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This paper proposes a hybrid algorithm including the Adam algorithm and 
body change operator (BCO). Feasible solutions to technician routing and 
scheduling problems (TRSP) are investigated by performing deep learning 
based on the Adam algorithm and the hybridization of Adam-BCO. TRSP 
is a problem where all tasks are routed, and technicians are scheduled. In 
the deep learning method based on the Adam algorithm and Adam-BCO 
algorithm, the weights of the network are updated, and these weights are 
evaluated as Greedy approach, and routing and scheduling are performed. 
The performance of the Adam-BCO algorithm is experimentally compared 
with the Adam and BCO algorithm by solving the TRSP on the instances 
developed from the literature. The numerical results evidence that Adam-
BCO offers faster and better solutions considering Adam and BCO algorithm. 
The average solution time increases from 0.14 minutes to 4.03 minutes, but 
in return, Gap decreases from 9.99% to 5.71%. The hybridization of both 
algorithms through deep learning provides an effective and feasible solution, 
as evidenced by the results.

1. Introduction
Optimized systems are one of the keys to success in today's competitive world. This situation 

is encountered in almost every field. The technician routing and scheduling problem (TRSP) is one 
of these areas. TRSP can be considered a special case of vehicle routing problems (Pekel and Kara, 
2019). TRSP does not only consist of assigning technicians to teams but also of assigning teams to 
tasks and creating routes. In addition, the selected technician group must meet a certain level of qual-
ification (Pekel, 2020; Zamorano and Stolletz, 2017). In many technician planning problems, routing 
complexity is crucial. Routing is carried out so that the expert technician group leaves and returns to 
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the central warehouse at the end of the day. Travelling times between each node are computed as Eu-
clidean distance (Khalfay et al., 2017).

The TRSP includes a pre-determined set of technicians who have various talents and a set of tasks 
requested by the customer at various locations. To perform tasks consisting of customer requests, the 
set of technicians is divided into teams, and teams travelling in different locations are assigned the 
tasks. When teams are assigned tasks, the constraint of compatibility between tasks requiring different 
skills and teams of technicians with different skills is considered. Time windows are defined for the 
tasks requested by the customer, and requests must be fulfilled during these time intervals. Besides, 
technicians perform tasks for a specific period, and overtime occurs when this time interval is exceed-
ed. Once and for all, the service times of the tasks, travel times, and the skill requirements required for 
each task are known in advance.

Algorithms have been developed to provide many exact solutions to TRSP so far in the literature. 
Charris et al. (2019) implemented a decision support system to optimise technicians' routes in Co-
lombia. In their work, technicians performed daily tasks received from customers. Mathlouthi et al. 
(2018) maximized the maintenance and repair of electronic process equipment by subtracting total 
profit from operating costs. Anoshkina and Meisel (2019) tackled the issue of combined teams of 
workers and routes while considering costs. Chen et al. (2016) presented the technician orientation 
model that creates experience-based learning, aiming to minimize the time taken to fulfil the final 
task. The authors used the heuristic method of travel from record to record (RTR) in solving the mod-
el. Kovacs et al. (2012) consider technicians with several skills at several levels grouped into teams 
to fulfil routing decisions and upkeep tasks and establish the Service TRSP. Pekel (2020) suggested 
an improved PSO (IPSO) algorithm to solve TRSP using a specific dataset. Graf (2020) considered 
a multi-period vehicle and technician routing and scheduling problem and proposed a combination 
of large neighbourhood and local search heuristics and a decomposition approach to efficiently gen-
erate competitive solutions under restricted computational resources. The authors’ numerical results 
showed that the method is efficient and effective, especially under tight time restrictions. Çakırgil 
et al. (2020) dealt with multi-skilled workforce scheduling and routing problem in field service 
operations motivated by a daily, real-life problem faced by electricity distribution companies. They 
proposed a two-stage matheuristic to obtain a good approximation of the Pareto frontier since the 
computational effort considerably increases in real-life problem instances. Mathlouthi et al. (2021) 
dealt with technician routing and scheduling problems motivated by an application to repair and 
maintain electronic transactions equipment. The problem exhibits many special features, such as 
multiple time windows for service, a spare parts inventory taken by each technician, and tasks that 
may require a special part to be performed. The authors used a methodology based on Tabu search, 
coupled with an adaptive memory.

Deep learning first entered our lives mainly in the form of forecasting and clustering, but nowadays, 
it is beginning to be used effectively in combinational optimization problems. Fu et al. (2020) investi-
gated vehicular energy networks' stability and efficiency to optimize the routing and dynamic storage 
allocation of renewable energy by integrating a time-expanded topology graph and a deep learning 
method. Authors applied deep learning to improve the prediction accuracy of the traffic pattern. Wang 
and Sun (2020) proposed a multi-agent deep reinforcement learning method to develop a bus route 
that is dynamic and has flexible holding control strategies. The authors used a headway-based reward 
function to train their proposed method. Hussain et al. (2021) researched the progress of machine 
learning in vehicle networks for intelligent route decisions. Lee et al. (2020) proposed a route and 
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charging station algorithm based on a model-free deep reinforcement learning method to deal with the 
uncertainty of traffic conditions by minimizing the total travel time. James et al. (2019) proposed a 
novel deep reinforcement learning-based neural combinatorial optimization strategy. The authors used 
a deep reinforcement learning mechanism with an unsupervised auxiliary network to train the model's 
parameters. Koh et al. (2020) proposed a deep reinforcement learning method to construct a real-time 
intelligent vehicle routing and navigation system. Also, the authors used intelligent agents to facilitate 
intelligent vehicle navigation. Hernández-Jiménez et al. (2019) explored a deep learning approach to 
the routing problem in vehicular delay-tolerant networks by performing a routing architecture and 
deep neural networks.

The paper's main contributions are as follows: a combinational optimization problem is solved by 
performing deep learning in TRSP for the very first time. Also, the Adam algorithm is integrated with 
the BCO method and obtains decent and fast solutions.

The remainder of the article is organised as follows: Section 2 describes the model of TRSP. Sec-
tion 3 presents the method that consists of the Adam algorithm, Body change operator (BCO) and the 
Adam-BCO method. Section 4 offers the numerical results of the algorithms for Pekel's benchmark 
instances. Finally, Section 5 outlines all the findings and draws conclusions from them.

2. Mathematical Model
This paper does not propose an algorithm to provide an exact solution, however, the mathemat-

ical model of the problem is presented. I represents one central depot and tasks. TRSP consists of  
A⊆ (i,j) i,j∈I arcs, K teams, D days, D  days allowed to visit a task, I tasks, M technicians, L proficien-
cy levels, and Q skills. A generated technician team visits from node i to node j, considering c

ij
 visiting 

cost and p
i
 service time of node i. Visiting operation must be completed within the earliest a

id
 and the 

latest b
id
 bid, considering daily work hours [e,f]. Started works cannot be interrupted. The generated 

technician team has δ number of technicians, and this paper chooses δ = 2. The mathematical model 
accepts different values for δ if requested. When the number of technicians was more than 2, there was 
a slight increase in the time the model required to obtain the solution, and more straightforward solu-
tions were obtained. Each task requires v

id
 : {0 or 1} proficiency, and each technician has proficiency 

level g
mg

 : {0 or 1}. The model allows ω cost cost of waiting time and otcost cost of overtime. However, 
this paper does not allow ω cost and otcost. All sets and parameters are described above. Table 1 shows the 
decision variables of the model.

Table 1. Notation

Decision variables

x
ijkd

1 if team k fulfills task i and visits task j on day d, 0 otherwise

y
ikd

1 if team k carries out task i on day d, 0 otherwise

z
mkd

1 if technician m works for team k on day d, 0 otherwise

S
ikd

Beginning time of the task i carried on team k and day d

ω
i

Staying time of task i

ot
kd

Overtime of team k on day d
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  12\* MERGEFORMAT ()

 34\* MERGEFORMAT ()

 56\* MERGEFORMAT ()

 78\* MERGEFORMAT ()

 910\* MERGEFORMAT ()

 1112\* MERGEFORMAT ()

x
ijkd

 (S
ikd

 + C
ij
 + P

i
 − S

jkd
) ≤ 0 ∀i, j : (i,j) ∈A

d
, ∀k∈K, ∀d∈D 1314\* MERGEFORMAT ()

y
ikd

(a
id
 − S

ikd
) ≤ 0 ∀i∈I′, ∀k∈K, ∀d∈D 1516\* MERGEFORMAT ()

y
ikd

(S
ikd

 − b
id
 − ω

i
) ≤ 0 ∀i∈I′, ∀k∈K, ∀d∈D 1718\* MERGEFORMAT ()

x
ojkd

(S
jkd

 − e) ≥ 0 ∀j∈I′, ∀k∈K, ∀d∈D 1920\* MERGEFORMAT ()

x
iokd

(S
jkd

 + c
io
 + p

i 
− f − ot

kd
) ≤ 0 ∀i∈I′, ∀k∈K, ∀d∈D 2122\* MERGEFORMAT ()

 2324\* MERGEFORMAT ()

 2526\* MERGEFORMAT ()

 2728\* MERGEFORMAT ()

0 ≤ ω
i
 ≤ ωmax 2930\* MERGEFORMAT ()

0 ≤ ot
kd

 ≤ otmax 3132\* MERGEFORMAT ()

S
ikd

 ≥ 0 ∀i∈I′, ∀k∈K, ∀d∈D 3334\* MERGEFORMAT ()

x
ijkd

, y
ikd

, z
mkd

 ∈{0,1} ∀(i, j) ∈A, ∀m∈M, ∀k∈K, ∀d∈D 3536\* MERGEFORMAT ()

Equation (1) is the model's objective function and minimizes the total travelling cost. ωcost and 
otcost are equal to zero since this paper does not allow waiting time and overtime. Equations (2) and (3) 
guarantee that each task is visited in the planned time windows. Each generated team completes its 
routed tasks starting and ending from the same central depot in equations (4) and (5). At least one team 
must be created for each day. Equation (6) provides the flow of tasks in a team and day. Equation (7) 
both avoids sub-tours and calculates the starting times of tasks. Equations (7) - (9) enable the tasks to 
start and end according to their time windows. Equations (7) - (11) are non-linear limitations. Howev-
er, constraints are linearized by a big M formulation (7) - (11). The transformation of the 7th and 8th 
equations into linear format with Big M is shown in equations (19) and (20). The remaining equations 
(9) – (11) were made linear in the same way.

S
ikd

 + c
ij
 + P

i
 − S

jkd
 ≤ BigM * (1−x

ijkd
) 3738\* MERGEFORMAT ()

a
id
 − S

ikd
 ≤ BigM*(1−y

ikd
) 3940\* MERGEFORMAT ()
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Equations (10) and (11) enable the tasks to start and finish according to daily working hours. When 
starting the route for the first task from the depot, the starting time is assumed to be greater than or 
equal to max{e,a

id
}. Equation (12) impedes the inclusion of a technician in more than one team per 

day, and Equation (13) ensures that the number of technicians in the teams is equal to the predeter-
mined value. Equation (14) guarantees that the skills of the chosen technicians satisfy the mastery 
essentials for the routed tasks. Equations (15) and (16) provide lower and upper bounds to waiting 
time and overtime, respectively. Equation (17) ensures that the starting time is a positive variable, and 
constraint (18) defines the specified variables as binary.

Figure 1 shows the illustration of the mathematical model for TRSP.

3. Methodology
The methodology section describes the three different methods applied in this study. These meth-

ods are the Adam algorithm, the BCO method, and the Adam-BCO hybrid algorithm. Also, the net-
work structure of the algorithms applied in this section is provided.

Figure 1. An illustration of the mathematical model
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There are 26 hidden neurons in the first hidden layer. The main reason for choosing 26 neurons is 
that there are 25 customers and one central depot in the discussed TRSP. Since there are 26 nodes, 26 
neuron and input entries are made. Two hidden layers are used in the network structure. Applications 
have been made to use more than two hidden layers, but practical results have not been obtained. The 
connections between the inputs and hidden neurons in the first layer are considered arc connections. 
Adam and Adam-BCO hybrid algorithms train arc connections, taking the maximum weight value. 
The maximum weight value passes through the arc connections on the second and first hidden layers, 
and the maximum weight is selected as the Greedy rule. If the obtained route meets the feasibility 
conditions, deep learning provides a new routing and the technician groups' scheduling.

Figure 2 shows the network structure of deep learning implemented in TRSP. For example, let's 
assume that there is an assignment from task 8 to complete task 1. Let's express this with X [8, 1] = 1. 
It is checked that this assignment is feasible, and according to a function value created on the basis of 
the main algorithm, X [8, 1] assignment value can be 0. Thus, new solution spaces are tried.

3.1 Adam Algorithm
The ADAM algorithm can be defined as the realization of an efficient stochastic optimization 

method with only the first-order derivative of the selected function and with minimal memory re-
quirement. The name Adam is derived from adaptive moment estimation and is designed to combine 
the advantages of the two methods, AdaGrad (Duchi et al., 2011) and RMSProp (Tieleman and 
Hinton, 2012). The algorithm calculates adaptive learning rates from the outputs of the first and 
second moments of the gradients, considering the parameters it contains in its structure. The Adam 
algorithm is an algorithm that includes the advantageous aspects of the RMSProp and momentum 
methods. It caches the momentum changes as well as the learning rates of each of the parameters; it 
combines RMSProp and momentum. This provides higher performance in terms of speed.

Figure 2. Deep learning network structure implemented in TRSP
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The obtained learning rates are used to reach the bias-corrected version of the exponential moving 
averages (Kingma and Ba, 2014). With bias-corrected values, the weights or connection values of the 
network used for estimation are updated, and it is indented to obtain convergence over the determined 
iterations or convergence limit. Algorithm 1 shows the mechanism of the Adam algorithm used in TRSP. 
For the Adam algorithm to work, alpha and two different beta parameters must be determined.

Algorithm 1. Pseudo-code Adam algorithm

Require: α: Step size, β1 and β2∈: decay rates for the moment estimates
Require: f(θ): Weight of deep-learning with parameters θ
Require: θ0: Initial weights of deep-learning and set to 0

m
0 
← 0

ϑ0 ← 0
t ← 0 (Iteration (150))
while currentiteration < t do

t ← t + 1
g(θ

t
) = tanh (θ

t
max): Greedy rule

get the values of gradients (g(θ
t
))

update first-moment estimate (m
t
)

update second-moment estimate (ϑ
t
)

compute bias-corrected first-moment estimate (m
t
)

compute bias-corrected second-moment estimate (ϑ
t
)

update weights (θ
t
)

end while
return θ

t

Here, different combinations should be examined while determining their parameters. Within the 
scope of this study, research was conducted on different parameter values by trial-and-error method 
and chosen α = 0.0001, β

1
=0.8, and β

2 
= 0.99. In this paper, inputs refer to actions. Visiting from a node 

to a different node is considered an action. There are 26 hidden neurons in the first and second hidden 
layers. The first and second-moment estimate values must be updated for the algorithm to update the 
net weights. The first-moment estimate is updated with equation m

t
 = β

1
*m

t−1
+(1−β

1
)*g

t
 and the sec-

ond-moment estimate is updated with equation ϑ
t
 = β

2
*ϑ

t−1
+(1−β

2
)*g

t
2. g

t
 is the gradient of the tanh 

function and computed by g
t
←∇θ tanh

t
 (θ

t−1
). Bias is corrected first, and second-moment estimates are 

computed by  and , respectively. After updating all the necessary parameters, the 

weights of the net on the first hidden layer are calculated by . Here, ε = 10−8.
As a result of the calculations, the values of the networks between actions and neurons in the first 

hidden layer, are obtained. The maximum θ
t
 value coming to any hidden neuron in the first hidden layer 

from the twenty-six inputs, is taken. All the steps described earlier are repeated by taking the  value. 
The network weights (θ

t
) are updated, from the hidden neurons in the second hidden layer to the output 

neuron. Updated weights allow new routing to be created on the basis of the Greedy rule. While using a 
Greedy rule-based action selection mechanism, the routing and technician selections to be created should 
be feasible. To this end, environment simulation is applied while choosing an action.

Figure 3 shows the operation mechanism of the Adam algorithm used to find possible routings and 
scheduling. Feasible routing and scheduling are done with random data generation. The data created here 
reveals actions (from one node to the other). (26×26) actions are expressed as the weight value of the 

∧
∧

https://adcaij.usal.es


198

Engin Pekel

Deep Learning Approach to Technician Routing  
and Scheduling Problem

ADCAIJ: Advances in Distributed Computing  
and Artificial Intelligence Journal  

Regular Issue, Vol. 11 N. 2 (2022), 191-206 
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Figure 3. Operation mechanism of Adam algorithm in TRSP

network. The weights of the network are updated with the Adam algorithm. Later the update process, the 
routing, and scheduling process is completed by simulating the environment to verify feasibility.

3.2 Body Change Operator
The genetic algorithm is a stochastic solution generation algorithm inspired by the evolutionary pro-

cess of living things. The development and characteristics of living things are found on chromosomes. 
The genetic algorithm uses a simple chromosome-like data structure to follow the characteristics of the 
solution through this structure. The replacement of these structures is provided by mechanisms such as 
crossing. The variety of problems in which genetic algorithms are applied is quite wide, and genetic al-
gorithms are often seen as the optimizers of the obtained solutions (Whitley, 1994).

The body change operator (BCO) is a solution improvement operator based on a genetic algorithm 
(Pekel and Kara, 2019). The part where it differs from the genetic algorithm is the absence of muta-
tion. Cross-over operation is performed by crossing sub-routing in a feasible routing, but there is no 
cross-over ratio. In short, this operator, which makes an improvement process for each solution, works. 
Algorithm 2 shows the mechanism of the body change operator used in TRSP.

Algorithm 2. Pseudocode of BCO

Initialize: Each chromosome (n: Population size (300))
ch

p 
← 0 (Chromosome position)

ch
c 
← 0 (Chromosome cost)

Gch
p 
← 0 (Chromosome global position)

Gch
c 
← 0 (Chromosome global cost)

t ← 0 (iteration (1))
while currentiteration<t do

perform: Body change operator
compute: Cost function
decide: ch

c 
< Gch

c
Gch

p 
← ch

p
Gch

c 
← ch

c
end while
return
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The body change operator is an operator that can make very effective improvements, but it must 
be effectively directed to search different solution spaces. As seen in Algorithm 2, a single iteration is 
run, and the obtained solutions are shared in the results section. The integration of the Adam algorithm 
with the body change operator enables the search for different solution spaces and offers the Adam 
algorithm different learning pathways.

Figure 4 shows the operation mechanism of the BCO algorithm. One feasible solution includes 
multiple routes, where technicians scheduled each route. The choice is made between any two of the 
routes in the feasible solution, as shown in Figure 3. Then, when exchanging between nodes, it is 
checked whether there is an improvement. If there is an improvement, a new route is created, but the 
route obtained here must be feasible. To guarantee feasibility, control is made with an environment 
simulator.

3.3 Adam-BCO
The Adam algorithm's inability to prevent local traps and the BCO's inability to examine 

different solution spaces, made the integration of both algorithms necessary. Integrating the 
Adam algorithm with the body change operator will further eliminate the weaknesses of both 
algorithms.

Actions are first produced as described in the Adam algorithm, to start the learning process with 
the proposed hybrid Adam-BCO algorithm. Algorithm 3 shows the mechanism of the proposed Ad-
am-BCO algorithm.

Algorithm 3. Pseudocode of the Adam-BCO algorithm

Require: α: Step size, β1 and β2∈: decay rates for the moment estimates
Require:f(θ): Weight of deep-learning with parameters θ
Require: θ0: Initial weights of deep-learning and set to 0

m
0 
← 0

ϑ0 ← 0
t ← 0 (Iteration (150))
while currentiteration <t do

t ← t+1
If t % 5←0
perform: BCO algorithm to Gch : {Gch

p
,Gch

c
}

end if
while currentiteration <50 do
perform: BCO algorithm to ch : {ch

p
,ch

c
}

end while
g(θ

t
) = tanh (θ

t
max):Greedy rule

get the values of gradients (g(θ
t
))

update first-moment estimate (m
t
)

update second-moment estimate (ϑ
t
)

compute bias-corrected first moment estimate (m
t
)

compute bias-corrected second moment estimate (ϑ
t
)

update weights (θ
t
)

end while
return θ

t

∧
∧
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In the earlier chapters, randomly generated initial solutions create actions, and at the same time, 
actions refer to inputs. The parameters required by the Adam algorithm are specified, and the BCO 
algorithm improves the best solution in every five iterations. Thus, weight updates in the network are 
calculated according to the Adam algorithm. In addition to using the best solution in every five itera-
tions, the BCO algorithm tries to improve the Greedy rule solutions obtained during the first 50 itera-
tions. Regardless of whether the improvement is provided, the network weights are updated according 
to the mechanism of the Adam algorithm. Through the hybridization of both algorithms, it is ensured 
that more varied solution spaces are searched, and the Adam algorithm is not trapped in local solutions.

Figure 5 shows the Adam algorithm's operation mechanism for finding possible routings and 
scheduling. For the Adam-BCO hybrid algorithm to perform the learning action, feasible routing and 
scheduling are input as action. The best solution obtained in every five iterations is improved, and the 
weight is updated. Also, the solutions that are selected and created with the Greedy rule are improved 
in up to fifty iterations. Later, weights are updated, and the learning process that lasts 150 iterations is 
completed.

4. Numerical Results
The Adam algorithm, the BCO method, and Adam-BCO hybrid algorithm are implemented in 

Python using a laptop with INTEL I5-3360M, a 2.80 GHz processor, and a 4 GB memory. A time 
windows technician dataset illustrates the performances of the three algorithms. The dataset includes 
29 instances that consist of travel times, allowed days, time windows, proficiencies, 25 tasks, and one 
central depot. Table 2 illustrates the notation used in Table 3.

Table 3 illustrates the comparison table of Adam, BCO, and Adam-BCO algorithms. The results in 
Table 3 show why the Adam method should be implemented with the BCO method. The starting and 
ending intervals of the daily working hours of the C, R, RC test sets are given as [0, 1236], [0, 230], 
[0, 240]. Working times, service times and time constraints of the three datasets differ. As a result of 
these differences, problem sets produce solutions at different solution values and times. The fact that 
the three primary datasets have different characteristics makes it possible to perform a better evaluation 
of the efficiency of the algorithms or hybrid methods to be applied.

Considering the average of the best solution values of the BCO algorithm and the Adam  
algorithm-based deep learning, it is seen that they are very close to each other. Adam algorithm-based 
deep learning produces feasible solutions with a 9.99% Gap and the BCO algorithm with an 8.82% 
Gap. It is crucial that the Adam algorithm-based deep learning obtain feasible solutions for TRSP 
with the specified Gap. Even methods that give exact and heuristic solutions do not guarantee optimal 
results and achieve higher solution times. Here, the average time for feasible solutions obtained with 
Adam algorithm-based deep learning is 0.14 minutes.

Figure 4. Operation mechanism of BCO algorithm
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Table 2. The notation is used in Table 3

Instance Instance name

Best Cost Best solution cost acquired by running algorithm ten times

BKS Best known solution

NBKS Number of best results acquired by the corresponding algorithm (bold)

CPU Time A computational processing unit (Minute)

Gap Percentage gap of the solution cost acquired by the related algorithm

Ins Instance number

The aim is to integrate the Adam algorithm-based deep learning method with the BCO algorithm 
and obtain feasible solutions. With the randomness in the structure of the initial solutions required to 
reach different search spaces in the TRSP, the average initial solution values may differ, although not 
significantly. Some of the obtained initial solution values may be decent, and provide better solutions, 
nonetheless, in some cases, this does not give the possibility of searching for other solution spaces.

The Adam algorithm provides the average best cost of 443.62 units, and the average best found 
of 474.82 units. The BCO algorithm provides the average best cost of 441.83 units, and the average 
best found is 465.31 units. The Adam algorithm has been integrated with the BCO algorithm, and 
Adam-BCO based deep learning algorithm has been applied. Performing the hybrid algorithm pro-
vides the average best solution value as 430.47 units, and the average best found as 461.58 units. The 
average best value offers a difference of 5.71% Gap from the best solutions. The average solution time 
increases from 0.14 minutes to 4.03 minutes, but in return, Gap decreases from 9.99% to 5.71%. The 
performing hybridization of both algorithms based on deep learning provides effective feasible solu-
tions considering the results.

Figure 5. Operation mechanism of Adam-BCO algorithm in TRSP
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5. Conclusions
This paper proposed an Adam-BCO hybrid algorithm to solve TRSP, which is a combinatorial 

optimization problem. The TRSP consists of assigning technicians to teams, assigning teams to tasks, 
creating routes, and the selected technician group that must meet certain level of qualification. The 
TRSP included a pre-determined set of technicians who have various talents and a set of tasks request-
ed by the customer at various locations. To perform tasks consisting of customer requests, the set of 
technicians are divided into teams, and teams travelling in different locations are assigned to the tasks. 
The numerical results provide that the performance of the proposed Adam-BCO algorithm is experi-
mentally compared with the separate performance of the Adam and BCO algorithms for the solution 
of the TRSP on Pekel's modified instances. The conclusions of this article are presented as follows:

• The Adam algorithm was caught on local traps, and the BCO method failed to examine different 
solution spaces. The two algorithms have been integrated to eliminate each other’s weaknesses, 
and the possibility of searching for new solution spaces has emerged. The changes are carried 
out to provide that the Adam algorithm-based deep learning method provides fast and ideal 
feasible solutions for TRSP.

• There are 26 hidden neurons in the first hidden layer. The main reason for choosing 26 neurons 
is that there are 25 customers and one central depot in the discussed TRSP. Since there are 26 
nodes, 26 neuron and input entries are made. The number of hidden neurons would increase if 
the number of nodes addressed in the problem, the number of customers and depots increases.

• The Adam algorithm-based deep learning method can produce solutions close to optimal results 
in some data sets using the advantage of gradients' first and second moments, considering the 
parameters included in its structure.

• Although the Adam algorithm based deep learning method has a 9.99% Gap, it provides a swift 
solution using the advantage of the first and second moments of gradients, considering the pa-
rameters included in its structure.

• As a result of the randomness in the structure of the initial solutions required to solve the prob-
lem, the average initial solution values may differ, although not significantly. Some of the ob-
tained initial solution values may be decent and provide better solutions, nonetheless, in some 
cases, this does not enable the search for other solution spaces.

• The deep learning method based on the Adam-BCO algorithm offers the best feasible solutions 
with a 5.73% Gap using the powerful sides of the two algorithms. While the Adam algorithm 
provides a faster approach to solution spaces, the BCO method explores those that could not be 
investigated before.

• The average best solution value obtained by the Adam-BCO algorithm-based deep learning 
method promises to reach better solutions in the future. With the combination of the strengths 
of both algorithms, more effective results have emerged. This situation shows the importance 
of integrating and researching other algorithms.

In future studies, better results can be obtained with the use of different learning algorithms in 
combinatorial problems such as TRSP. Also, a more effective solution space search can be performed 
by integrating heuristic methods and deep learning algorithms.
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