microbiological research techniques. Furthermore, positive results
have been achieved with therapeutic strategies that directly target
the gut microbiota and related metabolites, thereby ameliorating
antipsychotic-induced disorders of lipid metabolism. This certainly
identifies the gut microbiome as a potential target and establishes that
the potential mechanism underlying lipid metabolism disturbances
associated with antipsychotics is worthy of further investigation.
However, the role of the gut microbiome in antipsychotic-induced
disorders of lipid metabolism has not been systematically explained.
This review aims to provide a comprehensive understanding of the
potential for SGAs to alter the gut microbiota and promote adverse
lipid metabolism events. Keyword search on PubMed is detailed in
Figure 1, based on the Preferred Reporting Item Guidelines for
Systematic Reviews and Meta-Analyses.

The critical impact of SGAs on the gut
microbiota: Evidence from animals and
humans

Research on the microbiota in schizophrenia patients treated with
SGAs is very scarce within the general microbiota literature. Several
studies have investigated the effect of the gut microbiome on animal
and human models (Table 1; Table 2). Mice treated with risperidone
(Ridaura et al., 2013; Bahr et al., 2015b; Riedl et al., 2021) and
olanzapine (Morgan et al., 2014) have increased ratios of
Firmicutes to Bacteroidetes, which is one of the distinguishing
features of the microbiota of obese individuals (Turnbaugh et al.,
2006; Schwiertz et al., 2010; Ferrer et al., 2013). Firmicutes and
Proteobacteria are the two major phyla associated with the human
intestinal microbiome, constituting the majority of intestinal bacteria
(approximately 90%) (Human Microbiome Project Consortium,
2012). These studies have been well replicated in humans (Bahr
et al., 2015a; Yuan et al., 2018; Ma et al., 2020). Exceptions to this
rule are Kao et al. (Kao et al., 2018) and Pelka et al. (Pełka-Wysiecka
et al., 2019). These studies showed no significant effects of olanzapine
on the gut microbiota in female rats or in women with schizophrenia.
The results of studies on changes in the phylum Actinomycetes are
also inconsistent. Bahr et al. (Bahr et al., 2015b) found an increase in
the relative abundance of the actinomycete clade in the feces of mice

Frontiers in Pharmacology frontiersin.org02

Chen et al. 10.3389/fphar.2023.1097284

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1097284


treated with risperidone, whereas Davey et al. (Davey et al., 2012)
showed that the relative abundance of the actinomycete clade in mice
administered olanzapine was decreased. During olanzapine treatment,
the relative abundance of Erysipelotrichi and Gammaproteobacteria
increased, while the relative abundance of Bacteroidia decreased

(Morgan et al., 2014). Both Erysipelotrichi and
Gammaproteobacteria are associated with non-alcoholic fatty liver
disease (NAFLD) independent of weight gain (Spencer et al., 2011;
Henao-Mejia et al., 2012). Risperidone treatment increased the relative
abundance of Allobaculum spp. Bacteroides spp. Bifidobacterium

FIGURE 1
Flow chart diagram delineating search method.

TABLE 1 Studies of SGAs and microbiota in rodents.

Subjects Drugs Composition Body
weight

Food
intake

Key findings i: Adipose tissue
ii: Liver
iii: Plasma

References

Sprague
Dawley rats

Olanzapine ↑: Firmicutes; ↓: Actinobacteria (significant in
females), Proteobacteria, and Bacteroidetes

↑ (only in
females)

↑ (mostly in
females)

i: ↑ visceral fat; ↓ gene expression of SREBP-
1c (in females); ↑ inflammation markers (IL-
6 mRNA expression in females and 4-fold
increase (insignificant) in males,
CD68 expression in females and males); iii: ↓
circulating levels of ghrelin in females; ↑
hypothalamic expression of ghrelin 1a
receptor mRNA in males; inflammation
markers: ↑ IL-8 and IL-1β in females, ↓ IL-6
and TNFα in males

Davey et al.
(2012)

Sprague
Dawley rats

Olanzapine ↑: Firmicutes; ↓: Bacteroidetes ↑ ↑ i: ↑ fat mass; ↑macrophage infiltration; ↑
inflammation markers (CD68 Mrna); ii: ↑
hepatic expression of FAS, SREBP-1c, and
ACC
iii: ↑ FFAs

Davey et al.
(2013)

C57BL/6J mice Olanzapine ↑: Erysipelotrichi, Actinobacteria, and
Gammaproteobacteria; ↓: Bacteroidia

↑ Morgan et al.
(2014)

C57BL/6J mice Risperidone ↑phyla: Firmicutes and Actinobacteria; ↑genera:
Bacteroides, Allobaculum, Turicibacter, and
Aneroplasma; ↓phyla: Bacteroidetes and
Proteobacteria; ↓ genera: Alistipes, Lactobacillus,
and Akkermansia

↑ Bahr et al.
(2015b)

Sprague
Dawley rats

Olanzapine ↑ i: ↓ GPR43 mRNA; ii: ↑ hepatic expression of
ACC mRNA; iii: ↑ acetate; inflammation
markers: ↑ IL-1β and TNFα, ↓ IL-8

Kao et al.
(2018)

Sprague
Dawley rats

Aripiprazole ↑: Peptostreptococcaceae, Clostridiaceae, and
Ruminococcaceae; ↓: Ruminococcus 1

iii: ↑ acetate; ↑ isovalerate; Cussotto et al.
(2019)

SREBP-1c, sterol response element-binding protein-1c; CD68, Cluster of Differentiation 68; IL-6, interleukine-6; IL-8, interleukine-8; IL-1β, interleukine-1beta; TNF-α, tumor necrosis factor-alpha;

FAS, fatty acid synthase; FFAs, Free fat acids; ACC, acetyl coenzyme A carboxylase; GPR43, G-protein-coupled receptor 43.
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spp. and E. coli and decreased the relative abundance of Lactobacillus
spp. Alistipes spp. Akkermansia spp, and Clostridium coccoides groups
(Ridaura et al., 2013; Bahr et al., 2015b; Yuan et al., 2018). It should be

noted that the results of studies on the change in relative abundance of
Bacteroides spp. Are inconsistent: one study showed an increase, while
another showed no significant change (Bahr et al., 2015b; Yuan et al.,

TABLE 2 Studies of SGAs and microbiota in humans.

Subjects Drugs Composition Key findings References

Male child with Mental
Disorders

Risperidone ↓ Bacteroidetes than Firmicutes relative i: Higher levels of KEGG-associated
pathways for butyrate and propionate
metabolism were found within the
risperidone treatment group compared with
psychiatric controls; ii: The microbiota of
participants treated chronically with
risperidone were enriched for KEGG
orthologs affecting tryptophan metabolism

Bahr et al. (2015a)

Patients with Bipolar Disorder Clozapine, olanzapine,
risperidone, quetiapine,
asenipine, ziprasodone,
lurasidone, aripiprazole,
paliperidone, and iloperidone

↑: Lachnospiraceae; ↓: Akkermansia
and Sutterella

i: ↓ in species diversity for the SGA-treated
cohort, a correlation that was stronger in
SGA-treated females

Flowers et al.
(2017)

Elderly (age ≥ 65) multimorbid
(≥2 chronic diseases) patients

Multiple antipsychotics strong associations with Prevotella;
Desulfovibrionaceae family;
Succinivibrionaceae family

Ticinesi et al.
(2017)

Normal weight patients with
first episode schizophrenia

Risperidone ↑: Bifidobacterium spp. And
Escherichia coli; ↓: Clostridium
coccoides group and Lactobacillus spp

i: It is speculated that the increased level
of Bifidobacterium spp. could be a
compensatory response to counteract weight
gain and the upregulated inflammatory
status; ii: Upregulated status of
inflammation and oxidative stress

Yuan et al. (2018)

Patients with Mental Disorders Clozapine, olanzapine,
risperidone, quetiapine, or
ziprasidone

↓: Alistipes i: SGA-treated female patients exhibited less
microbial diversity than those not treated
with SGAs

Flowers et al.
(2019)

Patients with Schizophrenia Olanzapine The microbiota in patients with the
schizophrenia can be clustered into
different taxonomical (Type 1, with a
predominance of Prevotella, and Type
2 with a higher abundance
of Bacteroides, Blautia, and
Clostridium) and functional groups;
the microbiota does not change during
6 weeks of treatment with olanzapine

i: Not associated with the weight gain that
occurs in women treated. with olanzapine, as
well as the treatment effectiveness; ii:
Patients with schizophrenia were clustered
at the level of KEGG genes, modules, and
pathways

Pełka-Wysiecka
et al. (2019)

Patients with Schizophrenia Multiple antipsychotics Both antipsychotic-naïve
schizophrenics and Antipsychotic-
experienced schizophrenics; ↑ family:
Christensenellaceae and
Enterobacteriaceae; ↑ genus:
Escherichia from family
Enterobacteriaceae; ↓ family:
Turicibacteraceae and Pasteurellaceae.
compared with Compare patients with
antipsychotic-naïve schizophrenics,
Antipsychotic-experienced
schizophrenics: ↑ family:
Peptostreptococcaceae and
Veillonellaceae; ↑ genus: Megasphaera,
Fusobacterium and SMB53

Ma et al. (2020)

Patients with Schizophrenia Risperidone ↓: Lachnoclostridium; ↑: Rombutsia i: Immune and inflammatory processes,
such as increased levels of hs-CRP and HCY
may be a compensatory response to
counteract disruption of lipid metabolism

Yuan et al. (2021)

Patients with Schizophrenia Amisulpride ↑: Dorea, Desulfovibrio,
Butyricicoccus; ↓: Actinomyces and
Porphyromonas

i: Increased IL-4 levels and decreased IL-6
levels could be a compensatory response to
lipid metabolic disturbance; ii:
Downregulation of butanoate metabolism
might be a compensatory reaction to lipid
metabolism dysfunction

Zheng et al. (2022)

KEGG, kyoto encyclopedia of genes and genomes; hs-CRP, high-sensitivity C-reactive protein; HCY, homocysteine; IL-4, interleukine-4; IL-6, interleukine-6.
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2018). Furthermore, the abundance of Bifidobacterium spp. In the
feces of mice treated with risperidone was negatively correlated with
serum LDL levels; E. coli was negatively correlated with serum TG
levels (Yuan et al., 2018). However, there is little evidence regarding
the relationship between changes in lipid metabolism and alterations
in the gut microbiota in humans following SGA treatment. Of
particular interest is the search for potential probiotic bacteria such
as Akkermansia muciniphila, which is a previously reported ‘lean gut
microbiota’ species. A. muciniphila, a member of the phylum
Verrucomicrobia, is the only species of the genus Akkermansia. A.
muciniphila is a mucin degrader in the intestine and is significantly
and negatively associated with altered fat metabolism and obesity
(Henao-Mejia et al., 2012; Schneeberger et al., 2015). A significantly
reduced abundance of fecal A. muciniphila was found in patients with
bipolar disorder who were treated with a range of SGAs, such as
clozapine, olanzapine, and risperidone, compared to controls (Flowers
et al., 2017).

SGA-induced lipid disorders: An intimate
involvement with microbiota

To describe the relationship between intestinal flora and SGA-
induced lipid metabolism, Davey et al. investigated the effect of
antibiotic-induced alterations in the gut microbiota on the
metabolism of female rats treated with olanzapine (Davey et al.,
2013). They found that clinically relevant doses of olanzapine
accelerated metabolic disturbances and weight gain in C57BL/6J
mice fed a high-fat diet. When the rats were treated with both
olanzapine and a cocktail of broad-spectrum antibiotics, including
oral neomycin, metronidazole, and polymyxin, the increases in the
proportions of Firmicutes and Bacteroidetes bacteria were reversed,
and this treatment reversed the olanzapine-induced metabolic
disturbances and weight gain induced by high-fat diets in C57BL/
6J mice. Thus, Morgan et al. conducted a further study and found that
this phenomenon was consistent with a previously described study
conducted under sterile conditions but that olanzapine-induced
metabolic disturbances and weight gain occurred soon after gut
microbial colonization (Morgan et al., 2014). Further experimental
work has been conducted on mice treated with prebiotics in
combination with SGAs. Coadministration of olanzapine and the
prebiotic B-GOS led to a significant increase in circulating levels of
TNFα in mice, which has been reported to affect lipid metabolism,
elevate fecal Bifidobacterium spp. And reduce body weight, and these
effects were not seen in response to olanzapine or B-GOS treatment
alone (Kao et al., 2018). Similarly, the probiotic A. muciniphila was
observed to have a similar effect (Huang et al., 2021). These studies
suggest that intestinal microbes are necessary and sufficient for SGA-
induced disruption of lipid metabolism. It is worth noting that none of
these experiments were replicated in humans.

Sex differences in SGA-induced lipid
disorders: A potential role ofmicrobiota?

Accumulating evidence shows that female patients who take SGAs
seem to have poorer lipid profiles than those of male patients, as well as
a higher prevalence of metabolic syndrome and cardiovascular risk
factors, including weight gain and dyslipidemia (Chen et al., 2020). It

is noteworthy that sex-dependent differences in the host’s metabolism
may be associated with gut microbiota (Wu et al., 2007; Lange et al.,
2017). For example, women usually have considerably higher
Firmicutes:Bacteroidetes ratios as compared to men in a
population-based cross-sectional investigation (Koliada et al., 2021).
Given that SGA-induced lipid disturbances are frequently associated
with an increased ratio of Firmicutes to Bacteroidetes, this finding
raises the possibility that women are more susceptible than men to
abnormal lipid metabolism (Morgan et al., 2014). Another substantial
indication that men and women have different microbes is the fact that
sex hormones can affect the composition of the host microbiome.
Significant changes in the host gut microbiota, such as a drop in the
abundance of butyrate-producing bacteria and a decline in alpha
diversity, are linked to elevated levels of estrogen in pregnant
women (Koren et al., 2012). These differentiations can result in a
significant impact on SAG-induced changes in lipid metabolism
between genders. Unfortunately, available studies are not enough to
systematically explain the link between sex differences in gut microbes
and sex differences in disorders of lipid metabolism caused by
antipsychotics. However, this phenomenon might offer some
guidance for future studies on sex differences regarding the side
effects of SGAs.

Mechanisms of SGA-induced disorders
of lipid metabolism mediated by the
intestinal microbiota

Microorganisms and their metabolites are crucial in
understanding how the gut microbiome is implicated in SGA-
induced systemic lipid disorders (Skonieczna-Żydecka et al., 2019).
Short-chain fatty acids (SCFAs), bile acids (BAs), and
neurotransmitters are among the metabolites that the intestinal
microbiota can create. Bacteroidetes and Firmicutes can create
butyric acid, which accounts for approximately 20% and 60% of
the total intestinal flora, respectively, while Proteobacteria and
Actinobacteria produce very small amounts of SCFAs (5%–10%
and 3%, respectively). Sulfate-reducing bacteria may use lactic acid
to make acetic acid and hydrogen sulfide, while Veillonellaceae can
convert it to propionic acid. Bacteroidetes is a phylum that can convert
succinic acid to propionic acid, and its population density is related to
the amount of propionic acid in the intestine (Karlsson et al., 2013).
The dominant genera for BA production are Lactobacillus,
Bifidobacterium, Enterobacter, Anaplasma, and Clostridium
(Krautkramer et al., 2021). In addition, Candida, Streptococcus, and
Escherichia can produce 5-hydroxytryptamine (5-HT; serotonin)
(Krautkramer et al., 2021). Approximately 36% of the small
molecules in human blood are produced or modified by microbial
metabolism. The total SCFA concentration in the colons of GF mice is
100 times higher than that of ordinary animals. Acetic acid is the most
concentrated SCFA in organisms and is central to carbohydrate and
lipid metabolic pathways (Kimura et al., 2020). Miller et al. used
radioisotope analysis and showed that the main pathway for bacterial
production of acetate is the Wood–Ljungdahl pathway (Miller and
Wolin, 1996). Moreover, olanzapine treatment of patients with
schizophrenia significantly increased plasma acetate concentrations
(Kao et al., 2018). Increased levels of the Kyoto Encyclopedia of Genes
and Genomes (KEGG) metabolic pathways of butyric acid and
propionic acid were found in a group of schizophrenia patients
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treated with risperidone (Bahr et al., 2015a). Hepatocytes create
primary BAs, which are then 7-dehydroxylated by intestinal
bacteria to produce secondary BAs. The gut microbiome affects the
composition of the BA pool, such as the primary BA/secondary BA
ratio, and thus affects the function of BAs, especially the metabolism of
lipids (Wahlström et al., 2016). SGAs can cause an increase in total
serum BAs. Specific SGAs, including chlorpromazine (BREUER,
1965), olanzapine (Lui et al., 2009), haloperidol (Fuller et al., 1977),
risperidone (Wright and Vandenberg, 2007), and quetiapine (Shpaner
et al., 2008), have been reported to cause cholestasis in a small number
of patients taking the medication and are unpredictable with no
significant correlation between dose and the duration of
administration.

The intestinal microbiota signals to enteroendocrine (EE) cells
through metabolites in multiple ways, resulting in the secretion of a
range of intestinal hormones, such as glucagon-like peptide 1 (GLP-1),
5-HT, gastrin, leptin, cholecystokinin (CCK) and peptide tyrosine-
tyrosine (PYY) (Martin et al., 2019). First, the microbiota produces
SCFAs, which signal to EE cells through free fatty acid receptors 2 or 3
(FFAR2/3) (Offermanns, 2014) or by activating nuclear histone
deacetylase (HDAC) (Waldecker et al., 2008; Fellows et al., 2018;
Larraufie et al., 2018). Second, secondary BAs signal to EE cells via the
Takeda G-protein-coupled BA receptor TGR5 or the nuclear receptor
known as farnesoid X receptor (FXR) (Wahlström et al., 2016).
Numerous human and animal studies have demonstrated that
leptin, ghrelin (Sentissi et al., 2008), and 5-HT levels (Bahr et al.,
2015a) have a substantial positive link to aberrant lipid profiles and
body mass index before and after SGA treatment in schizophrenia
patients. This supports the idea that the intestinal flora and its
metabolites play an important role in SGA-induced metabolic
abnormalities.

Specific microorganisms can synthesize
specific lipids

There appear to be distinct bacteria that are more or less related
to specific classes of lipids. Gut commensal microorganisms
(Bacteroides, Prevotella and Porphyromonas) are significantly
altered by SGAs, and they can produce sphingolipids, including
ceramide phospholipids and deoxy sphingolipids (Brown et al.,
2019). Acute SGA treatment dramatically altered the homeostasis
of central and peripheral sphingolipids (Castillo et al., 2016;
Weston-Green et al., 2018). Notably, sphingolipids from
bacteria were incorporated into the mammalian sphingolipid
pathway (Johnson et al., 2020). The probiotic Bacteroides has
also been shown to produce the endothelin-like molecule
N-acyl-3-hydroxypalmitoyl-glycine (commendamide) (Cohen
et al., 2015; Lynch et al., 2017). Furthermore, olanzapine-
induced metabolic effects have been shown to be dependent on
the endogenous cannabinoid system (Abolghasemi et al., 2021).
Everard et al. showed that treating obese mice with A. muciniphila
increased intestinal 2-oleoylglycerol (2-OG), 2-
arachidonoylglycerol (2-AG) and 2-palmitoylglycerol (2-PG)
levels (Everard et al., 2013). However, a recent study reported
that A. muciniphila exerted its beneficial effects on metabolism
independent of general changes in plasma endocannabinoidome
mediators (Depommier et al., 2021). The gut
microbiota–endocannabinoid axis is a key topic in the studies

listed above, and it is likely to be a new target for SGA-induced
lipid metabolism disorders.

Central mechanism

Current evidence suggests that hyperphagic effects are responsible
for a large percentage of the observed aberrations in lipid profiles, and
there is a lack of satiety in both human and animal models in the
presence of SGAs (Hartfield et al., 2003; Huang et al., 2020). The
diversity of the gut flora is vital for appetite and metabolism regulation.
Different gut bacteria and metabolites influence the gut’s ability to
perceive nutrients, influencing the host’s appetite and energy
metabolism (Oliphant and Allen-Vercoe, 2019). This is where the
gut–brain axis becomes active. The gut–brain axis is a fundamental
mechanism that links biochemical signals from the gastrointestinal tract
to brain function (Carabotti et al., 2015). A sophisticated network of
neurons regulates energy homeostasis in the host. Two types of neurons
are particularly important for appetite control: neurons that express the
neuropeptide proopiomelanocortin (POMC) (Baldini and Phelan,
2019) and those that express neuropeptide Y/agouti-related peptide
(NPY/AgRP) (Han et al., 2018). These neurons interact with each other
to form a switch that instantly adjusts appetite (Quarta et al., 2021).
Among them, POMC neurons promote satiety, while AgRP neurons
increase appetite.

On the one hand, gastrointestinal hormones affect the balance of
the POMC/AgRP system, which controls appetite. Leptin (Endomba
et al., 2020), CCK (Fan et al., 2004), PYY (Loh et al., 2015), GLP-1 (Teff
et al., 2013), and 5-HT (Sohn et al., 2011; Bonn et al., 2013) activate
POMC neuronal activity via receptors in the hypothalamus and inhibit
NPY in AgRP neurons, sending appetite suppressant signals and
regulating energy homeostasis and metabolism. Ghrelin is the only
known gut hormone that promotes appetite by directly activating AgRP
neurons and increasing the inhibitory effect of AgRP neurons on POMC
neurons (Lage et al., 2010; Varela et al., 2011). On the other hand, the
intestinal flora metabolites SCFAs and BAs can also influence appetite
via the gut–brain axis. An increase in acetate production activates the
parasympathetic nervous system, leading to an increase in gastrin
secretion, which promotes host appetite (Perry et al., 2016). SCFAs
also have the potential to enter the circulation, cross the blood‒brain
barrier, and directly affect the central nervous system (Morrison and
Preston, 2016). In addition, BAs can reach the hypothalamus and are
highly correlated with circulating BA levels, which can reach the
hypothalamus via passive diffusion, causing a brief increase in
hypothalamic BA concentrations and triggering the expression of the
AgRP/NPY neuronal membrane receptor TGR5, which in turn
regulates appetite (Perino et al., 2021). It is worth noting that an
imbalance in the amount of proinflammatory pathogenic bacteria
can compromise intestinal wall integrity, affecting brain–gut axis
transmission (Küme et al., 2017; Tilg et al., 2020). A study showed
that the mRNA levels of NPY and AgRP were significantly increased in
the hypothalamus of olanzapine-administered rats and were
considerably lower than those in normal animals (Zhu Z et al.,
2022). Some notable causes include several of these mechanisms
affecting neuronal function through the gut–brain axis, which leads
to hyperphagia and results in abnormal lipid profiles. Interestingly, this
study showed that olanzapine-induced increases in weight gain
percentage (WG%) occurred only when the vagus nerve was intact,
while the negative effects of olanzapine-induced increases in white
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adipose tissue percentage (WAT%) and decreases in brown adipose
tissue percentage (BAT%) were reversed by the disruption of the gut
microbiota–brain axis (vagotomy), suggesting that an intact gut
microbiota–brain axis may be necessary for olanzapine-induced
disruption of lipid metabolism.

Lipopolysaccharide (LPS), a component of the outer membrane of
most Gram-negative bacteria, is released upon bacterial cell death and
enters the circulation through a ‟leaky gut”, resulting in increased
levels of LPS in the blood (known as endotoxemia, which is a leading
cause of metabolic diseases, such as insulin resistance, and is promoted
by increased IL-6 and tumor necrosis factor (TNF) (Tilg et al., 2020)),
which acts as a powerful stimulator of host immunity (Park and Lee,
2013). LPS is detected by Toll-like receptor 4 (TLR4) on the immune
cell surface, resulting in the release of numerous cytokines and
chemokines (Rhee, 2014). LPS can also interact directly with lipid
molecules. All lipoproteins can bind to LPS and neutralize its toxicity
in vitro and in vivo (Barcia and Harris, 2005).

Peripheral tissue

SCFAs
SCFAs are used as a carbon source for the production of important

endogenous host metabolites, such as fat and cholesterol (Besten et al.,
2013). SCFAs produced by the intestinal flora are rapidly absorbed by
colonic cells, due in part to monocarboxylate transporters, including the
proton-coupled monocarboxylate transporter 1 (MCT1) and sodium-
coupledmonocarboxylate transporter 1 (SMCT1) (Dalile et al., 2019). The
principal substrates for lipid synthesis in rat colonic epithelial cells, which
convert SCFAs to acetyl coenzyme A (CoA), are acetate and butyrate
(Zambell et al., 2003). CoA generates energy through the tricarboxylic acid
cycle and produces palmitic acid under the action of the cytoplasmic
enzyme system, which can be transferred to mitochondria to lengthen the
carbon chain and form triglycerides with other substances stored in
adipose tissue. In contrast, SCFAs that are not digested in colon cells enter
the portal circulation of the liver through the basolateral membrane and
provide substrates for hepatocyte energy metabolism. Carbohydrate-
responsive element-binding protein (ChREBP) plays a key role in this
process (Iizuka et al., 2020). A member of the acetyl-CoA synthetase
short-chain family, encoded by Acss2, is induced by ChREBP and
converts acetate to acetyl-CoA, which is used as a substrate for
lipogenesis (BERG, 1956). Thus, regulating lipogenic gene expression
and hepatic acetyl-CoA production from gut microbial acetate by
inhibiting hepatic ChREBP is expected to prevent SGA-induced TG
accumulation by inhibiting lipogenic gene expression and hepatic
acetyl-CoA production. SCFAs are also involved in the biosynthesis of
cholesterol and fatty acids in hepatocytes (Dalile et al., 2019). Chen et al.
performed radiolabeling studies and showed that acetate was involved in
the increase in de novo fat synthesis. Furthermore, antibiotic-treated mice
showed reduced de novo fat synthesis (Kindt et al., 2018).

In addition, SCFAs are signaling molecules that regulate host-related
functions mainly through two signaling pathways: the HDAC and G
protein-coupled receptor signaling pathways. SCFAs have been shown to
bind to the G protein-coupled receptors GPR43/FFAR2 and Gpr41/
FFAR3 (Kimura et al., 2020), leading to further activation of downstream
signaling cascades, including the phospholipase C (PLC), mitogen-
activated protein kinase (MAPK), phospholipase A2 (PLA2) and
nuclear factor-κB (NF-κB) pathways. Acetate inhibits insulin-mediated
fat accumulation and improves lipid and glucose metabolism via GPR43.

Mice lacking GPR43 were obese on a normal diet, whereas mice
specifically overexpressing GPR43 in adipose tissue remained lean
even when fed a high-fat diet. Both types of mice recovered under
sterile conditions or after being treated with antibiotics (Kimura et al.,
2013). GPR41 has been shown to regulate host energy homeostasis in a
gut microbiota–dependent manner. Mice with knockout of the
GPR41 gene exhibited a leaner body weight, but this difference was
not observed in GF mice (Samuel et al., 2008). SCFAs also activate AMP-
activated protein kinase (AMPK), a downstream signal of the G-protein-
coupled receptor signaling pathway, and AMPK activation increases
peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)
expression in adipose tissue and skeletal muscle (Taylor et al., 2005;
Wan et al., 2014; Yan et al., 2016). In addition, PGC-1α regulates the
transcriptional activity of peroxisome proliferator-activated receptor α
(PPARα) and peroxisome proliferator-activated receptor γ (PPARγ)
(Muoio et al., 2002; Lin et al., 2005). Butyrate and propionate can
activate PPARγ (Alex et al., 2013). Activation of liver and adipose
tissue PPARγ by SCFAs regulates lipid metabolism by increasing
energy expenditure, reducing inflammation in adipose tissue,
improving insulin sensitivity, reducing body weight, and decreasing
hepatic TG accumulation (Besten et al., 2015). A study in fish showed
that the effects of olanzapine on lipid metabolism may be related to the
regulation of the gut microbiota–SCFA–PPAR signaling pathway (Chang
et al., 2022). The gut microbiome was significantly altered in carp that
were administered olanzapine, as evidenced by an increase in the
abundance of SCFA-producing bacteria, which led to an increase in
the production of SCFAs. In addition, many genes that are components of
the PPAR signaling pathway were significantly altered; specifically, the
mRNA levels of genes related to lipid synthesis (including PPARγ, fatty
acid synthase (FAS), and SREBP1) were significantly increased, and
lipolysis-related genes (such as hormone-sensitive lipase (HSL) and
PPARα) were significantly decreased. The activated AMPK signaling
pathway can also promote the expression of HSL and adipose triglyceride
lipase (ATGL), which promote lipolysis (Cantó and Auwerx, 2010; Deng
et al., 2020; Guo et al., 2020; Tang et al., 2020). Jocken et al. performed
in vitro experiments with a human white adipocyte model (human
multipotent adipose tissue-derived stem (hMADS) cells). Acetate was
found to be the main driver of the antilipolytic effect of SCFAs and
attenuated HSL phosphorylation in hMADS adipocytes in a Gi-coupled
manner (Jocken et al., 2017). This is reminiscent of the fact that the effect
of SGAs on AMPKmay also be an indirect consequence of the activation
of AMPK by SCFAs in peripheral tissues. Indeed, olanzapine can reduce
AMPK phosphorylation and activation in hepatocytes and 3T3-L1 cells,
accompanied by a concomitant increase in SREBP-dependent lipid
synthesis (Oh et al., 2011; Li et al., 2016). Interestingly, acetate
supplementation did not attenuate olanzapine-induced weight gain in
mice but appeared to increase it (Kao et al., 2019a). This concept of SCFA-
induced weight gain appears to be consistent with the olanzapine-induced
increase in plasma acetate (Kao et al., 2018).

BAs
BAs bind to FXR and TGR5 in the host and regulate lipid and

energy metabolism (Chiang and Ferrell, 2019). FXR is a transcription
factor that binds to the promoter region and induces the expression of
multiple target genes and is expressed in the liver, ileum, kidney, and
other tissues (Lefebvre et al., 2009; Teodoro et al., 2011). The most
potent ligand for FXR is chenodeoxycholic acid (CDCA), followed by
cholic acid (CA), deoxycholic acid (DCA), and lithocholic acid (LCA),
all of which are FXR agonists. CDCA is converted to ursodeoxycholic
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acid in humans through a sequence of processes, and it does not
activate FXR but rather inhibits FXR activity (Wang et al., 1999;
Mueller et al., 2015). In addition, Sayin et al. identified two natural
FXR antagonists: the taurine-conjugated murine BAs tauro-α-
muricholic acid (TαMCA) and tauro-β-muricholic acid (TβMCA)
(Sayin et al., 2013). TGR5 is a binding G-protein-coupled receptor
expressed in tissues such as the intestine, liver, and brown‒white
adipose tissue. TGR5 is mainly activated by the secondary BAs LCA
and DCA (Maruyama et al., 2002; Kawamata et al., 2003).

FXR-deficient animals had increased hepatic and serum TG and
cholesterol levels (Sinal et al., 2000). This finding indicates that FXR is
required for lipid metabolism and energy homeostasis (Trauner et al.,
2010). Reduced sterol-response element-binding protein-1c (SREBP-1c)
expression caused by natural or synthetic FXR agonists via the FXR-SHP
(small heterodimer partner) pathway could explain the inhibitory effect of
BAs on TG production (Watanabe et al., 2004). In addition, Caron et al.
used immortalized human hepatocyte (IHH) and HepaRG cell lines,
which are glucose-responsive human hepatocyte lines, to show that the
activation of FXR inhibits the transcriptional activity of ChREBP in
human hepatocytes (Caron et al., 2013). BAs can also induce the
expression of the human PPARα gene, which is a nuclear receptor
that controls lipid and glucose metabolism and exerts anti-
inflammatory effects via FXR (Pineda Torra et al., 2003). The
activation of FXR has been shown to induce a decrease in serum
apolipoprotein (Apo) CIII concentrations, leading to the amelioration
of TG-rich remnant lipoprotein metabolism to reduce serum TG levels
and cardiovascular risk profiles (Claudel et al., 2003). The FXR signaling
pathway inmice and humans is significantly affected by SGAs. At present,
pharmacological therapies that target FXR in combination with SGAs are
still needed to translate the positive findings of these studies into practical
outcomes. Exposure of a mouse precision-cut liver slice (PCLS) model to
chlorpromazine significantly altered cholesterol and BA cellular transport
regulated by FXR and BA regulation of glucose and lipid metabolism via
FXR (Szalowska et al., 2013). In addition, a study also showed the
downregulation of FXR targets such as Bsep, Mdr3, Ntcp, and
Cyp8b1. This finding was consistent with that observed in
chlorpromazine-treated HepaRG cells (Anthérieu et al., 2013). As a
next step, more experiments on the effect of SGAs on FXR are needed
to further understand the beneficial effects of chlorpromazine.

TGR5 has also been shown to be a BA-responsive receptor
involved in host lipid metabolism. In muscle and brown adipose
tissue, TGR5 may play a role in energy homeostasis by promoting
intracellular thyroid hormone activity and thereby increasing energy
expenditure (Watanabe et al., 2006). In addition, TGR5 has been
shown to activate PPARα and PGC-1α to increase mitochondrial
oxidative phosphorylation and energy metabolism (Chiang and
Ferrell, 2020). However, there are limited data on changes in
TGR5 receptor activity in schizophrenia patients during the use
of SGAs.

GLP-1
Ishøy et al. published the first clinical data supporting the use of

the GLP-1 agonist liraglutide to treat clozapine-induced lipid profile
disturbances and weight gain in schizophrenia (Ishøy et al., 2013).
Consistent with this study, Larsen et al. and Siskind et al.
demonstrated that GLP-1 agonists could be effective in reducing
clozapine- or olanzapine-induced lipid metabolism disorders
(Kouidrat and Amad, 2019). GLP-1, a glucose-dependent incretin,
plays a crucial role in lipid metabolism and body weight maintenance

by binding to the GLP-1 receptor (GLP-1R). Many human tissues,
including the pancreas, liver, muscle, fat, gastrointestinal tract, heart,
and brain, express GLP-1R (Campbell and Drucker, 2013). When
bound to GLP-1, GLP-1R acts through its coupled G protein (Gαs) in
pancreatic β-cells, activating adenylyl cyclase and increasing the
intracellular levels of cyclic adenosine monophosphate (cAMP)
(Doyle and Egan, 2007); this increase in cAMP exerts a series of
effects. The activation of factors (protein kinase A (PKA) (Béguin
et al., 1999) and exchange protein directly activated by cAMP (EPAC)
(Kang et al., 2008)) leads to calcium influx, increased transcription of
the proinsulin gene, and the stimulation of insulin secretion. In
addition, GLP-1R may regulate pancreatic β-cell metabolism by
activating the phosphoinositide 3-kinase (PI3K)/AKT (protein
kinase B)/mTOR (mammalian target of rapamycin) and MAPK
signaling pathways (Rowlands et al., 2018). The binding of GLP to
GLP-1R in adipocytes activates the adenylyl cyclase (AC)/cAMP
signaling pathway, regulates the apoptosis and proliferation of
preadipocytes through various cellular signaling pathways, such as
extracellular signal–regulated kinase (ERK), protein kinase C (PKC),
and AKT, and alters the expression of PPARγ and its target genes
(Challa et al., 2012; Chen et al., 2017). Furthermore, by reducing
macrophage infiltration in adipose tissue, GLP-1 can directly block the
inflammatory signaling pathway, improving insulin resistance,
lowering liver fat levels, and considerably alleviating NAFLD
(Blaslov et al., 2014). This explains how GLP-1R might decrease
hepatic substrate supply (e.g., glucose and non-esterified fatty acids
(NEFAs)) by affecting adipose tissue, which may be partially
responsible for the overall effect. GLP-1R-based treatment of
metabolic diseases has been reported to act on hepatocyte lipid
metabolism through PI3K, type 1 protein phosphatase (PP-1), and
PKC (Redondo et al., 2003). Interestingly, a study showed that
liraglutide ameliorated hepatocyte steatosis by inducing autophagy
through the AMPK/mTOR pathway (He et al., 2016). Additionally,
GLP-1 may promote hepatocyte survival by downregulating
microRNA-23, resulting in increased expression of PGC-1α and
uncoupling protein 2 (UCP2) (Wang C et al., 2015). Recent studies
have shown that GLP1/GLP-1R signaling is involved in the effect of
brexpiprazole, a new multitarget antipsychotic drug (APD) approved
by the US FDA in 2015 that induces disorders of glucose and lipid
metabolism (Li et al., 2021). Brexpiprazole administration significantly
reduced the protein and mRNA levels of GLP1 in the pancreas and
small intestine by inhibiting Ca2+/calmodulin-dependent kinase IIα
(CaMKIIα), AMPK, and β-catenin. Brexpiprazole administration also
caused islet dysfunction and decreased GLP-1R, PI3K, and IRβ
expression in the pancreas. Cotreatment with liraglutide and
brexpiprazole is an effective strategy for certain aberrant metabolisms.

Leptin
Leptin was found to be involved in lipid metabolism and energy

balance by mediating certain signaling pathways. Leptin inhibits
acetyl-CoA carboxylase (ACC) activity by activating AMPK in
skeletal muscle, thereby stimulating the oxidation of fatty acids
(Minokoshi et al., 2002). Consistently, another study revealed that
the activation of AMPK can have a therapeutic effect on metabolic
syndrome only if leptin is present and active (Stockebrand et al., 2013).
In addition, p38 MAPK may also contribute to the effect of leptin on
fatty acid oxidation (Dardeno et al., 2010). In non-adipose tissues,
leptin may promote fatty acid oxidation by activating PPARα-induced
CoA expression via signal transducer and activator of transcription 3
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(STAT3) (Unger et al., 1999). Maya et al. found that leptin could
regulate lipid metabolism and inflammation by modulating the PI3K/
Akt/mTOR pathway (Maya-Monteiro and Bozza, 2008). Consistent
with this report, Schmidt et al. found that olanzapine simultaneously
upregulated the mTOR pathway and downstream signaling cascades,
including the activation of mTORC1, in mice (Schmidt et al., 2013).
mTORC1 activation interferes with lipid and energy metabolism,
leading to the upregulation of lipid biosynthesis and the
accumulation of TGs. Furthermore, activation of the mTOR
pathway inhibits autophagy, thereby increasing intracellular lipid
accumulation (Zhuo et al., 2022). Enhanced mTOR activity
disrupts hepatic lipid homeostasis by regulating the expression of
the transcription factor SREBP-1c (Takashima et al., 2009).

Strategies for modifying the gut
microbiome to ameliorate SGA-induced
disorders of lipid metabolism

Pharmacological interventions

To date, the mechanisms of SGA-induced metabolic changes have
not been thoroughly investigated. However, in clinical treatment, side
effects of SGAs on lipid metabolism can usually be suppressed by other
drugs, and some interventions have yielded significant results.
Researchers found that metformin, a biguanide antihyperglycemic
agent, had a positive effect on the lipid profile, insulin resistance, and
body weight in patients with schizophrenia, which has been supported
by animal (Zhu W et al., 2022) and human models (Wu et al., 2016;
Vancampfort et al., 2019; Jiang et al., 2020). Interestingly, the intestinal
flora plays a vital role in the positive effects of metformin. Luo et al.
(Luo et al., 2021) and Wang et al. (Wang et al., 2021) found that
metformin not only prevented olanzapine-induced disruption of the
lipid profile and hepatic histopathological changes but also partially
reversed olanzapine-induced alterations in the gut microbiota and
helped correct peripheral and central satiety-related neuropeptide
disorders. This finding demonstrated that the gut–brain axis is a
mediator by which metformin ameliorates SGA-induced metabolic
dysfunction. Statins are also considered a potential preventive and
therapeutic approach to reduce SGA-induced weight gain and
dyslipidemia in patients with schizophrenia. It has been reported
that pravastatin (Vincenzi et al., 2014), atorvastatin (Ojala et al., 2008),
lovastatin (Ghanizadeh et al., 2014), rosuvastatin (Hert et al., 2006), or
simvastatin (Tajik-Esmaeeli et al., 2017) in combination with SGAs
can reduce TC, LDL cholesterol, and TG levels in patients with
schizophrenia. Animal studies have shown that statins improve
SGA-induced metabolic disturbances partly due to statin-mediated
modulation of BAT activity (Liu et al., 2020) and inhibition of the
hepatic mTOR signaling pathway (Liu et al., 2019). Interestingly,
statins were also recently shown to improve the gut microbiota, which
seems to partially explain the associated clinical improvements (Kim
et al., 2019; Vieira-Silva et al., 2020).

Non-pharmacological interventions

New biological therapeutic strategies, including probiotics, prebiotics,
gut hormone, and fecal microbiota transplantation (FMT), are being
explored to directly target the gut microbiota and its metabolite products

to improve SGA-induced dyslipidemia. Probiotics have been shown
to play a vital role in lipid homeostasis in the host (Table 3).
However, there have been few studies on the effects of probiotics
and prebiotics on SGA-induced changes in lipid metabolism and
energy. Tomasik et al. discovered that probiotics and prebiotics
could alleviate SGA-induced gastrointestinal distress (Tomasik
et al., 2015). However, the effects of probiotics and prebiotics on
SGA-induced changes in lipid metabolism are unclear and
controversial because the effects of these factors on lipid
metabolism are strain and population specific. For example, the
probiotic A. muciniphila (Huang et al., 2021) or prebiotic B-GOS
(Kao et al., 2018) can partially reverse olanzapine-induced
disturbances in the gut microbiota and lipid metabolism in rats.
The probiotic mixture VSL#3, a mixture of eight different bacterial
probiotic species, was shown to attenuate olanzapine-induced body
weight gain, uterine fat deposition, and dyslipidemia (Dhaliwal
et al., 2019). Importantly, while their effectiveness has been
relatively well documented in animal studies, translation to
humans has sometimes shown controversy. Kao et al. found that
B-GOS supplementation did not affect SGA-induced weight gain or
changes in circulating metabolic markers, contrary to their
observations in rats (Kao et al., 2019b). Yang et al. reported that
the addition of probiotics, including Bifidobacterium and
Lactobacillus, was not sufficient to reduce weight gain in patients
with schizophrenia, nor did it significantly improve lipid profiles
(Yang et al., 2021). In comparison, the combined use of probiotics
and dietary fiber was effective in reducing olanzapine-induced
weight gain without any apparent adverse effects while
maintaining the desired psychopathological effect (Liu et al.,
2021; Huang et al., 2022a; Huang et al., 2022b). Therefore, more
randomized controlled trials in humans are needed to translate
beneficial findings in animals. Indeed, A. muciniphila has been
shown to be safe and effective in human trials, and pasteurized
A. muciniphila is more effective than live A. muciniphila
(Depommier et al., 2019). In addition, the gut hormone GLP-1
has demonstrated the potential to improve SGA-induced disorders
of lipid metabolism. The combination of liraglutide, a GLP-1
receptor agonist, and SGAs has potential benefits on body weight
and lipid metabolism in patients with schizophrenia, but patients
must receive daily subcutaneous injections and have a relatively
high rate of adverse events (Whicher et al., 2019). In contrast, FMT,
which is being researched as an alternative to SGAs (Settanni et al.,
2021), lacks experimental data to demonstrate its potential in SGA-
induced metabolic disorders.

Future perspectives

Long-term use of SGAs can cause weight gain and increase lipids,
which can lead to an increased chance of patients suffering from
metabolic syndrome, thereby increasing the risk that they will develop
hypertension and cardiovascular and cerebrovascular diseases. During
this process, the microbiome is both essential and sufficient, and
several pathways involved in lipid metabolism have been postulated
(Figure 2). First, SGAs directly inhibit the growth of microbial species
that produce specific lipids (e.g., endogenous cannabinoids, and
cholesterol). Second, SCFAs and BAs produced by the gut
microbiota can regulate gut hormones such as CCK, PYY, GLP-1,
and 5-HT. On the one hand, these signaling molecules can stimulate
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TABLE 3 Effects of prebiotic supplementation on host lipid metabolism.

Subject Models Probiotics Implicated
microbiota

Changes in lipid profile References

Serum Liver Fecal

Sprague-
Dawley rats

HCD Lactobacillus plantarum MA2 ↑: Lactic acid bacteria
and Bifidobacterium

↓: TC, LDL-C, and TG ↓: TC and TG ↑: TC
and TG

Wang et al. (2009)

Sprague-
Dawley rats

HCD Lactobacillus acidophilus
4356

↑: Lactobacilli and
Bifidobacteria

↓: TC, LDL-C, TAG ↓: TC and TAG Huang et al. (2010)

Sprague-
Dawley rats

HFD Bifidobacteria L66–5, L75–4,
M13-4 and FS31-12

↓: TC and TG ↓: TC and TG Yin et al. (2010)

Sprague-
Dawley rats

HCD Lactobacillus plantarum
9–41-A, Lactobacillus
fermentum M1-16

↑: Lactobacillus and
Bifidobacterium

↓: TC, LDL-C, TG ↓: TC and TG ↓: TC Xie et al. (2011)

Sprague-
Dawley rats

HFD Bifidobacterium
pseudocatenulatum SPM
1204, Bifidobacterium
longum SPM 1205, and
Bifidobacterium longum SPM
1207

↑: Lactobacilli ↓: TC, LDL-C, HDL-C,
and TG

An et al. (2011)

Wistar rats HFD Lactobacilli LIP-1, MG9-2,
and E7301

↑: HDL-C; ↓: TC, LDL-
C, and TG

↓: TG ↑: TC Wang et al. (2012)

Sprague-
Dawley rats

HFD Lactobacillus plantarum LS/
07, Lactobacillus plantarum
Biocenol LP96

L. LS/07; ↓: TC and
LDL-C; L.LP96; ↓: TG
and VLDL

no significant
change

↑: TC
and TG

Salaj et al. (2013)

Sprague-
Dawley rats

HCD Lactobacillus plantarum NS5,
Lactobacillus delbrueckii
subsp

↑: Bacteroides; ↓:
Clostridium

↑: ApoA-I; ↓: TC,
HDL-C, Apo-B, FFAs

↓: TC and TG Hu et al. (2013)

C57BL/6J
mice

HFD + HCD Lactobacillus plantarum
KY1032, Lactobacillus
curvatus HY7601

L. KY1032; ↑: TG; L.
HY7601; ↑: TG; ↓: TC;
L. KY1032 + L.
HY7601; ↑: TG; ↓: TC
and LDL-C

L. HY7601; ↓:
TC, TG, and
FFAs; L. KY1032
+ L. HY7601; ↓:
TC, TG, and
FFAs

↑: TC
and TG

Yoo et al. (2013)

C57BL/6J
mice

HFD Lactobacillus curvatus
HY7601 and Lactobacillus
plantarum KY1032

↓: Proteobacteria ↓: TC Park et al. (2013)

C57BL/6J
mice

HFD Lactobacillus rhamnosus GG ORO staining ORO staining Kim et al. (2013)

Human overweight children Synbiotic capsules ↑: Lactobacillus ↓: TC, LDL-C, and TG Safavi et al. (2013)

C57BL/6J
mice

HFD Lactobacillus casei NCDC 19 ↓: TC and LDL-C Rather et al. (2014)

Albino rats HCD Lactobacillus reuteri LR6 ↓: TC, LDL, TG Singh et al. (2015)

Wistar rats HCD Kluyveromyces
marxianus M3

↑: HDL-C; ↓: TC, LDL-
C, and TG

↑: HDL-C; ↓: TC,
LDL-C, and TG

Xie et al. (2015)

C57BL/6J
mice

HFD Lactobacillus paracasei
CNCM I-4270, L. rhamnosus
I-3690 and Bifidobacterium
animalis subsp. lactis I-2494

↑: Lactobacillus
paracasei CNCM I-
4270, L. rhamnosus I-
3690 and
Bifidobacterium

HE staining HE staining Wang J et al. (2015)

Human overweight adults Lactobacillus curvatus
HY7601 and Lactobacillus
plantarum KY1032

↑: ox-LDL Jung et al. (2015)

Sprague-
Dawley rats

HCD Lactobacillus plantarum Lp3 ↑: Lactobacillus and
Bifidobacterium; ↓:
Escherichia coli

↓: TC, LDL-C, and TG ↓: TC and TG ↑: TC
and
TBA

Ding et al. (2017)

Wistar rats HFD Lactobacillus plantarum YS5 ↑: HDL-C; ↓: TC, LDL-
C, and TG

Nami et al. (2019)

Wistar rats HCD ↓: TC, LDL-C, and TG ↓: TC

(Continued on following page)
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the vagus nerve or be carried into the brain to affect appetite via the
gut–brain axis; on the other hand, they can regulate lipid metabolism
via peripheral signaling pathways (Figure 3).

However, many unanswered questions remain. Which components
of the gut microbiota and host metabolism are chiefly associated with
schizophrenia? Are the microbiota changes observed in schizophrenia

treated with SGAs secondary to SGA treatment?What are themetabolic
side effects of SGAs and their impact on the microbiota? Do changes in
the gut microbiota affect the efficacy of SGAs? To answer these
questions, further experimental data are needed. This will lead to
improved schizophrenia treatment options, individualized therapy,
and the prediction and mitigation of side effects.

TABLE 3 (Continued) Effects of prebiotic supplementation on host lipid metabolism.

Subject Models Probiotics Implicated
microbiota

Changes in lipid profile References

Serum Liver Fecal

Lactobacillus fermentum
PD2 and PH5

↑: Lactobacillus; ↓:
coliforms

Thakkar et al.
(2020)

Sprague-
Dawley rats

HFD Lactobacillus plantarum
LS/07

↑: Lactobacilli; ↓:
Coliforms

↓: TC, LDL-C, ox-LDL Hijova et al. (2020)

Human hypercholesterolemia Lactoplantibacillus plantarum
strains (CECT7527,
CECT7528, and CECT7529)

↓: TC and LDL-C Guerrero-Bonmatty
et al. (2021)

Human overweight adults Lactobacillus plantarum K50 ↑: Lactobacillus
plantarum; ↓:
Actinobacteria

↓: TC and TG Sohn et al. (2021)

Human overweight adult
women

Bifidobacterium lactis
UBBLa-70

↑: arginine, glutamine,
and 2-oxoisovalerate;
↓: glycerol

Crovesy et al. (2021)

HCD, high cholesterol diet; HFD, high fat diet; TC, total cholesterol; TG, triglycerides; LDL-C, low density liptein cholesterol; HDL-C, high density liptein cholesterol; ox-LDL, oxidized low-density

lipoprotein; LDL, low-density lipoprotein; TBA, total bile acids; TAG, triacylglycerols; VLDL, very-low-density lipoprotein; ORO, staining, Oil Red O staining; HE, staining, hematoxylin-eosin

staining; Apo-B, apolipoprotein B; ApoA-I, apolipoprotein A-I; FFAs, Free fat acids.

FIGURE 2
Schematic presentation of the potential mechanism of lipid metabolism disorders secondary to SGA treatment based on the gut microbiota. Treatment
with SGAs may increase the relative ratio of Firmicutes to Bacteroidetes bacteria, As well as decrease the relative abundance of Bifidobacterium and
Akkermansia muciniphila. The products of the gut microbiota (lipids, LPS, SCFAs, and BAs) change as a result of this transformation. SCFAs activate FFAR2/3 or
HDAC. BAs send signals to EE cells through TGR5 or nuclear FXR, allowing EE cells to synthesize and secrete various gut hormones. LPS, SCFAs, BAs, and
gut hormones are important players in interorgan crosstalk by affecting appetite, regulating gut integrity, and improving liver, pancreas, and adipose tissue
function and lipid metabolism. POMC, Proopiomelanocortin; CART, Cocaine- and amphetamine-regulated transcript; NPY, Neuropeptide Y; AgRP, Agouti-
related peptide; FXR, Farnesoid X receptor; HDAC, Histone deacetylase; ATP, Adenosine triphosphate; TGR5, Takeda G protein-coupled receptor 5; FFAR2/3,
Free fatty acid receptors 2/3; MCT1, Proton-coupled monocarboxylate transporters 1; SMCT1, Sodium-coupled monocarboxylate transporters 1; BAs, Bile
acids; SCFAs, Short-chain fatty acids; LPS, Lipopolysaccharide; SGAs, Second-generation antipsychotics.
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Current strategies to modulate the gut microbiome to improve
SGA-induced lipid metabolism disturbances are particularly promising.
Prebiotics, probiotics, and FMT have achieved certain curative effects in
animal experiments. As a next step, more randomized controlled trials
into humans are needed to translate the beneficial findings in animals. It
is important to observe changes in host lipid metabolism after
concurrent administration of SGAs and the abovementioned
treatments. Compared with prebiotic therapy and other drug
interventions, probiotic treatment offers superior specificity and
safety. To develop this specific microbial therapeutic approach, a
better understanding of the precise role of microbes in SGA-related
lipid metabolism and elucidation of the linkages between specific
microbiota and lipid profiles of the gastrointestinal tract will be
needed. Furthermore, proper exercise and diet must not be overlooked.
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FIGURE 3
Regulation of lipid metabolism by SCFAs, BAs, leptin and GLP-1. The major signaling pathways including AMPK, MAPK, PI3K/Akt/mTOR and cAMP/PKA/
CREB-Pwork systematically in concert to regulate fatty acid oxidation, fatty acid synthesis, protein synthesis andmitochondrial oxidative phosphorylation and
energy metabolism. SCFAs: Short-chain fatty acids; GLP-1: Glucagon-like peptide 1; BAs, Bile acids; FFAR2/3, Free fatty acid receptors 2/3; GLP-1R, GLP-1
receptor; NTCP, Na+-taurocholate cotransporting polypeptide; OATP, Organic anion transporting polypeptide; TGR5, Takeda G protein-coupled
receptor 5; AMPK, AMP-activated protein kinase; PGC-1α, Peroxisome proliferator-activated receptor-γ coactivator 1α; PPARα, Peroxisome proliferator-
activated receptor α; PPARγ, Peroxisome proliferator-activated receptor γ; HSL, Hormone-sensitive lipase; ATGL, Adipose triglyceride lipase; ACC, Acetyl
coenzyme A carboxylase; SREBP-1c, Sterol response element-binding protein-1c; JAK2, Janus kinase-2; MAPK, Mitogen-activated protein kinase; IRS, Insulin
receptor substrate; PDK, Phosphoinositide-dependent protein kinase; PKC, Protein kinase C; PI3K, Phosphoinositide 3-kinase; AKT, Protein kinase B (PKB);
mTOR, Mammalian target of rapamycin; GTP, Guanosine triphosphate; AC, Adenyl cyclase; cAMP, Cyclic adenosine monophosphate; PKA, Protein kinase A;
CREB-P, Phosphorylated CREB (cAMP-response element-binding protein); FXR, Farnesoid X receptor; RXR, Retinoid X receptor; CRE, cAMP response
element; SHP, Small heterodimer partner; FAS, Fatty acid synthase.
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