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Harris Hawks optimization (HHO) is a swarm optimization approach capable

of handling a broad range of optimization problems. HHO, on the other

hand, is commonly plagued by inadequate exploitation and a sluggish rate

of convergence for certain numerical optimization. This study combines the

fireworks algorithm’s explosion search mechanism into HHO and proposes a

framework for fireworks explosion-based HHo to address this issue (FWHHO).

More specifically, the proposed FWHHO structure is comprised of two search

phases: harris hawk search and fireworks explosion search. A search for

fireworks explosion is done to identify locations where superior hawk solutions

may be developed. On the CEC2014 benchmark functions, the FWHHO

approach outperforms the most advanced algorithms currently available.

Moreover, the new FWHHO framework is compared to four existing HHO

and fireworks algorithms, and the experimental results suggest that FWHHO

significantly outperforms existing HHO and fireworks algorithms. Finally, the

proposed FWHHO is employed to evolve a kernel extreme learning machine

for diagnosing COVID-19 utilizing biochemical indices. The statistical results

suggest that the proposed FWHHO can discriminate and classify the severity

of COVID-19, implying that it may be a computer-aided approach capable of

providing adequate early warning for COVID-19 therapy and diagnosis.

KEYWORDS

Harris Hawks optimization, fireworks algorithm, numerical optimization, CEC2014

benchmark functions, COVID-19
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1. Introduction

Numerical optimization is currently a hot topic for research

in both science and technology. It is becoming increasingly

difficult to deal with these issues with discontinuous, non-

convex, and non-differentiable properties (Cui et al., 2017). In

many cases, traditional gradient-based methods are ineffective

because of their stringent use conditions and local convergence.

As a result of these and other natural phenomena, many meta-

heuristic algorithms (MHAs) have been developed in the last

few decades by researchers around the world. Genetic algorithm

(GA) (Mathew, 2012), differential evolution (DE) (Price, 2013),

particle swarm optimization (PSO) (Poli et al., 2007), ant colony

optimization (Paniri et al., 2020), and harris hawks optimization

(HHO) (Heidari et al., 2019) are some of the most popular

MHAs. For numerical optimization problems, these algorithms

have proven to be extremely effective.

HHO (Heidari et al., 2019) is a meta-heuristic algorithm

with population theory that mimics harris hawks’ intelligent

hunting behavior. HHO is proposed to assault the rabbit in

four distinct ways: soft besiege, hard besiege, soft besiege with

progressive rapid dives, and hard besiege with progressive

rapid dives. Compared to other optimizers, HHO has a small

number of parameters and a high capacity for exploration.

Due to its simplicity, ease of implementation, and performance,

HHO has garnered considerable attention and has been applied

to a variety of real-world optimization problems, such as

job-shop scheduling (Li C. et al., 2021), internet of vehicles

application (Dehkordi et al., 2021), engineering optimization

(Kamboj et al., 2020), and estimation of photovoltaic parameters

(Chen et al., 2020b; Jiao et al., 2020). Although HHO has

demonstrated competitive performance on a variety of problems

when compared to other algorithms, such as PSO and GA, it

still has some shortcomings in terms of exploitation (Alabool

et al., 2021). However, an efficient search strategy should strike a

good balance between global exploration and local exploitation,

favoring exploration at first and turning to exploitation as the

iteration counts increase. Thus, the development of a new search

strategies to improve HHO’s exploration–exploitation balance

is crucial for increasing its performance on difficult numerical

optimization tasks.

The fireworks algorithm (FWA) was developed by Tan

and Zhu (2010) as a novel MHA technique. The fireworks

explosion search is FWA’s most productive operator, as it

generates new individuals in the vicinity of several promising

individuals that have been evenly distributed. The old will

be replaced by new, more fitting individuals. FWA simulates

a global search by bursting fireworks. The method possesses

(1) an explosive search pattern and (2) a framework for the

interaction of many (sub)populations. Since its conception, the

FWA has drawn considerable research and has been widely

applied to real-world optimization, most notably as a minimalist

global optimizer (Li and Tan, 2018), multimodal function

optimization (Li and Tan, 2017), and flowshop scheduling (He

et al., 2019).

In this article, we propose a framework for fireworks

explosion-based Harris Hawks optimization (FWHHO),

which incorporates fireworks explosion search into the HHO

algorithm. To be more specific, the FWHHO framework

recommends two stages of search: one for hawks and another

for fireworks explosions. After completing the four hawks’

search phases soft besiege, hard besiege, soft besiege with

progressive rapid dives, and hard besiege with progressive rapid

dives, exploitation of prospective places is accomplished by the

use of a fireworks explosion search. From populations, some

individuals with a widespread are picked, and new individuals

are generated in their vicinity. Experiments on CEC2014

benchmark functions reveal that using fireworks explosion

search to optimize HHO algorithms can greatly enhance

their performance. The FWHHO algorithm outperforms

state-of-the-art meta-heuristic algorithms on the CEC2014

benchmark functions. Furthermore, the proposed FWHHO

framework is applied to four existing HHO algorithms and

fireworks algorithms, and the experimental results demonstrate

that FWHHO shows the obvious property over existing HHO

algorithms and fireworks algorithms. Finally, the proposed

FWHHO is used to evolve a kernel extreme learning machine

for the purpose of diagnosing COVID-19 using biochemical

indexes. The main contributions of this study are as follows:

• The fireworks explosion-based Harris Hawks optimization

is proposed in this article (FWHHO), and fireworks

explosion operators are integrated into the original HHO.

• The FWHHO’s performance is validated using CEC2014

benchmarks, and its capabilities clearly outperforms the

original HHO.

• The FWHHO method considerably outperforms state-of-

the-art techniques, existing HHO algorithms, and a variety

of fireworks algorithms.

• The FWHHO can evolve a kernel extreme learning

machine for the purpose of diagnosing COVID-19 using

biochemical indexes successfully.

The following sections describe the structure of this article.

Section 2 summarizes HHO algorithm research. Section 3

contains a detailed discussion of the FWHHO algorithms.

Section 4 gives the details of the experimental designs. The

results of the experiments are analyzed and discussed in Section

5. Section 6 includes the conclusion and future work.

2. Literature survey

Numerous improved HHO algorithms have been developed

in recent years to improve performance. These algorithms can
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be classified into two categories: modification of HHO with

new search equations and hybrid with other metaheuristic

algorithms.

(1) Modification of HHO with new search operators: The

search operators in HHO are used to direct the search and

develop new solutions. Numerous new search operators have

been developed to enhance the search capacity of theHHO. Song

et al. (2021) proposed a new GCHHO with Gaussian mutation,

and a dimension-decision strategy that was used in the cuckoo.

The results show that GCHHO is very good at getting better

results. A hybrid QRHHO algorithm was created by Fan et al.

(2020). Fan et al. combined the exploration of HHO with the

use of a quasi-reflection-based learning mechanism (QRBL).

Gupta et al. (2020) suggested an opposition-based learning-

based HHO (m-HHO), in which OBL improves the search

efficiency of HHO and alleviates the problems of a standstill at

suboptimal solutions and premature convergence. Zheng-Ming

et al. (2019) developed a more efficient HHO algorithm based

on the tent map. The results indicate that the tent map has the

potential to enhance the HHO algorithm’s capabilities. Qu et al.

(2020) utilized information sharing for HHO and information

from the cooperative foraging area and collaborators’ location

areas, so establishing that information exchange is shared. Ridha

et al. (2020) introduced a boosted HHO (BHHO) algorithm

with random exploratory steps and a strong mutation scheme,

in which methods not only accelerate the convergence rate of

the BHHO algorithm but also aid it in scanning additional

parts of the search basins. Devarapalli and Bhattacharyya (2019)

proposed a modified HHO algorithm with a squared decay

rate (MHHOS) as a damping controller for power system

oscillations. Yousri et al. (2020) designed a modified HHO

with the biological features of the rabbit (MHHO) for optimal

photovoltaic array reconfiguration.

(2) Hybridization with other algorithms: Hybridizing HHO

with other algorithms enables the advantages of two algorithms

to be combined and their shortcomings overcome. This is

another method for enhancing HHO’s performance. Kamboj

et al. (2020) suggested a hybrid algorithm called hHHO-SCA

using a sine cosine algorithm, in which the SCA is employed to

keep the exploration and exploitation phases balanced. Dhawale

and Kamboj (2020) proposed a hybridized HHO with enhanced

gray wolf optimization (IGWO) to boost population diversity

and convergence. Zhong et al. (2020) hybridized HHO with the

first-order reliability (FORM), and the HHO-FORM method

was developed to extract the global optimal solutions for

problems with high dimensions. Yıldız et al. (2019) proposed

the hybridization HHO with Nelder-Mead called H-HHONM,

in which the process parameters in milling operations are

successfully optimized. A hybrid algorithm, termed hybridHHO

with simulated annealing algorithm (HHOSA), was introduced

by Kurtuluş et al. (2020) to accelerate the convergence speed. SA

is added into the hawks’ phase to increase the convergence pace

of the process. Fu et al. (2020a) proposed the hybridizationHHO

with a mutation sine cosine algorithm (MSCA) to diagnose

the faults in rolling bearings. Aiming at accelerating HHO’s

exploitation, Fu et al. (2020b) proposed the hybridization HHO

with mutation-based GWO (MHHOGWO), in whichmutation-

based GWO can improve the property of HHO. Bao et al.

(2019) presented a hybrid HHO (HHO-DE) with a differential

evolution algorithm (DE), where the DE is used to augment

the required global and local search capabilities. Abd Elaziz

et al. (2020) proposed a hybrid HHO (HHOSSA) with the

salp swarm method (SSA) for picture segmentation issues to

boost population diversity and improve the convergence rate.

An enhanced hybrid version of fireworks method and HHO

together with dynamic competition idea has been proposed in

Li W. et al. (2021).

Although a large number of research work has paid

attention to the HHO, some room for improvement still

exists, especially when the algorithm is used to solve some

new application scenarios. On the one hand, just like the

no free lunch (Wolpert and Macready, 1997) that no one

universal algorithm can solve all existing optimization problems,

which demonstrates that no one can build an all-time-best-

performing algorithm capable of solving all optimization

problems. This means that while some algorithms excel

at solving a subset of problems, they cannot guarantee

the success of all optimization tasks involving diverse or

complex scenes. Addressing this mindset, new optimization

approaches or modified versions of existing techniques should

be provided in the future to tackle subgroups of challenges

in many disciplines. In addition, HHO is frequently plagued

by inadequate exploitation and delayed convergence (Alabool

et al., 2021), and the possibility of local optimal stagnation

also exists for some multimodal or complex numerical

optimization tasks. In this article, we propose a framework

for fireworks explosion-based Harris Hawks optimization

(FWHHO), which incorporates fireworks explosion search into

the HHO algorithm for improving its performance on complex

optimization problems. To the best of our knowledge, fireworks

explosion is introduced into HHO for the first time in all

the literature.

3. Proposed FWHHO algorithm

3.1. Basic HHO

Heidari et al. (2019) created the Harris Hawks optimization

(HHO), a swarm-based optimization technique. HHO’s primary

objective is to imitate hawk’s team coordination and prey escape

in nature to develop answers to the single-objective problem.

The HHOmodel consisted of three major stages: the exploration

phase, the transition from exploring to exploiting, and the

exploitation phase. These three stages are explained in the next

few sections.
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3.1.1. Execution exploration

In this part, hawks detect prey in exploring by Equation 1;

first, a population Xi (i = 1, 2, 3, 4 . . .N) is randomly generated,

where N is the number of hawks. When q ≥ 0.5 (a random

value in [0, 1]), Xi(t + 1) = Xrand (t)− r1
∣

∣Xrand (t)− 2r2X(t)
∣

∣;

Xi(t + 1) =
(

Xprey (t)− Xm(t)− Y
)

, when q < 0.5. These two

ways describe how hawks identify prey using a random perch

and the true individual’s position, respectively.

Xi(t + 1) =







Xrand (t)− r1
∣

∣Xrand (t)− 2r2X(t)
∣

∣ , q ≥ 0.5
(

Xprey (t)− Xm(t)− Y
)

, q < 0.5

(1)

Where Xi(t + 1) is the ith new position of hawks in the (t + 1)th

iteration.Xrand (t) is the i
th position of hawks in the tth iteration,

r1, r2, r3, and r4 are all random values in [0, 1]. Xprey (t) is the

current prey position in the tth iteration. Xm(t) is calculated by

Y = r3
(

Lb+ r4(Ub− Lb)
)

and reflects the difference between

variables’ upper and lower limits.

3.1.2. Execution from exploration to
exploitation

The escaping energy (E) controls the behavior of hawks

from exploration to exploitation. The E is calculated by E =

2E0
(

1− (t/T)
)

, where E0 is the initial energy of the prey that

randomly changes in (–1, 1). If |E| ≥ 1, the exploration phase

will still execute; if |E| < 1, the exploitation phase is activated.

3.1.3. Execution exploitation

This phase seeks to simulate the surprise pounce (seven

kills) behavior of the hawk on the examined target. Four chasing

tactics are offered to do this, namely (1) soft besiege, (2) hard

besiege, (3) soft besiege with progressive rapid dives, and (4)

hard besiege with progressive rapid dives.

Soft besiege If |E| ≥ 0.5 and r ≥ 0.5, soft besiege is

activated. This behavior is modeled as Xi(t + 1) = 1X(t) −

E
∣

∣

∣
JXprey (t)− X(t)

∣

∣

∣
, where 1X(t) is calculated as 1X(t) =

Xprey (t)− | X(t), 1X(t) is the difference between the rabbit’s

position vector and its current location in the tth iteration. U =

2 (1− r5) strategy for evading prey that varied randomly in each

repetition. r5 is a random value in [0, 1].

Hard besiege Hard besiege is activated when |E| < 0.5 and

r ≥ 0.5. This signifies that the victim is unable to flee successfully

due to exhaustion. The new positions of hawks can be obtained

by X(t + 1) = Xprey (t)− E|1X(t)|.

Soft besiege with progressive rapid dives Soft besiege with

progressive rapid dives is activated when |E| ≥ 0.5 and r < 0.5.

Hawks must then choose the optimal dive angle toward the

prey in this situation by evaluating the new moves using Y =

Xprey (t) − E
∣

∣JXprey (t)− X(t)
∣

∣. If the comparison result does

not result in determining the best dive toward the prey, team

rapid dives based on the levy flight LF are performed to improve

the exploitation capacity as modeled by Z = Y + S × LF(D),

where D is the number of dimensions, S represents random

vector by size 1× D, and LF is calculated as follows:

LF(X) =
u× σ

|v|
1
β

, σ =









Ŵ(1+ β)× sin
(

πβ
2

)

Ŵ

(

1+β
2

)

× β × 2

(

β−1
2

)









1
β

(2)

Where u and v represent random values in [0, 1]. B is a constant

with 1.5. Therefore, in this way, the new positions X(t + 1) of

hawks can be calculated as X(t + 1) = Y if F(Y) < F(X(t));

X(t + 1) = Z if F(Z) < F(X(t)), where F is a fitness function for

an optimization problem.

Hard besiege with progressive rapid dives In this strategy,

prey had no energy to escape |E| < 0.5, and hawks constructed

hard besiege r < 0.5. The new positions X(t + 1) of hawks can

be calculated as X(t+ 1) = Y if F(Y′) < F(X(t)), X(t+ 1) = Z if

F(Z′) < F(X(t)), where Y′ = Xprey (t)− E
∣

∣JXprey (t)− Xm(t)
∣

∣,

and Z′ = Y′ + S× LF(D). The distinction between this strategy

and the previous one (soft besiege with progressive rapid dives)

is that the hawks are striving to reduce the average distance

between their location and their prey.

3.2. FWHHO framework

HHO is an excellent prospector but a poor exploitation

candidate, although it has several local search mechanisms.

However, an efficient search process demands a high level

of exploration to discover prospective solutions inside the

board search space, as well as a high level of exploitation to

further increase the attributes of those solutions. Tan and Zhu

(2010) recently presented a fireworks algorithm (FWA). The

primary FWA operator is fireworks explosion search, which

results in the creation of new persons in the vicinity of a

few potential individuals. This operator can efficiently use data

to find better solutions (Zhang et al., 2014). A novel hybrid

FWHHO framework will be proposed in this research, which

incorporates the fireworks explosion search. The FWHHO

framework generates an initial population of N and then

progresses through four search phases: (1) exploration, (2)

transition from exploration to exploitation, (3) exploitation, and

(4) fireworks explosion search. The first three phases are formed

by HHO, whereas the fourth phase is formed by FWA.

3.2.1. Fireworks algorithm

Following three levels of hawk search, a small number of

individuals are chosen to do the fireworks explosion search.

The best candidate is chosen first, followed by those who are

closest to the top candidate. The following formula is used to

calculate the distance between two food individuals as R (Xi) =
∑

j∈K d
(

Xi,Xj
)

=
∑

j∈K

∥

∥Xi − Xj

∥

∥, where Xi and Xj(j 6= i) are

the different individuals, andK is the number of individuals. The

chance of an individual being selected for a search for fireworks
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explosions is calculated by p (Xi) = R (Xi) /
∑

j∈K R
(

Xj
)

. When

a spark explodes, several sparks emerge around it, generating

new people. The operator also has two parameters to be

determined. The number of sparks Si is calculated as follows:

Si = Ŝ ·
Ymax − f (Xi) + ε

∑ke
i=1

(

Ymax − f (Xi)
)

(3)

Where the ith individual generates the Si sparks, the number

of sparks is Ŝ, and the total number of people chosen for the

explosion search is ke. Ymax is the best individual. f (Xi) is the

ith individual. The amount of sparks is restricted by an upper

constraint Smax and a lower bound Smin in order to avoid

overpowering impacts of pyrotechnics in desirable locations. If

Si < Smin, Si = Smin, then Si > Smax, Si = Smax.

The second parameter is the amplitude of the generated

sparks A
g
i . The magnitude of the explosion is dynamically

adjusted. If g = 1, A
g
i = A1

i , then f
(

V
g
best

)

≥ f
(

X
g
i

)

,

A
g
i = CrA

g−1
i , A

g
i = CaA

g−1
i when f

(

V
g
best

)

< f
(

X
g
i

)

,

where A
g
i denotes the amplitude of the ith individual’s explosion,

while the diameter of the search zone is denoted by the first

generation’s amplitude. V
g
best

is the best spark created, while

g denotes the generation count. If the objective function value

of the best spark is greater than the value of the individual, the

amplitude multiplies with a coefficient Ca > 1; otherwise, it

multiplies with a coefficient Ca < 1.

In this case, the amplitude is too small to make more

progress and should be increased; if a better solution is not

found, it means that the amplitude is too long and should be cut

down. The dynamic amplitude can be used to make more space

around possible solutions.

3.2.2. Proposed FWHHO

The FWHHO is intended to overcome the inherent

flaws of the original HHO through inefficient exploitation

and slow convergence. The fireworks algorithm’s explosive

search mechanism is included in HHO in this research,

along with a framework for fireworks explosion-based Harris

Hawks optimization (FWHHO). More precisely, the suggested

FWHHO structure is divided into two search stages: Harris

Hawks and fireworks explosion. A search for fireworks

explosions is conducted to identify suitable places for developing

improved hawk solutions. To the best of our knowledge, this

is the first time that the HHO is integrated with operators of

fireworks explosions. In the proposed FWHHO, three sections

are available for discussion. The first step is to carry out the

initialization of the search population in the database. The

second step is to complete the execution of the algorithm

operators in the original HHO, and the third step is to complete

the execution of the newly introduced operators generated from

the fireworks explosion that was introduced earlier. Algorithm

1 presents the pseudocode for the FWHHO algorithm utilizing

the basic HHO.

Input : The population size N and maximum number of

iteration T

Output: Best position of the hawks Xbest;

Best fitness value fbest;

Initialize the random population Xi(i = 1, 2, ...,N)

begin
g=0;

while g < T do
Calculate the fitness value of hawks;

Set the Xrabbit as the location of rabbit (best

position);

Update the Xbest, fitnessbest

foreach (Xi) do

Update the initial energy E0 = 2rand() − 1 and

jump strength J;

Update the E using E = 2E0(1− t/T);

if |E| > 1 then

if q 6 0.5 then

Update the position using X(t + 1) =

Xrand(t)− r1|Xrand(t)− 2r2X(t)|

if q > 0.5 then

Update the position using X(t + 1) =

(Xrabbit(t)− X̄m(t))− r3(lb+ r4(ub− lb))

if E < 1 then

if r > 0.5, and |E| > 0.5 then

Update the position using X(t + 1) =

1X(t)− E|JXrabbit(t)− X(t)|

if r > 0.5 and |E| < 0.5 then

Update the position using X(t + 1) =

Xrabbit(t)− E|1X(t)|

if r < 0.5, and |E| > 0.5 then
Soft besiege with progressive rapid

dives;

if r < 0.5, and |E| < 0.5 then
Hard besiege with progressive rapid

dives;

Calculate the Si using equation 3;

for (i = 1 : 6) do

for (j = 1 : Si) do

for (k = 1 : d) do

Update the position Xk
ij = Xk

i + φ · Ai;

Choose the best among Si generated sparks;

Update the Xi;

Adjust the amplitude Ai using A
g
i ;

return Xbest, fbest

Algorithm 1. FWHHO.
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TABLE 1 Comparison of FWHHO and state-of-the-art algorithms.

Algorithm F1 F2 F3 F4 F5

Mean STD mean STD Mean STD Mean STD mean STD

FWHHO 902167.7 341849.9 3721.089 4405.924245 4673.31 1982.922 489.6231 30.78631 520.62336 0.1982208

HHO 84,204,281 29,097,119 344,128,875 89744199.45 86829.654 17975.939 860.59266 153.66426 520.98054 0.1139413

SaDE 13,660,679 6,116,815 411873.72 881877.5426 12802.05 4032.3343 571.68022 31.14679 520.94086 0.0482358

CLPSO 80,622,496 19,279,303 14,519,980 5654419.135 14977.062 3239.0141 691.03257 43.910697 520.65163 0.0311069

GSA 9901563.4 2741841.8 21,871,458 2877324.194 158289.23 19851.048 566.46908 53.632445 521.20296 0.0275089

GWO 152,581,247 80,818,647 1.505E+10 5,279,434,518 86938.199 14549.639 2004.5215 563.8034 521.21368 0.0333388

SCA 1.083E+09 300,773,742 6.804E+10 6,253,978,317 121746.57 9788.8131 11416.512 1707.6495 521.16751 0.0426289

SSA 19,120,011 6525574.8 7211.5226 8780.226044 91301.134 26719.579 528.5813 31.661059 520.0749 0.122223

Algorithm F6 F7 F8 F9 F10

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 622.5629 3.238746 700.01446 0.019920524 801.0945 1.441833 1025.692 18.94712 1156.0303 157.76935

HHO 661.61438 4.0947947 705.22059 1.232503654 1100.7096 17.165175 1313.713 54.03385 7606.5904 1164.6075

SaDE 631.84938 3.9399137 700.303 0.468911669 827.95886 10.270008 1029.5277 27.745652 1132.1985 84.613587

CLPSO 643.09069 1.8463397 701.1039 0.063808641 804.3186 2.4776972 1155.414 16.847765 1085.303 57.57045

GSA 634.55438 4.1153616 701.19855 0.036468763 1016.2846 24.572562 1158.2949 21.128392 6045.4593 765.49163

GWO 636.97537 3.5741224 796.62806 45.37275951 1049.0515 46.231238 1142.0906 78.524089 7345.8181 696.9429

SCA 671.08537 3.0570904 1376.1867 102.3210958 1351.9898 34.304098 1521.8356 37.488102 13743.116 574.61923

SSA 646.87416 5.9129457 700.005 0.005319901 1093.5225 65.435431 1223.6621 69.487215 8237.9232 1427.6469

Algorithm
F11 F12 F13 F14 F15

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 6246.174 426.2649 1200.54 0.221840141 1300.4953 0.0606232 1400.319 0.026883 1522.16 3.401352

HHO 11019.188 1009.8149 1202.8878 0.582795775 1300.6048 0.0822885 1400.3935 0.1112097 1612.2536 17.092755

SaDE 11703.602 481.11301 1201.8885 0.201954325 1300.5817 0.0741299 1400.3503 0.046948 1557.7386 17.321341

CLPSO 8580.4431 379.44062 1200.7165 0.090524689 1300.4352 0.0613921 1400.3504 0.0382548 1544.6994 4.6867086

GSA 7017.7047 392.05419 1200.5767 0.081645677 1300.389 0.049106 1400.3403 0.0383133 1522.8408 1.3660223

GWO 8697.2593 3045.7388 1203.5457 1.040535643 1301.424 1.227591 1430.3369 15.090128 14624.782 14740.197

SCA 15254.287 317.06646 1204.0751 0.339168547 1305.2589 0.4376067 1562.6307 18.245607 382716.45 189109.34

SSA 7670.6698 642.03634 1201.2851 0.481616691 1300.6868 0.1214973 1400.4498 0.2479282 1531.9912 9.2806381

Algorithm
F16 F17 F18 F19 F20

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 1619.428 0.345012 66481.84 47638.15479 3088.449 1266.4386 1943.658 17.10113 15142.42 12817.1

HHO 1622.4671 0.413234 18460345 7972578.739 13,710,469 34,419,944 1981.637 27.02821 55128.152 11374.184

SaDE 1621.6403 0.1870237 1152268.7 605833.0556 2872.002 939.0795 1954.4916 26.592052 23357.606 8746.3568

CLPSO 1620.5242 0.4427087 17,848,523 9532081.885 154858.91 143572.05 1965.3165 12.963449 28425.059 9727.8192

GSA 1622.9664 0.3687285 1718458.1 618217.1251 646399.74 135414.25 1942.6324 30.551672 125093.16 48852.004

GWO 1621.1964 0.9847289 8114432.6 5066114.344 278,141,581 385,322,789 2047.2492 61.782907 32954.921 12503.212

SCA 1622.8699 0.3294154 72,844,730 25410304.55 2.394E+09 630,097,903 2318.4619 84.557359 54164.871 14916.239

SSA 1621.4467 0.4273696 1414872.1 847605.5879 3447.7937 1281.8608 1965.1462 26.355587 38407.844 22540.267

(Continued)
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TABLE 1 (Continued)

Algorithm
F21 F22 F23 F24 F25

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 806869.9 2,395,752 3164.8182 183.1421049 2,500 0 2686.9589 5.8057083 2,700 0

HHO 6971504.4 6238150.4 3991.3549 398.0434698 2644.0045 1.462E-12 2600.0001 0.0003461 2703.907 4.419675

SaDE 1145810.5 443279.41 2953.843 327.8212563 2644.3647 0.7882839 2687.2156 5.2903316 2729.9284 3.0508245

CLPSO 8306111.8 3406855.5 3143.8321 275.459617 2649.3902 1.3461726 2672.6421 2.567531 2728.2043 3.2505201

GSA 1,768,386 867117.77 3868.3596 277.0093698 2649.2015 0.8835197 2644.0439 20.135419 2729.2335 13.198939

GWO 2308013.2 2499719.1 3274.8755 319.4672753 2809.3229 84.003253 2600.023 0.008835 2726.5001 14.163469

SCA 16338955 8169734.2 5000.4361 294.5817911 3128.0566 86.118664 2691.4821 61.788571 2764.4036 42.596036

SSA 1599820.7 778936.99 3474.514 291.412842 2669.6498 8.6901173 2699.6735 5.3489669 2738.5007 7.8465751

Algorithm
F26 F27 F28 F29 F30

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 2721.1193 41.651775 2,900 4.79E-13 3,000 4.79E-13 3,100 0 14426.37 1466.246

HHO 2790.0503 31.463626 3672.3892 3672.389231 66.423926 4420.6095 287.9402 4428.6234 183.17187 72763.522

SaDE 2790.4146 31.548118 3765.7075 76.90338617 4511.6262 118.40447 18094.403 41410.012 20598.228 3738.187

CLPSO 2712.3271 32.125417 4054.9582 250.846698 5030.3248 481.3801 105417.03 33546.662 27081.575 4087.2807

GSA 2800.4487 0.0926686 4691.0312 1350.850628 10075.937 872.97659 20558298 64744528 88885.678 28741.379

GWO 2800.2059 0.3530995 3906.3114 110.5318484 6266.9374 695.97127 32,503,381 30,568,058 484817.75 245248.7

SCA 2705.9092 0.4627085 4884.8992 97.55160642 9729.4812 615.86949 30,6298,490 41364554 3335276.6 1058545.4

SSA 2700.686 0.097619 4256.8142 169.4583249 5073.2733 728.69706 56,708,696 44,745,741 94378.038 41880.728

Where bold indicates that the current value is the best in all algorithms.

4. Experimental designs

In this study, some experiments are executed to verify

the proposed FWHHO, which is composed of a comparison

between FWHHO and state-of-the-art algorithms, a comparison

of FWHHOon existing HHO algorithms, a comparison between

FWHHO and fireworks algorithms, and an application of

FWHHO on machine learning evolution. For comparison

between FWHHO and state-of-the-art algorithms, existing

HHO algorithms, fireworks algorithms, and the CEC2014

benchmark functions (Liang et al., 2013) are used which has

30 functions including F1–F3 (unimodal functions), F4–F16

(simple multimodal functions), F17–F22 (hybrid functions), and

F23–F30 (composition functions). The CEC2014 benchmark

has the most typical and comprehensive test function and can

effectively test the performance of the algorithm. The maximum

number of function evaluations is 5 ∗ 104. To record the

statistical data, each algorithm is run 30 times independently

on each function. For the application of FWHHO on machine

learning evolution, the key parameters and optimal subfeatures

of the support vector machine on medical diagnosis. Take

note that all tests are run on Windows Server 2018 R2 with

MATLAB2020b on a Xeon CPU i5-2660 V3 (2.60 GHz) and 16

GB RAM.

5. Experimental and analytical results

5.1. Comparison between FWHHO and
state-of-the-art algorithms

In this section, the proposed FWHHO is compared to

several state-of-the-art algorithms on CEC 2014 benchmarks

and each algorithm is carried out 30 times independently.

These state-of-the-art algorithms are composed of original HHO

(Heidari et al., 2019), self-adaptive differential evolution (SaDE)

(Qin et al., 2008), comprehensive learning particle swarm

optimization (CLPSO) (Liang et al., 2006), gravitational search

algorithm (GSA) (Rashedi et al., 2009), gray wolf optimizer

(GWO) (Mirjalili et al., 2014), sine cosine algorithm (SCA)

(Mirjalili, 2016), and salp swarm algorithm (SSA) (Mirjalili et al.,

2017). These algorithms’ parameters have been set in accordance

with the original article. As shown in Table 1, the mean and

standard deviation (STD) values demonstrate the accuracy of the

experimental findings.
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TABLE 2 The calculated p-values for FWHHO vs. state-of-the-art algorithms.

F HHO SaDE CLPSO GSA GWO SCA SSA

F1 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F2 0.001953125+ 0.083984375+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.043164062+

F3 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F4 0.001953125+ 0.00390625+ 0.001953125+ 0.005859375+ 0.001953125+ 0.001953125+ 0.037109375+

F5 0.005859375+ 0.005859375+ 0.001308593+ 0.001953125+ 0.00390625+ 0.001953125+ 0.061953125-

F6 0.001953125+ 0.001953125+ 0.001953125+ 0.00390625+ 0.001953125+ 0.001953125+ 0.001953125+

F7 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.431640625-

F8 0.001953125+ 0.001953125+ 0.01953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F9 0.001953125+ 0.695312500– 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F10 0.001953125+ 0.625000000- 0.193359375– 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F11 0.001953125+ 0.001953125+ 0.001953125+ 0.009765625+ 0.009765625+ 0.001953125+ 0.001953125+

F12 0.001953125+ 0.001953125+ 0.064453125– 0.431640625– 0.001953125+ 0.001953125+ 0.001953125+

F13 0.009765625+ 0.001953125+ 0.048828125+ 0.009765625+ 0.001953125+ 0.001953125+ 0.005859375+

F14 0.009765625+ 0.083984375+ 0.105468750– 0.160156250– 0.001953125+ 0.001953125+ 0.130859375–

F15 0.001953125+ 0.001953125+ 0.001953125+ 0.6953125+ 0.001953125+ 0.001953125+ 0.02734375+

F16 0.001953125+ 0.001953125+ 0.00390625+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F17 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F18 0.001953125+ 0.431640625– 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.625000000-

F19 0.02734375+ 0.232421875– 0.01953125+ 1– 0.001953125+ 0.001953125+ 0.009765625+

F20 0.001953125+ 0.193359375+ 0.048828125+ 0.001953125+ 0.02734375+ 0.001953125+ 0.00390625+

F21 0.013671875+ 0.083984375+ 0.00390625+ 0.033984375+ 0.044453125+ 0.00390625+ 0.083984375+

F22 0.001953125+ 0.064453125- 0.556640625- 0.001953125+ 0.275390625– 0.001953125+ 0.037109375+

F23 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F24 0.001953125+ 0.845703125– 0.001953125+ 0.001953125+ 0.001953125+ 0.921875– 0.00390625+

F25 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.037109375+ 0.001953125+

F26 0.02734375+ 0.013671875+ 0.232421875– 0.001953125+ 0.005859375+ 0.431640625– 0.193359375–

F27 0.001953125+ 0.01953125+ 0.005859375+ 0.009765625+ 0.00390625+ 0.001953125+ 0.001953125+

F28 0.001953125+ 0.032226562+ 0.00390625+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F29 0.001953125+ 0.02734375+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

F30 0.083984375+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+ 0.001953125+

Even if it may not perform well in all circumstances, it

can be seen that the proposed FWHHO has the best average

value performance among most benchmarks. To establish how

significant the gains were, the Wilcoxon sign rank test was

also utilized. P < 0.05 show that FWHHO works better than

the other optimizer. In this case, the gains are not statistically

significant. Table 2 contains the calculated p-values. P > 0.05

are highlighted in Table 2, indicating that the difference is not

statistically significant. The calculated p-values of FWHHO and

other state-of-the-art algorithms on CEC2014 benchmarks are

shown in Table 2. As shown in Table 2, most of the p < 0.05,

demonstrating that FWHHO outperformed the original HHO

and other state-of-the-art algorithms.

Additionally, Figure 1 illustrates the convergence curves of

various algorithms for a selection of benchmarks. It can be

observed that the presented FWHHO has a fast search ability

of convergence on most benchmarks such as F2, F3, F4, F8 F20,

and F30, to ensure that it achieves the best theoretical value in a

short time and the apparent superiority to all other competitors

in these benchmarks. Convergence can occur quickly during
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FIGURE 1

Convergence curves of FWHHO and state-of-the-art algorithms.
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TABLE 3 Comparison of FWHHO and existing HHO algorithms.

Algorithm F1 F2 F3 F4 F5

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 902167.6951 341849.9335 3721.088889 4405.924245 4673.310063 1982.921821 489.6231251 30.78630585 520.6233586 0.198220769

CMDHHO 103890312.8 33001287.88 327793744.7 92926014.92 85451.81297 9105.141855 782.6948035 103.6429363 521.0630324 0.058730331

hHHO-SCA 4569048.312 1805547.978 247988.9419 198675.7211 107520.0623 48576.35026 522.7629243 62.06323585 521.2452445 0.024439631

EHHO 796054016.9 113181710.4 37,567,585,329 2,049,620,919 149739.7534 14364.36915 4233.704968 961.1239732 521.2266988 0.034571179

GCHHO 36189630.34 11491261.25 523691072.2 26865442.31 30421.48815 6186.703675 550.2216471 63.05463252 521.2059497 0.03939306

Algorithm
F6 F7 F8 F9 F10

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 622.5628793 3.238746129 700.014456 0.019920524 801.094455 1.441832654 1025.692072 18.94711974 1156.030304 157.7693517

CMDHHO 662.1826891 4.546226379 704.6515607 1.368692467 1100.939188 11.82789133 1332.893431 27.72105463 7538.169473 1332.90993

hHHO-SCA 664.1289123 4.894426973 700.2644196 0.202129738 1222.199612 69.97551889 1490.525512 110.9866227 8783.941911 912.6304135

EHHO 663.6634491 1.732825499 1059.60411 20.37671422 1257.69023 13.85470965 1429.495493 18.32096447 14536.49428 420.5037096

GCHHO 647.2027653 6.558662276 705.7578814 0.48232051 1217.123591 34.57489263 1426.653947 37.01036111 10164.22 936.2988401

Algorithm
F11 F12 F13 F14 F15

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 6246.174232 426.2649298 1200.540007 0.221840141 1300.495307 0.060623172 1400.318819 0.026883173 1522.160239 3.401352123

CMDHHO 10127.53539 1181.826873 1202.85012 0.592117692 1300.554465 0.097169013 1400.386586 0.130900487 1624.778284 28.54466223

hHHO-SCA 8936.77265 811.9290814 1202.378989 0.637422362 1300.57458 0.127391662 1400.383145 0.157614633 1665.629549 60.49873062

EHHO 14884.80398 443.4802388 1203.917382 0.350332971 1303.798112 0.265225751 1498.59787 15.56062776 131592.5695 39478.98002

GCHHO 11942.62429 685.7700386 1204.080914 0.262313389 1300.677125 0.116171067 1400.460773 0.244266746 1539.512526 2.397143599

Algorithm
F16 F17 F18 F19 F20

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 1619.428379 0.3450123 66481.84461 47638.15479 3088.448968 1266.438588 1943.657601 17.10112995 15142.42127 12817.09723

CMDHHO 1622.427536 0.292927417 20554897.81 12000187.58 6792821.297 4773775.583 1975.572543 28.50502352 67063.54008 28688.89699

hHHO-SCA 1623.270028 0.517229679 638960.3153 344331.7002 117390.684 45844.90914 1958.832054 31.33723187 50223.6564 29032.06522

EHHO 1622.864134 0.147043699 52863052.66 11524394 1704318808 362823928.9 2162.594009 20.65138199 118778.7141 37271.21262

GCHHO 1622.241844 0.410334227 3284262.451 1262191.018 17192603.52 4397520.549 1940.754136 19.8719176 12596.89942 5105.428091

Algorithm
F21 F22 F23 F24 F25

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 806869.942 2395752.482 3164.818187 183.1421049 2,500 0 2686.958891 5.805708267 2703.906636 4.419674612

CMDHHO 6823584.462 3436758.543 4318.101155 294.6438341 2500 0 2600.00003 9.44433E-

05

2700 0

hHHO-SCA 455135.2098 229919.3437 4206.171199 335.1585916 2647.636654 2.447936742 2763.658341 43.75568919 2762.999585 10.83580829

EHHO 23895662.43 6184196.17 4622.940174 245.7591414 3091.837281 54.98753232 2820.19276 14.85514332 2816.957749 11.85633931

GCHHO 1469901.29 448172.3061 3629.073204 222.8974308 2666.621666 10.96236159 2691.171601 10.01300934 2740.558678 4.373412794

(Continued)
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TABLE 3 (Continued)

Algorithm
F26 F27 F28 F29 F30

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 2721.119273 41.65177484 2,900 4.79E-13 3,000 4.79346E-

13

3,100 0 14426.36671 1466.245516

CMDHHO 2,800 0 2,900 4.79346E-

13

3,000 4.79346E-

13

3,100 0 3,200 0

hHHO-SCA 2788.734482 109.363826 5038.703057 187.0619575 8660.939983 2764.212468 429011518.5 278726392.8 1626566.369 4960256.662

EHHO 2803.874255 109.7133846 4573.653153 34.60237798 6156.475876 655.8127536 68674442.79 12207851.15 839806.5244 202142.3024

GCHHO 2802.670264 0.497716584 4270.769952 396.6431602 12616.9585 2336.202397 3160.672309 49.85277448 33944.09408 35992.31236

Where bold indicates that the current value is the best in all algorithms.

the early stages of algorithm execution, particularly for F4,

F29, and F30. Although the convergence ability of F11, F12,

and F16 are relatively weak in the early stages of algorithm

execution, as the number of iterations rises, it can achieve

quick convergence in the later stages. In a nutshell, it can be

stated that the original HHO’s properties can be significantly

enhanced.

5.2. Comparison between FWHHO and
existing HHO algorithms

On the CEC2014 benchmarks, this section compares the

proposed FWHHO and existing HHO algorithms. The existing

HHO algorithms are composed of CMDHHO (enriched HHO

with chaos strategy, multi-population mechanism, and DE

strategy) (Chen et al., 2020a), hHHO-SCA (hybrid harris

hawks-sine cosine algorithm) (Kamboj et al., 2020), EHHO

(enriched Harris Hawks optimization with chaotic drifts) (Chen

et al., 2020b), and GCHHO (HHO with Gaussian mutation

and cuckoo search strategy) (Song et al., 2021). All of these

algorithms’ parameters have been set in accordance with the

original article. Table 3 compares the performance of FWHHO

and existing HHO algorithms on the CEC2014 benchmark

with 50 dimensions. As can be shown, FWHHO obviously

surpasses these current HHO algorithms in terms of not only

mean error values but also standard deviations for the majority

of functions, while FWHHO may perform badly in contrast

to other existing FWA algorithms for F19, F21, F24, and

F30. On F19, the GCHHO produces the best mean error

values, while the hHHO-SCA produces the best mean error

values. On F24 and F30, the CMDHHO obtains the best mean

error values.

Table 4 presents the p-values for the FWHHO and other

existing HHO algorithms on the CEC2014 benchmark with

50 dimensions. As can be seen, the majority of cases are

smaller than 0.05, indicating that FWHHO outperforms

CMDHHO, hHHO-SCA, EHHO, and GCHHO. A preliminary

result is that the FWHHO approach is superior to other

existing HHO methods in terms of numerical optimization

potential. In addition, the convergence curves of FWHHO

and other existing HHO methods for several selected

benchmarks are exhibited in Figure 3. The proposed

FWHHO shows the best fast convergence speed among

all these existing HHO methods on these functions. The

estimated optimal solution can be reached fast during

the early stages of FWHHO execution; in contrast, other

algorithms did not complete convergence until the end of the

iteration number.

5.3. Comparison between FWHHO and
fireworks algorithms

The new FWHHO algorithm is compared to many current

fireworks algorithms on CEC2014 benchmarks in this section.

The extant fireworks algorithms include the original FWA, the

BBFWA (bare bones FWA) (Li and Tan, 2018), the LoTFWA

(loser-out tournament-based FWA) (Li and Tan, 2017), and

the GFWA (Guide FWA) (Li et al., 2016). Table 5 illustrates

how these algorithms’ parameters are set. The results of the

statistical comparison between FWHHO and existing FWA

algorithms on the CEC2014 benchmark with 50 dimensions

are shown in Table 6. As can be seen, the FWHHO approach

delivers the most thorough results in terms of mean error

values and standard deviations for the majority of functions,

although it may perform badly in contrast to other current

FWA algorithms for F5, F9, F19, and F20. It is worth noticing

that the mean values and standard deviations for F5, F6,

F12, and F16 for all methods are rather similar. LoTFWA

outperforms FWHHO, BBFWA, and GFWA on the F5, F9,

F19, and F20 functions and the proposed FWHHO on all other

functions.

Table 7 presents the p-values for the FWHHO and other

existing FWA algorithms on the CEC2014 benchmark with 50

dimensions. As can be seen, the majority of cases are smaller

than 0.05, indicating that FWHHO considerably outperforms

GFWA, BBFWA, LoTFWA, and FWA. A preliminary
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TABLE 4 The calculated p-values for FWHHO vs. existing HHO algorithms.

F CMDHHO hHHO-SCA EHHO GCHHO

F1 0.001953+ 0.001953+ 0.001953+ 0.001953+

F2 0.001953+ 0.001953+ 0.001953+ 0.001953+

F3 0.001953+ 0.001953+ 0.001953+ 0.001953+

F4 0.001953+ 0.625000- 0.001953+ 0.001953+

F5 0.001953+ 0.001953+ 0.001953+ 0.001953+

F6 0.001953+ 0.001953+ 0.001953+ 0.001953+

F7 0.001953+ 0.001953+ 0.001953+ 0.001953+

F8 0.001953+ 0.001953+ 0.001953+ 0.001953+

F9 0.001953+ 0.001953+ 0.001953+ 0.001953+

F10 0.001953+ 0.001953+ 0.001953+ 0.001953+

F11 0.001953+ 0.001953+ 0.001953+ 0.001953+

F12 0.001953+ 0.001953+ 0.001953+ 0.001953+

F13 0.322265– 0.130859– 0.001953+ 0.001953+

F14 0.3222656– 0.695312– 0.001953+ 0.105468–

F15 0.001953+ 0.001953+ 0.001953+ 0.003906+

F16 0.001953+ 0.001953+ 0.001953+ 0.001953+

F17 0.001953+ 0.083984– 0.001953+ 0.001953+

F18 0.001953+ 0.001953+ 0.001953+ 0.001953+

F19 0.037109+ 0.160156– 0.001953+ 0.769531–

F20 0.001953+ 0.001953+ 0.001953+ 0.064453–

F21 0.001953+ 0.083984– 0.001953+ 0.083984–

F22 0.001953+ 0.001953+ 0.001953+ 0.001953+

F23 0.001953+ 0.001953+ 0.001953+ 0.001953+

F24 0.001953+ 0.001953+ 0.001953+ 0.431640–

F25 0.001953+ 0.001953+ 0.001953+ 0.009765+

F26 0.556640– 0.001953+ 0.375000– 0.001953+

F27 0.001953+ 0.001953+ 0.001953+ 0.003906+

F28 0.001953+ 0.001953+ 0.001953+ 0.001953+

F29 0.001953+ 0.005859+ 0.001953+ 0.001953+

F30 0.001953+ 0.001953+ 0.001953+ 0.3222656–

conclusion can be drawn that the algorithm proposed FWHHO

in this study has the perfect potential ability for numerical

optimization than other existing FWA methods. In addition,

the convergence curves of FWHHO and other existing FWA

methods for several selected benchmarks are exhibited in

Figure 2. It can be observed that the suggested FWHHO has

the fastest convergence speed of all the known FWA techniques

on these functions. The approximate optimum solution may

be promptly found in the early stage of FWHHO execution for

F2, F21, and F29, but other algorithms did not complete the

convergence until the end of the iteration number to acquire the

approximate optimal solution. Overall, the technique suggested

in this research has been first validated for several numerical

optimization problems.

5.4. Application of FWHHO on machine
learning evolution

The property of FWHHO with fireworks explosion has

been verified based on the aforementioned experimental
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FIGURE 2

Convergence curves of FWHHO and existing HHO algorithms.

TABLE 5 Parameters for fireworks algorithms.

Algorithm Parameters

FWA n = 6, λ = 50, a = 0.04, b = 0.8,Amax = 40

BBFWA n = 300,Ca = 1.2,Cr = 0.9

LoTFWA n = 6,Ca = 1.2,Cr = 0.9, σ = 0.2, λ = 300

GFWA n = 6,Ca = 1.2,Cr = 0.9,Amax = 40, λ = 100,

a = 0.1, b = 1

results. In this section, the FWHHO is used to evolve a

kernel extreme learning machine (KELM) for the purpose

of diagnosing COVID-19 using biochemical indexes. The

classification performance of KELM depends entirely on

two of the key parameters and the optimal feature subset

(Shi et al., 2021). The FWHHO is used to optimize

the parameters and subfeatures of KELM concurrently with

biochemical indexes for diagnosing COVID-19. The data used

in this experiment are the data we used and published

earlier (Shi et al., 2021). A total of 51 patients with COVID-

19 were included in the analysis retroactively between 21

January and 20 March 2020. Each patient with COVID-19

was evaluated for gender, age, biochemical index, and blood

electrolyte values. Biochemical indices and blood electrolytes

were determined using an automated biochemical analyzer at

the clinical biochemistry laboratory at the Affiliated Yueqing

Hospital of Wenzhou Medical University (BS-190; Mindray,

Shenzhen, China). This data set consists of 25 biochemical index

features. Moreover, several other state-of-the-art algorithms,

such as ECPA, CPA, GWO, MFO, and PSO, are utilized to

optimize the parameters and subfeatures of KELM; the original

KELM, SVM, and KNN are used as comparisons, and 10-

fold cross-validation is used in this work. Each algorithm
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TABLE 6 Comparison of FWHHO and fireworks algorithms.

Algorithm F1 F2 F3 F4 F5

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 902167.695 341849.9335 3721.088889 4405.92425 4673.310063 1982.92182 489.623125 30.786306 520.6234 0.198221

FWA 824445788 135438669.8 36049377664 2600658732 148644.9627 15159.299 860.592662 153.66426 521.2084 0.050939

BBFWA 28664317.5 6575107.597 499813711.6 60940130 28326.86593 5263.03265 571.680221 31.14679 521.2203 0.032717

LoTFWA 14284849.2 4066322.912 1256945.613 355131.028 15654.99661 4522.39898 691.032573 43.910697 520.5816 0.103567

GFWA 4367736.75 2410506.089 248899.356 209061.864 116530.037 35861.1324 566.469083 53.632445 521.2328 0.018748

Algorithm F6 F7 F8 F9 F10

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 622.562879 3.238746129 700.014456 0.01992052 801.094455 1.44183265 1025.69207 18.94712 1156.03 157.7694

FWA 662.976762 1.327404961 1053.936786 29.8405673 1261.307941 25.7592357 1419.04654 21.211026 14129.85 590.0503

BBFWA 645.863702 4.374185347 706.0391384 0.36358028 1216.546432 40.2947715 1431.90525 65.204238 10514.12 853.9626

LoTFWA 628.779375 3.471259522 700.8637366 0.06233911 1001.503205 39.5005997 1106.17034 39.228711 6992.855 825.6619

GFWA 663.799377 4.056487803 700.2913736 0.16120203 1238.674787 74.6237798 1486.16876 151.01315 8848.969 1059.42

Algorithm F11 F12 F13 F14 F15

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 6246.17423 426.2649298 1200.540007 0.22184014 1300.495307 0.06062317 1400.31882 0.0268832 1522.16 3.401352

FWA 14884.7458 358.8202421 1203.991823 0.51569947 1303.721196 0.2697012 1500.95821 8.273375 143772.6 26918.32

BBFWA 11795.6432 994.8879346 1203.79199 0.5153236 1300.634197 0.12095284 1400.61222 0.3449763 1540.428 2.484538

LoTFWA 6875.03748 1032.297375 1200.76176 0.38522606 1300.818638 0.1399847 1400.72899 0.4468956 1525.071 5.227916

GFWA 8704.30795 703.7929097 1202.128842 0.53278354 1300.507128 0.10599042 1400.33839 0.0480132 1678.261 56.35994

Algorithm F16 F17 F18 F19 F20

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 1619.42838 0.3450123 66481.84461 47638.1548 3088.448968 1266.43859 1943.6576 17.10113 15142.42 12817.1

FWA 1622.80144 0.274181665 50906676.49 14524703.6 1828889021 300873639 2149.44841 27.417311 114062.2 57835.91

BBFWA 1622.24163 0.438933308 2724565.658 984309.288 18561656.84 4827409.16 1933.42937 3.3285582 13240.95 3603.988

LoTFWA 1622.01211 0.443778625 1309160.404 581945.461 9863.774619 3158.81278 1931.56337 14.29722 8073.586 3228.496

GFWA 1623.27604 0.384993833 542569.3986 250678.937 124022.8052 69295.475 1968.80795 31.942968 35943.06 14838.63

Algorithm F21 F22 F23 F24 F25

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 806869.942 2395752.482 3164.818187 183.142105 2500 0 2686.95889 5.8057083 2703.907 4.419675

FWA 23835475.2 5317691.572 4635.747976 248.594987 3057.326898 76.427731 2818.35268 8.0137202 2817.509 19.72775

BBFWA 1203581.2 555428.1826 3763.902229 292.487265 2660.30961 6.05982363 2694.46262 7.7327575 2736.636 7.305577

LoTFWA 934271.314 661323.4123 3180.729589 237.184314 2661.397364 6.54233659 2687.69208 15.557818 2719.104 5.322087

GFWA 421879.706 235886.8118 4021.763343 386.111455 2647.557446 1.59247989 2760.55147 41.2113 2771.782 19.52749

(Continued)
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TABLE 6 (Continued)

Algorithm F26 F27 F28 F29 F30

Mean STD Mean STD Mean STD Mean STD Mean STD

FWHHO 2721.11927 41.65177484 2900 4.79E-13 3000 4.7935E-13 3100 0 14426.37 1466.246

FWA 2754.67909 82.14867568 4578.019934 71.9260213 6312.095084 929.167521 42638010.6 11926261 846007.9 158793.4

BBFWA 2823.32935 65.79974482 4397.418138 230.105296 13693.04679 1998.68032 88544.1495 269922.58 46481.42 55328.9

LoTFWA 2803.00271 94.06251765 3803.40262 152.563505 5046.212327 703.450337 69967.1801 37179.195 62375.13 45093.35

GFWA 2732.22495 47.30385255 4914.895686 163.639583 9628.899245 2349.15129 526,776,969 273,142,583 744237.7 2,144,963

Where bold indicates that the current value is the best in all algorithms.

FIGURE 3

Convergence curves of FWHHO and existing FWA algorithms.

is run independently 10 times diagnose COVID-19 utilizing

biochemical indexes.

Comparison of the statistical results of the proposed

FWHHO-KELM algorithm with existing competitive

algorithms, such as ECPA-KEML, CPA-KELM, CPA-KELM,

GWO-KELM, MFO-KELM, PSO-KELM, SVM, and KNN, is

presented in Table 8. In comparison to existing algorithms,

the suggested FWHHO-KELM has the best ACC (0.94320),

MCC (0.92420), sensitivity (0.95354), specificity (0.90359),

and sensitivity (0.95354). The best standard deviation is also

obtained by the proposed FWHHO-KELM with 0.03854,

0.03584, 0.042511, and 0.05841. The results of the algorithm
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TABLE 7 The calculated p-values for FWHHO vs. fireworks algorithms.

F FWA BBFWA LoTFWA GFWA

F1 0.001953+ 0.001953+ 0.001953+ 0.001953+

F2 0.001953+ 0.001953+ 0.001953+ 0.001953+

F3 0.001953+ 0.003906+ 0.037109+ 0.001953+

F4 0.001953+ 0.003906+ 0.003906+ 0.003906+

F5 0.001953+ 0.001953+ 0.769531- 0.001953+

F6 0.001953+ 0.001953+ 0.013671+ 0.001953+

F7 0.001953+ 0.001953+ 0.001953+ 0.001953+

F8 0.001953+ 0.001953+ 0.001953+ 0.001953+

F9 0.001953+ 0.001953+ 0.001953+ 0.001953+

F10 0.001953+ 0.001953+ 0.001953+ 0.001953+

F11 0.001953+ 0.001953+ 0.193359- 0.001953+

F12 0.001953+ 0.001953+ 0.083984- 0.001953+

F13 0.001953+ 0.003906+ 0.001953+ 0.048828+

F14 0.001953+ 0.1933593– 0.105468- 0.921875–

F15 0.001953+ 0.003906+ 0.625– 0.001953+

F16 0.001953+ 0.001953+ 0.001953+ 0.001953+

F17 0.001953+ 0.001953+ 0.001953+ 0.001953+

F18 0.001953+ 0.001953+ 0.001953+ 0.001953+

F19 0.001953+ 0.769531– 0.4921875– 0.01953+

F20 0.001953+ 0.232421– 0.037109+ 0.064453–

F21 0.001953+ 0.064453+ 0.083984- 0.083984–

F22 0.001953+ 0.001953+ 0.013671+ 0.001953+

F23 0.001953+ 0.001953+ 0.001953+ 0.001953+

F24 0.001953+ 0.160156– 0.105468– 0.001953+

F25 0.001953+ 0.009765+ 0.005859+ 0.001953+

F26 0.845703– 0.001953+ 0.105468– 0.625–

F27 0.001953+ 0.001953+ 0.048828+ 0.001953+

F28 0.001953+ 0.001953+ 0.027343+ 0.001953+

F29 0.001953+ 0.083984– 0.001953+ 0.001953+

F30 0.001953+ 0.130859– 0.001953+ 0.001953+

proposed in this article on this data set are higher than

the results of the previous ECPA-KELM algorithm: 2.3%,

2.1%, 3.3%, and 0.8% in terms of four metrics. The original

KELM and SVM algorithms perform poorly in the absence

of swarm optimization algorithm evolution; however, the

GWO-KELM, MFO-KELM, and PSO-KELM algorithms

outperform the original KELM, SVM, and KNN algorithms.

This experiment reveals that FWHHO-KELM can acquire

the best property across all of these competing models

automatically, owing mostly to the improved FWHHO,

which can automatically select the optimal KELM parameters

and subset of features for diagnosing COVID-19 using

biochemical indices.

In addition, the proposed FWHHO is utilized to optimize

settings and choose optimal subfeatures for KELM concurrently

to diagnose COVID-19 using biochemical indicators. In

addition, the numbers of the selected features in each 10-

fold cycle by these algorithms are shown in Table 9. As shown

in Table 9, the FWHHO-KELM proposal clearly beats others,

and in terms of statistics, the FWHHO-KELM picked the
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TABLE 8 The statistical study comparing outcomes in terms of the four criteria.

Algorithms ACC MCC Sensitivity Specifity

FWHHO-KELM 0.94325 ± 0.03854 0.92426 ± 0.03584 0.95354 ± 0.042511 0.90359 ± 0.05841

ECPA-KELM 0.92188± 0.04254 0.90507± 0.04145 0.92288± 0.05302 0.89637± 0.06523

CPA-KELM 0.87613± 0.06512 0.85305± 0.07865 0.86541± 0.06362 0.84225± 0.08965

KELM 0.80224± 0.07852 0.79652± 0.09863 0.80263± 0.06375 0.78557± 0.15452

GWO-KELM 0.86523± 0.06901 0.82512± 0.07524 0.87832± 0.07885 0.85263± 0.10152

MFO-KELM 0.85462± 0.06325 0.83661± 0.0705 0.88628± 0.08543 0.86360± 0.09016

PSO-KELM 0.85787± 0.06888 0.86327± 0.0757 0.87188± 0.06323 0.87858± 0.10325

SVM 0.81365± 0.08762 0.78631± 0.0888 0.78696± 0.08501 0.80266± 0.16214

KNN 0.81371± 0.08432 0.81374± 0.1136 0.78271± 0.08864 0.80188± 0.12426

Where bold indicates that the current value is the best in all algorithms.

TABLE 9 The numbers of selected feature.

Index Algorithm

FWHHO-KELM ECPA-KELM CPA-KELM GWO-KELM MFO-KELM PSO-KELM

F1 0 0 0 0 1 2

F2 9 9 7 8 8 7

F3 2 3 3 4 5 6

F4 3 4 5 3 3 5

F5 9 8 7 8 7 7

F6 1 2 4 5 5 4

F7 9 9 7 6 6 7

F8 0 2 3 4 5 4

F9 9 8 8 7 6 6

F10 4 5 4 4 6 4

F11 1 3 5 5 6 4

F12 8 9 8 7 7 8

F13 0 1 2 4 4 5

F14 10 8 7 7 6 6

F15 3 4 5 3 5 4

F16 5 6 5 2 4 3

F17 3 4 5 5 3 4

F18 1 2 5 5 3 6

F19 0 1 6 4 6 4

F20 2 4 5 4 5 3

F21 4 3 5 5 3 3

F22 0 2 4 6 4 4

F23 1 1 6 5 1 1

F24 0 2 4 4 2 6

F25 6 6 6 6 5 5
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characteristics AGE, ALT, ALB, A/G, AST, and LDH with

values of 9, 9, 9, 8, and 10, respectively, whereas the other

features were chosen far less frequently. As a result of their

frequent appearance, such qualities may aid in the early

diagnosis of COVID-19 and the discrimination of other low-

frequency features. Due to the underlying details in these

frequency aspects, these AGE, ALT, ALB, A/G, AST, and LDH

traits should be given additional care in clinical practice. In

short, the proposed FWHHO can successfully crack numerical

optimization problems.

6. Conclusion and future work

The purpose of this research is to develop a novel HHO

frame based on the fireworks explosions to enhance the

performance of the original HHO for challenging numerical

optimization tasks. The FWHHO framework suggests

performing searches in two phases: first for hawks, then for

fireworks explosions. Following the conclusion of the four

stages of the hawks’ search, a fireworks explosion search is

performed to explore promising locations and potential food

supplies. It then looks for adjacent fireworks explosions after

selecting persons based on their proximity to one another. In

addition, the dynamic amplitude is used to calculate the step

size for searching for fireworks bursts. At first, the amplitude

is considerable, allowing for exploration of prospective areas;

as iteration progresses, the amplitude decreases, allowing for

full exploitation of the space surrounding a potential solution.

To be more precise, it selects several individuals based on their

proximity to one another and then does a search for fireworks

explosions in their vicinity. In addition, the dynamic amplitude

is used to determine the step size of the search for fireworks

explosions. At first, the amplitude is considerable, allowing for

exploration of prospective locations; as iterations progress, the

amplitude decreases, allowing for complete exploitation of the

space surrounding a potential solution. Furthermore, FWHHO

is compared with state-of-the-art algorithms, existing HHO

algorithms, and existing fireworks algorithms, and the statistical

findings demonstrate that FWHHO is superior in terms of

solution quality and search efficiency.

There might be limitations to this research. The projected

FWHHO may still have room for development. The proposed

method, although effective, does need a significant amount of

extra computing time and resources to implement. To this end,

we will likely investigate ways to parallelize the implementation

of the method in the near future. Complex engineering

optimization issues, such as optimal control in industry and

energy management, are prime candidates for the FWHHO

algorithm.
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