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To address the problems of low load forecasting accuracy due to the strong non-
stationarity of electric loads, this paper proposes a short-term load forecasting
method based on a combination of the complete ensemble empirical modal
decomposition adaptive noise method-fuzzy entropy (CEEMDAN-FE) and the
Light Gradient Boosting Machine (LightGBM) optimized by the improved sparrow
search algorithm (ISSA). First, the original data are decomposed by the complete
ensemble empirical modal decomposition adaptive noise algorithm to obtain the
eigenmodal components (IMFs) and residual values. Second, the obtained sequences
are entropy reorganized by fuzzy entropy, and thus new sequences are obtained.
Third, the new sequences are input into the improved sparrow search algorithm-
Light Gradient Boosting Machine model for training and prediction. The improved
sparrow search algorithm algorithm can realize parameter optimization of the Light
Gradient Boosting Machinemodel to make the data match themodel better, and the
predicted values of each grouping of the model output are superimposed to obtain
the final predicted values. Finally, the effect is compared by the error function, and
the comparison results are used to test the performance of the algorithm. The
experiments showed that the smallest evaluation metrics were obtained in Case 1
(MAE = 32.251, MAPE = 0.0114,RMSE = 42.386, R2 = 0.997) and Case2 (MAE = 3.866,
MAPE = 0.003, RMSE = 5.940, R2 = 0.997).
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1 Introduction

Short-term load forecasting is related to the safe and economic operation and stable
development of power systems, and is an important part of the operational planning of power
grids (Hassan et al., 2016; Gong. et al., 2021). With the widespread use of distributed energy
sources and power electronic devices, the behavior of short-term electric loads has becomemore
and more com-plex, which brings great challenges to load forecasting methods, and it is of great
significance to accurately perform load forecasting to improve socioeconomic efficiency (Chen
et al., 2018; Lv et al., 2022; Blake et al., 2021).

Currently, the methods for short-term load forecasting include two main categories:
mathematical methods and machine learning methods (Ge et al., 2021). For the former, the
advantages are simple models, small computational effort, and fast forecasting, such as multiple
linear regression (Kim et al., 2018), gray correlationmodels (Guo et al., 2022), and ARIMA (Wei
and Zhen-gang, 2009). The models developed by this type of methods depend on the
assumptions of data distribution and the rationality of the model. It is difficult to meet the
conditions needed for them because of the non-smoothness and randomness of the electric
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load. Machine learning methods mainly include artificial neural
networks (Goh et al., 2021), support vector machines (Liu et al.,
2018), and decision tree models (Song et al., 2021), which can better
deal with non-linear problems, especially decision tree models, which
have unique advantages in solving prediction problems. The literature
(Yao et al., 2022) achieved power prediction of electric loads based on
the LightGBM algorithm to screen features and make predictions.
However, due to the large number of parameters involved, the model
needs to be reasonably tuned before it can perform better. Despite the
advantages of machine learning, it is still difficult to take into account
the variation of features on different time scales, especially when the
time-series features are complex. There-fore, the idea of attenuating
the non-smoothness and randomness of the data and processing them
by machine learning on this basis has become a consensus. The
literature (Baniamerian et al., 2009) used orthogonal wavelet
decomposition of electric load data to eliminate its volatility, and
then modeled the prediction of the decomposed signal to improve the
stability and accuracy of the prediction. The above decomposition
methods require the selection of suitable basis functions to be most
effective, and the reasonable selection of basic functions is difficult. In
contrast, empirical modal decomposition (EMD) can decompose the
data based on its timing characteristics, and does not rely on artificially
set basis functions. Theoretically, EMD can handle any type of time
series (Zheng et al., 2017). The literature (Fan et al., 2020) describes the
application of EMD algorithm in load forecasting, which is prone to

“modal confusion” and affects the efficiency of the decomposition. For
the problem of “modal overlap,” the complete ensemble EMD with
adaptive noise (CEEMDAN) mentioned in (Chen et al., 2021) can
reduce the error in the signal reconstruction process and solve the
“modal overlap” caused by adding noise to the signal. It can reduce the
error in the signal reconstruction process and solve the problem of
“mode overlap” caused by the addition of noise, better reflect the
characteristics of each frequency load, and accurately portray the load
demand of the re-search object. The decomposition algorithm can
better predict the load information, but when the number of sequences
obtained is large, it may lead to too much operation and reduce the
efficiency of operation.

In order to effectively deal with the non-smoothness problem of
electricity load forecasting and improve the efficiency and accuracy of
short-term load forecasting. In this paper, a prediction model based on
the combination of CEEMDAN-FE algorithm and ISSA-LightGBM
algorithm is proposed. The original data is processed by the
CEEMDAN-FE algorithm, and the CEEMDNA algorithm
decomposes the non-stationary electricity load data into different
IMFs with corresponding frequencies. Next, the complexity of each
IMF is calculated by the FE algorithm, and the IMFs with similar fuzzy
entropy values are recombined to obtain a new set of sequences. This
method can effectively improve the computational efficiency and solve
the problems of over-decomposition and computational burden. In
order to obtain better prediction results, it is necessary to debug the
parameters in the LightGBM model. In order to improve the
debugging efficiency and make the data and model more
compatible, this paper improves the SSA algorithm to overcome
the problem that it easily falls into local convergence and obtains
the ISSA algorithm with stronger global search capability, which can
better This paper improves the SSSA algorithm to overcome its
tendency to fall into local convergence, and obtains the ISSA
algorithm with better global search capability, which can better
complete the tuning work. The parameters of the LightGBM model
are optimized by the ISSA algorithm, and then the prediction results of
each new sequence are obtained, and finally the prediction results of
each part are superimposed and output.

The contributions of this paper are summarized as follows:

• This paper proposes a load forecasting model based on the idea
of “decomposition-reconstruction-combination.” In order to
avoid the computational burden caused by the over-
decomposition of the CEEMDAN algorithm, the fuzzy
entropy value after the initial decomposition is calculated and
used as the basis for reconstruction to obtain a new series.
Finally, a prediction model is built for each smoother
subsequence after reconstruction, and the output results are
superimposed to obtain accurate prediction results.

• The ISSA-LightGBM prediction model is proposed. The tuning
parameter of LightGBM involves several parameters, while
around different components, the parameters are different,
and this paper seeks the parameters with the help of an
algorithm; ISSA is obtained by improving the SSA algorithm,
which improves its global convergence ability, and can better
find the suitable parameters to make the data match with the
model and improve the accuracy of prediction.

The rest of the paper is organized as follows. Section 2 presents the
CEEMDAN-FE algorithm, which reduces the non-smoothness of the

FIGURE 1
ISSA algorithm structure.
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data and improves the prediction efficiency. Section 3 introduces the
prediction method used in this paper and the improved heuristic
algorithm for tuning the reference. Section 4 presents the overall
structure of the proposed algorithm. Section 5 presents a case study
and Section 6 draws conclusion.

2 CEEMDAN-FE

2.1 Complete ensemble empirical mode
decomposition adaptive noise methed

The CEEMDAN algorithm is an improvement of the empirical
modal algorithm by the researchers of (Torres, 2011). This algorithm
can decompose the data according to the actual data situation and
temporal characteristics, and divide them into several eigenmodal
components (IMF) and residuals (Res) according to the instantaneous
frequency, and the resulting components have stronger regularity
compared to the original data. The decomposition method of
CEEMDAN consists of several steps as follows.

1) The Gaussian white noise with a mean value of 0 is weighted and
added to the original time-series data x(t) to obtain the
preprocessing sequence xi(t) for n experiments (i = 1, 2, ......, n).

xi t( ) � x t( ) + λδi t( ) (1)

2) The EMD decomposition of xi(t) is performed and the
decomposition yields the first component IMF1(t),

IMF1 t( ) � 1
n
∑n
i�1
IMFi

1 T( ) (2)

The first residual signal r1(t) is calculated as

r1 t( ) � x t( ) − IMF1 t( ) (3)

3) Repeat the above operation for the decomposed residual sequence
to obtain the second modal component,

IMF2 t( ) � 1
n
∑n
i�1
E1 r1 t( ) + ε1E1 ωi t( )( )( ) (4)

4) Performing the above operation for each of the remaining stages,
the j th residual signal is calculated:

rj t( ) � rj−1 t( ) − IMFj t( ) (5)
Repeat the calculation process of the previous step (3) to obtain the

j+1 th modal component as,

IMFj+1 t( ) � 1
n
∑n
j�1
E1 rj t( ) + εjEj ωi t( )( )( ) (6)

5) Repeat the above step (4) until the number of extreme value points
of the residual components satisfies the corresponding condition
and the decomposition cannot be continued, then the CEEMDAN
decomposition is finished. At this time, the original data is
decomposed into J IMFs components and residual components.

R t( ) � x t( ) −∑J
j�1
IMFj t( ) (7)

Finally, the raw load data are decomposed as follows:

x t( ) �∑J
j�1
IMFj t( ) + R t( ) (8)

2.2 Fuzzy entropy

Fuzzy entropy is used as a measure of time series complexity, and
its exponential function is introduced to solve the similarity measure
while spatial reconstruction, so that the fuzzy entropy value can
change steadily with the parameters. The larger the fuzzy entropy
value is, the more complex its time series complexity is. Its basic
process is as follows.

1) Recombination of sequence y

an i[ ] � {y i( ), y i + 1( ), . . .y i + n − 1( )} − y0 i( )} (9)
where n represent phase space dimension; i = 1,2, . . .,M-n+1.

a0 i( ) � 1
m
∑m−1

j�1
a i + j( ) (10)

2) Introduction of fuzzy affiliation function

Hn
ij � exp −In 2( ) p cmij

r
( )2( ) (11)

where r represents the similarity tolerance limit.

3) The cnij is given follows:

TABLE 1 Test functions and their related parameters.

Function type Function Scope Minimum value

Unimodal functions f1 (−10, 10) 0

Multimodal functions f2 (−5.12, 5.12) 0

Fixed dimensional multimodal functions f3 (−5, 5) −1.0316

TABLE 2 Performance comparison of each algorithm.

Function PSO GWO SSA ISSA

f1 0.2214 0.1206 0 0

f2 61.9821 36.8818 1.2118*10−6 0

f3 11.3827 5.3827 8.8826*10−14 6.8826*10−16
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cnij � c an i[ ], sn j[ ][ ] � max
p�1,2,/,m

a i + p − 1( ) − a0 i( )∣∣∣∣ ∣∣∣∣ − a j + p − 1( ) − a0 j( )∣∣∣∣ ∣∣∣∣( )
(12)

4) The formula Dn
i (r) is given as follows:

Dn
i r( ) � M − n( )−1 ∑M−n+1

j�1,j ≠ i

Hn
ij (13)

where M represents time series length.

5) Define the function

ϕm r( ) � M − n + 1( )−1 ∑M−n+1

i�1
Dn

i r( ) (14)

6) When M is a finite value, the calculated value of FE is

FE n, r,M( ) � Inϕn r( ) − Inϕn+1 r( ) (15)

3 LightGBM based on ISSA optimization

3.1 Improvement of the sparrow search
algorithm

3.1.1 Standard sparrow search algorithm
The sparrow search algorithm is a novel metaheuristic algorithm

proposed by Xue and Chen (Wu andWang, 2021), which is based on
the imitation of the foraging and anti-predatory behaviors of
sparrow populations. The basic idea is to calculate the fitness of
individual spar-rows by constructing fitness functions, and then
realize the state transformation between individuals, which
effectively avoids falling into local optimum. Compared with the
traditional swarm optimization algorithm, this algorithm has better
foraging ability, con-vergence, and robustness. The principle is as
follows.

Assume that the population consisting of m sparrows is depicted
as Eq. 16

X �
x1
1 / xd

1

..

.
1 ..

.

x1
m / xd

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

In Eq. 16, X is the randomly generated sparrow population; x is
each sparrow; d is the number of dimensions of the population, which
is the same as the number of parameters to be optimized in the
LightGBM model; and m is the number of sparrows.

Gx �

g x1
1 x

2
1/xd

1[ ]( )
g x1

2 x
2
2/xd

2[ ]( )
..
.

g x1
m x2

m/xd
m[ ]( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (17)

where Gx is the fitness function matrix; g denotes the fitness of the
individuals. The population size will change according to the change of
adaptation value, and the whole will be more adapted to the change in
the environment. In this process, there will be some individuals in the
population with higher adaptation values, and these individuals will
have priority in the search process to obtain prey. In the iterative
process, its position is updated as,

Xt
i,j �

Xt
i,j p exp − i

α p iter max
( ), R2 < ST

Xt
i,j + Q p L, R2 ≥ ST

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (18)

where t is the number of iterations of the population, Xi,j is the
information of the i th sparrow at the j th dimension, and itermax is the
maximum value of the number of iterations.

The position update of the joiner, denoted as

Xt+1
i,j �

Q p exp −X
t
worst −Xt

i,j

i2
( ), i> n

2

Xt+1
p + Xt

i,j −Xt+1
p

∣∣∣∣∣ ∣∣∣∣∣, i≤
n

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (19)

where Xp is the optimal position occupied by the discoverer in the
sparrow population at this time, and Xworst is the global worst position
of the individuals in the current population.

When the proportion of individuals aware of danger reaches 10%–
20% of the overall population size, the population feels the danger and
engages in anti-predation, the mathematical expression is given as,

Xt+1
i,j �

Xt
best + β Xt

i,j −Xt
best

∣∣∣∣∣ ∣∣∣∣∣, fi >fg

Xt
i,j + K

Xt
i,j −Xt

best

fi − fw( ) + ε
[ ], fi � fg

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (20)

where Xbest is the current global optimal position, β is the control
parameter of the step size and obeys N (0, 1) distribution. k∈[-1,1]. fi is
the fitness value of the i th individual, fg is the global best value in the
current situation of the population, fw is the global worst value in the
current situation of the population, and ε is a constant.

3.1.2 Improving the sparrow search algorithm
To address the problems that the sparrow search algorithm suffers

from decreasing population diversity near the global optimal solution
and easily falls into the local optimum, this paper improves the global
search capability by initializing the population with Sinusoidal chaotic
mapping; the tangent flight strategy is used to perturb the optimal
solution to ensure the diversity of spatial search and improve the
convergence accuracy.

Since the values of each individual in each dimension are
randomly generated in the initialization stage, the initial solutions
are prone to aggregation, resulting in low coverage of the initial
solutions in the solution space and insignificant differences
between individuals, while Sinusoidal chaos mapping initialized

TABLE 3 Recombination of each sequence.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Imf1 Imf2 Imf3 Imf4 Imf5 Imf6 Imf7 Imf8+ Imf9+ Imf10+Res
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population can solve this problem well, and the random solutions
generated by it are stable and have high coverage. Its expression is
shown,

Xk+1 � apX2
k sin πXk( ) (21)

Sinusoidal chaotic mappings are more uniformly distributed in the
search space, so that the solutions are uniformly distributed in the
feasible domain, which can speed up the global search and increase the
convergence speed.

The sparrow search algorithm converges to the current solution by
jumping directly to the optimal solution instead of moving toward the
optimal solution like the traditional algorithm, which also leads to the
algorithm easily falling into the local optimum. To reduce the impact of the
decreasing population diversity in the search process at the later iteration,
the tangential search algorithm (TSA) is borrowed here, which moves in
large steps through the tangential flight The characteristics of the sparrow
search algorithm are modified for the search foraging mechanism.

A stepwise method based on a tangent function, called a tangent
flight, is employed in the TSA algorithm, which helps to explore space.
The combined global and wandering exploration equation is shown,

Xt+1 � Xt + step p tan θ( ) (22)

From the above equation, when θ is closer to π/2, the larger the cut
value is, the farther the obtained solution is from the current solution;
when θ is close to 0, the smaller the cut value is, the closer the obtained
solution is to the current solution. Using this formula to correct the
new update value obtained from the position update formula, the
improvement can search a larger space locally compared to the update
strategy of the original algorithm.

The algorithm flow is:

1) Set the number of update iterations for the population, adjust the
respective proportions of joiners and predators after initialization,
and determine the parameter information group objects to be
optimized, i.e. each individual, and the fitness value objects;

2) Calculate the fitness value and rank them according to the fitness
value;

3) Predator location update;
4) Update joiner location;
5) Updated Vigilantes location;
6) Determining the latest position of the sparrow and the optimal

fitness value;
7) A tangential flight strategy perturbs the latest position to improve

the global search capability and avoid getting stuck in a local
optimum;

8) Determine if the previous predetermined requirements have been
met, if so finish, otherwise continue to repeat Step2) - 7).

The overall structure of the improved sparrow search algorithm is
shown in Figure 1, and the detailed steps are as follows.

3.1.3 Validation of the effect of an improved sparrow
search algorithm

To visualize the overall performance of the improved sparrow
algorithm, the particle swarm (PSO) algorithm, gray wolf (GWO)
algorithm, sparrow search (SSA) algorithm, and the proposed
algorithm are used for comparison, respectively. The parameters of the
comparison experiment are set as follows: the number of populations is
20, and the number of iterations is 100. The measurement function and
related parameters are shown in Table 1 and Eq. 23.

f1 �∑n
i�1
x2
i

f2 �∑n
i�1

x2
i − 10 cos 2πxi( ) + 10[ ]

f3 � −20 exp −0.2
������
1
n
∑n
i�1
x2
i

√⎛⎝ ⎞⎠ − exp
1
n
∑n
i�1

2πxi( )⎛⎝ ⎞⎠ + 20 + e

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

From Table 2, we can see that ISSA has the best overall
performance, followed by SSA and GWO, while PSO has the least
satisfactory effect. The adaptation curves of the two functions after
intercepting are shown in Figure 2.

3.2 LightGBM

LightGBM is an integrated learning model based on the
Distributed Gradient Boosting Decision Tree (GBDT) (Choi and

FIGURE 2
100 iterations of the curve.
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Hur, 2020). The algorithm uses a decision tree as the base learner,
which can be represented as.

HT x( ) �∑T
t�1
Ht x( ), Ht ∈ θ (24)

where, Ht is the t th learner; Θ is the set space of all learners.
LightGBM improves the performance of the model by multiple

iterations, and the mapping function from the input space to the
gradient space G is obtained by a learner. Given a training set
{x1,...,xn} with a data volume of n, where xi is a vector of dimension
i of space Xs with s. When the learner obtained in the previous
iteration is Ht-1(x) and the loss function is L(y, Ht-1(x)), the goal of
the current iteration is to find the weak learner ht(x) such that the
loss function in the current round is minimized, i.e.,

ht x( ) � argmin
h∈H

L y,Ht−1 x( ) + ht x( )( ) (25)

The negative gradient of this loss function is calculated and used to
obtain an ap-proximation of the loss function for this round, which
can be expressed as

rt � −zL y,Ht−1 x( )( )
zHt−1 x( ) (26)

The objective function is usually quadratic, and ht(x) can be
approximated as

ht x( ) � argmin
h∈H

∑ rt − ht x( )( )2 (27)

The final strong learners obtained for this iteration:

Ht x( ) � Ht−1 x( ) + ht x( ) (28)
The hyperparameters involved in the LightGBM model

constructed in this paper mainly include: the number of weak
classifier K, the complexity of generating decision trees d, the
learning rate lr, and the number of leaf nodes. They are
optimized by the ISSA algorithm, and the objective function of
the optimization algorithm is the mean squared difference between
the predicted and true values, and the solution steps are as follows.

1) Initialisation: The ISSA algorithm is initialized by determining
the size of the sparrow population, the number of iterations and
the safety threshold based on the constrained range of
variables.

2) Adaptive values: The error information between the predicted
and sample data from the LightGBM model is used to determine
the adaptive value for each sparrow, and this paper uses the root
mean square between the predicted and true values as the
adaptive value.

3) Update: Update the position and information of individual sparrows
in the population, i.e., hyperparameters. After obtaining the location
and information update, the new fitness value for each individual

FIGURE 3
ISSA-LightGBM algorithm structure.
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will be obtained by validating the LightGBM prediction model with
this hyperparameter premise and saving the best value of individual
location and global location in the population, i.e. the best
hyperparameter information in this round.

4) Iteration: Determine if the current state satisfies the end condition
set by the algorithm. If the condition is met, we exit the loop and
output the optimal individual solution, which is the optimal
parameter for the test model; if not, we continue the loop step 3).

FIGURE 4
CEEMDAN-FE-ISSA-LightGBM model structure.

FIGURE 5
Raw load data.
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5) Output result: If the set condition is satisfied, the best
hyperparameter value is output as the parameter of the
LightGBM prediction model for that sequence, and the
prediction result is also obtained.

The overall structure of the prediction model is shown in
Figure 3.

4 Construction of CEEMDAN-FE-ISSA-
LightGBM for short-term load
forecasting

In order to effectively deal with the non-smooth problem of
electricity load forecasting and improve the efficiency and accuracy
of short-term load forecasting. In this paper, a “decomposition-
reconstruction-combination” load forecasting model based on the
combination of the CEEMDAN-FE algorithm and the ISSA-
LightGBM algorithm is proposed. Next, the complexity of each IMF
is calculated by the FE algorithm, and IMFs with similar fuzzy entropy
values are recombined to obtain a new set of sequences. This method
can effectively improve the computational efficiency and solve the
problems of over-decomposition and computational burden. In order
to obtain better prediction results, it is necessary to debug the
parameters in the LightGBM model. In order to improve the
debugging efficiency and make the data and model more compatible,
this paper improves the SSA algorithm, overcomes the problem that the
SSA algorithm is easy to fall into local convergence, and obtains the ISSA
algorithm with better global search capability. The parameters of the
LightGBM model are optimised by the ISSA algorithm, then the
prediction results of each new sequence are obtained, and finally the
prediction results of each part are superimposed and output.

1) The non-stationary and random nature of the load data affect the
accuracy of the forecasting. The raw load data are decomposed by
CEEMDAN to obtain more stationary eigenmodal components
and residual values.

FIGURE 6
Results of the decomposition of Case 1 CEEMDAN. FIGURE 8

CEEMDAN-FE processing results of Case 1.

FIGURE 7
Fuzzy entropy analysis of the decomposition results of Case 1.
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2) The obtained components are subjected to a fuzzy entropy operation to
obtain the entropy value of each component, and a new set of IMF
components is obtained by reorganising them according to the entropy
value, thus avoiding the computational burden problem caused by
over-decomposition and thus improving the efficiency of the operation.

3) Input the obtained new components into ISSA-LightGBM for prediction
4) As different sub-sequences have different characteristics, a single model

cannot accommodate all the characteristics of each subsequence. For
this reason, an ISSA-LightGBM model with different hyperparameters
is proposed to predict sub-sequences with different characteristics. In a
practical problem, the model is optimised by the ISSA algorithm to
optimise the hyperparameters of LightGBM, trade-offs are made
between learning performance and model complexity, and the
corresponding prediction model is obtained for each subsequence
characteristic and predicted one by one.

5) The results of the components obtained in step 3) are
superimposed to obtain the final prediction value.

The structure of the proposed prediction model in this paper is
shown in Figure 4.

5 Case study

5.1 Data description

To verify the validity of the short-term load forecasting model
proposed in this paper, two short-term time scales are used for
validation in this paper. Case 1 uses the electricity load data of a
region in China from January 1 to 31 December 2014 as the
experimental data set, with 1 h as the sampling interval and a total of
8,760 sampling points, where the ratio of the training set to the test set is 8:
2, and selects the data from December 28 to 31 for empirical validation.
Case 2 uses the average electricity load consumption of a city in China
from 21 July 2015 to 23 January 2020 as the experimental dataset, with a
sampling interval of 1 day and a total of 1,667 sampling points, where the
ratio of the training set to the test set is also 8:2, and the latter 100 days are
selected for demonstration. GBDT, LSTM, LightGBM, CEEMDAN-
GBDT, CEEMTAN-LSTM, CEEMDAN-LightGBM, SEEMDAN-FE
LightGBM and the algorithm mentioned in this paper, CEEMDAN
FE ISSA LightGBM, were compared.

5.2 Predictive model evaluation metrics

To better evaluate the proposed prediction algorithm and to compare it
with the pre-diction accuracy of the comparison algorithm, the evaluation
metrics used in this calculation are mean absolute error (MAE), mean
absolute percentage error (MAPE) and root mean square error (RMSE).

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (29)

MAPE � 100%
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣
yi

(30)

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(31)

FIGURE 9
Prediction results of Case 1.

FIGURE 11
Case 1 graph of this paper’s model versus the hybrid model.

FIGURE 10
Case 1 graph of this paper’s model versus a single model.

Frontiers in Energy Research frontiersin.org09

Li and Chen 10.3389/fenrg.2023.1111786

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1111786


R2 � 1 −∑n

i�1 yi − ŷi( )2∑n

i�1 ŷi − ŷi( )2 (32)

In this formula, n is the number of prediction points, and are the
true and predicted values obtained at the i th predicted time point in
the test set, respectively.

5.3 Case study

5.3.1 Case study 1:1-h time-scale load forecasting
5.3.1.1 Experimental CEEMDAN-FE decomposition of raw
load information

From Figure 5, we can find that the first set of data itself has strong
non-smoothness and randomness, which is difficult to predict directly,
so here the original load data is decomposed by CEEMDAN algorithm
to reduce its non-smoothness and randomness.

The decomposed load data are shown in Figure 6. It can be seen that
the regularity of the processed data is more obvious, and the fluctuations
are less drastic and have significant time-series characteristics.

To further improve the prediction efficiency, reduce the scale of the
prediction model operation, and reduce the time used for prediction. The
decomposed sequence is processed by the fuzzy entropy algorithm, and the
original sequence is reorganized according to its entropy value to obtain a
new sequence with less quantity than the decomposed quantity. The fuzzy
entropy value of the decomposed quantity is solved as shown in Figure 7.

From Figure 7, it can be seen that the fuzzy entropy values of Imf8-
Res are similar and can be recombined into a new sequence, and the
recombined components are shown in Table 3.

The decomposition results obtained after recombination are
shown in Figure 8.

5.3.1.2 Prediction experiments based on the CEEMDAN-FE-
ISSA-LightGBM algorithm

To verify the effectiveness of the proposed model, the original
load data were first processed using the CEEMDAN-FE algorithm,
and the new sequences were obtained and input into the ISSA-
LightGBM model for prediction respectively, and the group
prediction results were summed to obtain the complete
prediction results. Here, the number of populations of the
algorithm is set as 30, the proportion of discoverers, joiners,
and vigilantes in the population is 7:2:1, and the number of
iterations is 100, where the prediction results are shown in Figure 9.

The CEEMDAN FE ISSA LightGBM algorithm was compared
with other models, where the GBDT model has 50 learners, a learning
rate of 0.1, a maximum depth of 12 for the decision tree, and 40 leaf
nodes. The LightGBM model parameters were similar to those of
GBDT, and the same number of parameters was used for the single
model comparison. The LSTMmodel has 24 neurons and 100 epochs,
and the results are shown in Figures 11, 12. The comparison results are
shown in Figures 10, 11.

As seen in Figure 11 and Table 4, LightGBM outperforms the other
two algorithms compared to the single model. Both can contribute to
the improvement of the accuracy of the prediction results after the
decomposition process or the addition of ISSA algorithm
optimization. However, the single processing means are not as
effective as the CEEMDAN-FE-ISSA-LightGBM model, and the
improvement of the prediction accuracy mainly relies on the
tuning of ISSA, while the addition of the FE algorithm has no

TABLE 4 Error of the proposed model versus a single model in Case 1.

Model MAE/MW MAPE RMSE/MW R2 Time (s)

GBDT 425.627 0.073 564.234 0.821 243.6850

LSTM 127.254 0.018 138.401 0.956 214.3820

LightGBM 121.429 0.016 133.587 0.962 143.3756

CEEMDAN-GBDT 231.302 0.0412 287.669 0.959 2,373.2631

CEEMDAN-LSTM 78.021 0.0119 96.671 0.965 2,154.2154

CEEMDAN-LightGBM 70.459 0.0127 92.603 0.989 1,273.3726

CEEMDAN-FE-LightGBM 70.259 0.0128 90.323 0.986 844.3676

CEEMDAN-ISSA-LightGBM 32.279 0.0119 42.386 0.997 1,289.2365

CEEMDAN-FE-ISSA-LightGBM 32.251 0.0114 42.286 0.995 843.2846

TABLE 5 Error comparison of the proposed model with other hybrid models in Case 1.

Model MAE/MW MAPE RMSE/MW R2 Time (s)

CEEMDAN-FE-PSO-LightGBM 59.279 0.0129 76.386 0.985 1,118.3856

CEEMDAN-FE-GWO- LightGBM 54.429 0.0116 68.387 0.982 965.2876

CEEMDAN-FE-SSA- LightGBM 43.399 0.0113 56.281 0.986 865.2783

CEEMDAN-FE-ISSA- LightGBM 32.251 0.0114 43.286 0.991 843.2846
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obvious effect on the improvement of the prediction accuracy, and the
improvement of MAE and RMSE is only 0.087% and 0.2%, but in
terms of the operation time, this paper. However, the average time of
20 operations of the proposed algorithm is 843.2846 s, which is much
smaller than the average time of 20 operations of the CEEMDAN-
ISSA-LightGBM algorithm without FE, which is 1,273.3726 s, saving
time and improving the efficiency of operations.

To further verify the effectiveness of the optimization algorithm
and compare it with other optimization models, CEEMDAN-FE-PSO-
LightGBM, CEEMDAN-FE-GWO-LightGBM, and CEEMDAN-FE-
SSA- LightGBM models are developed in this paper.

From Figure 11 and Table 5, the CEEMDAN-FE-ISSA-LightGBM
algorithm proposed in this paper has the best results in terms of
performance compared with other algorithms. The MAE is 45.59%,
40.74%, and 25.69% lower than the other algorithms; MAPE is 41%,
35.35%, and 13.51% lower than the other algorithms; RMSE is 43.33%,
36.70%, and 17.70% lower than the other algorithms, respectively. It can
be seen that the CEEMDAN-FE-ISSA-LightGBM algorithm proposed
in this paper has the best prediction effect.

5.3.2 Case study 2:1-day time-scale load forecasting
5.3.2.1 Experimental CEEMDAN-FE decomposition of raw
load information

From Figure 5, the data for the second set of intra-day average
loads is smoother compared to the hourly loads, so its
decomposition yields a smaller number of sub-series, as shown
in Figure 12.

The fuzzy entropy calculation is performed on the
decomposed subsequences one by one to provide a basis for
reconstruction, and the results of the fuzzy entropy calculation
are shown in Figure 13.

From Figure 13, it can be seen that the fuzzy entropy values of
Imf5-Res are similar and can be recombined into a new sequence, and
the recombined components are shown in Table 6.

The decomposition results obtained after recombination are
shown in Figure 14.

5.3.2.2 Prediction experiments based on the CEEMDAN-FE-
ISSA-LightGBM algorithm

The parameters of the ISSA algorithm in Case 2 are set according
to Case 1, and a comparison of the effect with other algorithms is
shown in Figure 15.

As can be seen from Figure 15 and Table 7, the algorithm proposed
in this paper is equally effective for short-term electricity load
forecasting on a 1-day time scale. The “decomposition-
reconstruction-combination” load forecasting model idea, especially
the decomposition operation, can effectively reduce the non-
smoothness of the original time-series data and improve the
accuracy of forecasting. “Reconstruction” can improve the
efficiency of prediction by avoiding over-decomposition and
reducing the number of operators. The “combination” operation
allows the prediction model to work better by optimizing the
hyperparameters, further improving prediction efficiency.

Figure 16 and Table 8 validate the application of the ISSA
algorithm proposed in this paper to the model. Compared to other
optimization algorithms, it can be seen that ISSA can accomplish
hyperparameter optimization of the prediction model more
effectively, resulting in better and faster predictions.

FIGURE 12
Results of the decomposition of Case 2 CEEMDAN.

FIGURE 13
Fuzzy entropy analysis of the decomposition results of Case 2.

TABLE 6 Recombination of each sequence.

IMF1 IMF2 IMF3 IMF4 IMF5

Imf1 Imf2 Imf3 Imf4 Imf5 + Imf6 + Imf7 + Res
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5.4 Diebold-Mariano (DM) test

DM tests are often used to compare which of two time series
forecasting models predicts better results. The DM test allows the
validity of the portfolio model to be checked from a statistical point
of view.

The null hypothesis indicates that there is no significant difference
in the predictions of the two models; the valid hypothesis is that there
is a significant difference in the predictive performance of the two
models. The null and alternative hypotheses expressing DM detection
are as follows.

H0: E F e1t( )[ ] � E F e2t( )[ ] (33)
H1: E F e1t( )[ ] � E F e2t( )[ ] (34)

where e1t and e2t are the prediction errors between the predicted and
actual values of the proposed model and the other model, and F is the
loss function of the prediction errors.

The expression for the DM test is expressed as

DM �
∑n

i�1 F e1t( ) − F e2t( )( )
n��
S2

N

√ S2 (35)

where S2 is the estimated variance of d � F(e1t ) − F(e2t ).
The DM tests for the two time scales are shown in Table 9 and it

can be seen from the table that the performance of the proposed
combined model in this test is significantly different from all other
models. In addition, the minimumDM values for these two time scales
are 1.945 and 2.044 respectively. Thus, the proposed combined model
significantly outperforms the other models, thus validating the
effectiveness of our proposed combined model.

FIGURE 14
CEEMDAN-FE processing results of Case 2.

FIGURE 15
Case 2 graph of this paper’s model versus a single model.

TABLE 7 Error of the proposed model versus a single model in Case 2.

Model MAE/MW MAPE RMSE/MW R2 Time

GBDT 36.101 0.030 49.173 0.779 43.713 s

LSTM 31.239 0.028 44.29 0.835 39.1350 s

LightGBM 28.543 0.024 40.77 0.849 36.103 s

CEEMDAN-GBDT 19.149 0.021 28.161 0.937 327.2631 s

CEEMDAN-LSTM 23.477 0.018 30.921 0.904 296.2154 s

CEEMDAN-LightGBM 17.186 0.014 24.200 0.947 254.588 s

CEEMDAN-FE-LightGBM 16.286 0.014 23.217 0.947 155.372 s

CEEMDAN-ISSA-LightGBM 3.966 0.004 6.240 0.996 261.236 s

CEEMDAN-FE-ISSA-LightGBM 3.866 0.003 5.940 0.997 159.286 s
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6 Conclusion

The article proposes a prediction method based on the
CEEMDAN-FE-ISSA-LightGBM model for the problem of
inaccurate prediction caused by strong non-stationarity of electric
load. The LightGBM model can accurately grasp its time-series
characteristics, and the ISSA algorithm helps the LightGBM
algorithm to per-form parameter optimization, so that the data can
be better matched with the model structure to achieve efficient
prediction and improve the prediction accuracy and efficiency. The
results of simulation experiments prove that the error accuracy of the
prediction results of the method is improved and the prediction results
are better. The case study in this paper demonstrates the following.

1) Compared to single models, combined models are more accurate
and efficient in the field of electricity load forecasting.

2) The CEEMDAN-FE algorithm’s “decomposition-
reconstruction” process effectively reduces the non-
smoothness of the original load data, while avoiding the
computational burden of over-decomposition and improving
the efficiency of subsequent prediction model construction.

3) The ISSA-LightGBM model allows the hyperparameters to be
adjusted individually according to the characteristics of the
different sub-sequences so that the overall prediction model
can be more closely matched to the sub-sequences and better

prediction results can be obtained. The “decomposition-
restructuring-combination” process also gives better results
for each sub-series, and the linear reorganisation gives better
prediction values, with R2 values of 0.97 in both cases.

4) By changing the hyperparameters, the data can be well matched
to the model, and the model proposed in this paper has good
robustness.

In the future, other factors affecting load output, including
temperature and humidity, should be considered to determine if
they can further improve prediction accuracy. Meanwhile, this
paper mainly uses ISSA-LightGBM to achieve predictions for each
sub-series, and the ISSA-LightGBM may not be as effective as it
could be with different frequencies per sub-series, and it may be
more desirable to subsequently employ multiple predictions to
engage in the problem of predicting different sub-series. In
addition, the model proposed in this paper can be extended to
other time scales and energy fields.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed to
the corresponding author.

FIGURE 16
Case 2 graph of this paper’s model versus the hybrid model.

TABLE 9 Error comparison of the proposed model with other hybrid models.

Model DM-1h DM-1d

GBDT 4.392 5.654

LSTM 4.032 4.265

LightGBM 3.991 4.327

CEEMDAN-GBDT 3.278 3.576

CEEMDAN-LSTM 2.632 3.166

CEEMDAN-LightGBM 2.612 3.026

CEEMDAN-FE-LightGBM 2.628 2.263

CEEMDAN-FE-PSO-LightGBM 2.454 2.243

CEEMDAN-FE-GWO-LightGBM 2.047 2.213

CEEMDAN-FE-SSA-LightGBM 1.945 2.044

TABLE 8 Error comparison of the proposed model with other hybrid models in Case2.

Model MAE/MW MAPE RMSE/MW R2 Time (s)

CEEMDAN-FE-PSO-LightGBM 9.767 0.0136 15.456 0.983 263.2846

CEEMDAN-FE-GWO- LightGBM 7.937 0.0114 12.233 0.989 198.2846

CEEMDAN-FE-SSA- LightGBM 5.937 0.005 8.443 0.993 159.453

CEEMDAN-FE-ISSA- LightGBM 3.866 0.003 5.940 0.997 155.286
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