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Artificial Intelligence (AI) is a branch of computer science that utilizes optimization,

probabilistic and statistical approaches to analyze andmake predictions based on a

vast amount of data. In recent years, AI has revolutionized the field of oncology and

spearheaded novel approaches in the management of various cancers, including

colorectal cancer (CRC). Notably, the applications of AI to diagnose, prognosticate,

and predict response to therapy in CRC, is gaining traction and proving to be

promising. There have also been several advancements in AI technologies to help

predict metastases in CRC and in Computer-Aided Detection (CAD) Systems to

improve miss rates for colorectal neoplasia. This article provides a comprehensive

review of the role of AI in predicting risk, prognosis, and response to therapies

among patients with CRC.
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Introduction

Colorectal Cancer (CRC) is the third most common cancer worldwide in men and the

second most common cancer in women with over 1.93 million new diagnoses in 2020 (1).

CRC is also the second leading cause of cancer death worldwide with an estimated 935,173

deaths in 2020 (1). Roughly 50% of patients with CRC will develop liver metastasis

throughout the course of their disease (2). Projections for 2040 estimate an increase in the

global incidence of CRC with an estimated 3.2 million cases (3). In this era of personalized

medicine, increased efforts are needed for more effective diagnosis, risk prediction,

prognostication, and prediction of treatment response.

Artificial intelligence (AI) is a novel branch of computer science that involves the ability

of computer systems to emulate the human behavior that requires intelligence, like thinking

and decision-making. AI was born in 1956 through the work of the Darmouth AI conference

and has since revolutionized various industries, including medicine (4). Through the
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development of AI, came various systems such as Machine learning

(ML), which is a subset of AI that involves a range of statistical,

probabilistic, and optimization models that allows a computer system

to learn and adapt from previous iterations to analyze and make

inferences from patterns in noise (5, 6). Deep learning (DL) is a subset

of ML that employs neural networks with multiple layers of

processing to analyze and learn in a similar fashion to humans (7).

One of the exciting applications of AI has been in the field of

radiology, which involves the use of imaging to diagnose and treat

illnesses, and especially radiomics. Radiomics is a process that refers

to the extraction of mineable data from medical images (8). Its

importance is based on the fact that a vast number of extracted

features, like entropy patterns, skewness, and kurtosis are mostly

hidden to the human eye and can inform clinical decision making,

quantify tumor phenotype, predict response to treatment, and

determine prognosis. AI is not only able to effectively analyze the

features generated by radiomics but also analyze the images to create

its own radiomic features to forego predefined features, which is

conventionally known as deep radiomics (9, 10). Given that radiology

intersects with several fields of medicine, the advancements of AI in

radiology has influenced several types of medical fields like oncology,

including CRC.

The management of patients with CRC is multifaceted and

involves various dimensions of care, such as screening, diagnosis,

treatment, and follow-up. Because of these multiple components of

care and the vast capabilities of AI, these technologies have an

incredibly important role in the management of CRC, anywhere

from polyp detection to the prediction of response to

chemoradiotherapy. Various applications are currently being

developed and validated to improve the detection and workup of
Frontiers in Oncology 02
CRC treatment. Figure 1 shows an overview of the various features

considered in these AI models and some of the applications specific to

CRC. Table 1 prevents a summary of the major studies of AI in CRC.

In this article, we explore the role of artificial intelligence-based

technique in risk prediction, prognostication and therapy response

assessment in colorectal metastasis.
Role of AI in CRC diagnostics

Colonoscopy

The prognosis of CRC appears to be substantially improved when

detected in its early stages (18). Screening can reduce the mortality

and incidence associated with CRC by facilitating early diagnosis and

treatment (27). In fact, colonoscopy may lead to a 90% risk reduction

for CRC by allowing practitioners to identify suspicious lesions in the

walls of the intestine (28, 29). This is particularly important as most

adenomatous polyps are asymptomatic (29). However, although

colonoscopy is the gold standard for diagnosing neoplastic lesions,

it is accompanied by limitations including adenoma miss rates (AMR)

ranging from 6% to 28% (18, 30). In fact, more than half of CRC cases

which occurred post-colonoscopy arise from lesions that were missed

during prior colonoscopies (31).

The ability to detect lesions during colonoscopy can vary

significantly based on several factors, including operator

performance (29). In addition, polyps which are flat, depressed, or

have a diameter smaller than 10 mm may be harder to detect as

colonoscopy is dependent on clinical experience and relies on the

practitioner’s ability to visually identify the lesion, which is a complex
FIGURE 1

An overview of the applications of artificial intelligence in colorectal cancers. (Top) Input features from multimodal clinical datasets are integrated into
artificial intelligence algorithms (center) that provide key information on the prognostication (left), diagnostics (bottom) and therapeutics (right) of
colorectal cancer. EHR, electronic health record; ANN, artificial neural network; LR, logistic regression; SVM, support vector machine; RF, random forest;
CNN, convolutional neural network; GAN, generative adversarial network; DNN, deep neural network. Created with BioRender.com.
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TABLE 1 Summary of major studies of AI in CRC.

Section Ref Year(s) Type of
study N Modalities Major findings

Colonoscopy
Hassan et al.
(11)

2019-2020
Systematic
review and
meta-analysis

5 RCTs
(4354
patients)

CADe
Pooled ADR and APC were significantly higher in the
CADe group than in the control.

Colonoscopy
Huang et al.
(12)

2019-2021
Systematic
review and
meta-analysis

10 RCTs
(6629
patients)

CADe, ENDOANGEL (13),
AQCS (14)

ADR and PDR were significantly higher in AI-guided
groups over routine colonoscopy.

Histopathology Lui et al. (15) 2010-2019
Systematic
review and
meta-analysis

18 studies
(7680
images)

Region growing algorithm,
Computer-based algorithm,
SVM, Retrieval-based software
classification, WavSTAT4, CNN
model, Gaussian mixture model,
Color intensity analysis software,
Endobrain

Histology prediction of diminutive polyps had a
pooled AUC of 0.98. There was no significant
difference between AI and expert endoscopists in
accuracy on polyp histology prediction, but AI was
significantly better than nonexpert endoscopists.

Histopathology
Thakur et al.
(16)

2015-2020
Systematic
review

30 studies
with 40
models

AlexNet, ResNet, CNN, VGG,
RNN, DCRN, R2U-Net, FCN,
LSM, LSTM

Studies analyzed gland segmentation, tumor
classification, tumor microenvironment
characterization, and prognosis prediction with
promising results but datasets had relatively limited
scale for clinical application.

Histopathology
Davri et al.
(17)

2016-2022
Systematic
Review

82 studies
CNNs and GANs with various
customizations

17 studies examined diagnosis, 17 on classifying
tumor tissues, 19 on investigating tumor
microenvironment, 14 on prognosis, metastasis, and
survival from histological features, and 10 on
microsatellite instability status.

Blood Testing
Ginghina
et al. (18)

2022 Review
323
references

Various deep learning and
machine learning algorithms

Various applications of AI and liquid biopsy in CRC
are discussed.

Imaging
Nazarian
et al. (19)

2003-2020
Systematic
review and
meta-analysis

48 studies

SVM, shape-UCM, CAD,
EndoBRAIN, SfM, CNN, DNN,
segmentation algorithm,
DeepLab framework, ResNet,
CWC, and others

Majority of studies that focused on polyp
characterization had sensitivities, specificities, and
accuracies above 82%. AI had significantly greater
pooled ADR and PDR compared to colonoscopy.

Metastasis
Detection

Bedrikovetski
et al. (20)

2016-2020
Systematic
review and
meta-analysis

17 studies
(12 in
meta-
analysis)

Radiomics and Deep Learning
methodologies

Diagnostic accuracy for lymph node metastasis
detection on pre-operative staging imaging was
analyzed with per-patient AUC of 0.81 and 0.92 in
radiomics and deep learning models for rectal cancer,
which was better than the radiologists (AUC of 0.69).
Both models were also better than the radiologist in
colorectal cance.r

Predicting
Mutation
Type/
Microsatellite
Instability

Park et al.
(21)

2018-2021
Systematic
review

13 studies
Inception-V3, ResNet,
ShuffleNet, MSInet,
InceptionResNetV1

Prediction of microsatellite instability based on tumor
histomorphology was evaluated. In CRC, AI-based
models showed performance with the highest standard
of 0.972, but most studies had on or more high-risk
factors regarding bias.

Prediction of
Survival

Staal et al.
(22)

2007-2020
Systematic
review

76 studies Radiomics
19 studies focused on survival prediction with
heterogenous results. Homogenous tumors were
associated with better survival.

Personalizing
Treatment

Aikemu et al.
(23)

2017-2018
Observational
study

250
patients

Watson for Oncology

The clinical recommendations from Watson for
Oncology were highly matched with the
multidisciplinary team (concordances for colon
cancer, rectal cancer, or overall were 91%).

Primary
Colorectal
Cancer

Wesdorp
et al. (24)

2015-2019
(for
primary
CRC)

Systematic
review

27 studies
for
primary
CRC

Radiomics (machine learning
classifiers like RF, SVM, ANN,
and DNN were often utilized)

Methodology greatly varied. In 16 of the 17 studies
that constructed radiomics-based prediction models
for response to treatment in patients with primary
CRC, there was good discriminative power with AUCs
0.72-0.98.

Metastatic
Colorectal
Cancer

Wesdorp
et al. (24)

2016-2019
(for
metastatic
CRC)

Systematic
review

6 studies
for
metastatic
CRC

Radiomics
Three of five studies that analyzed individual radiomic
features showed good discriminative power with
AUCs 0.74-0.81, while two showed no association.

(Continued)
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and error-prone task (18, 27, 32). Other factors such as the size of the

tumor, its patterns of enhancement, and variability in clinical

symptoms can further add to the complexity of making diagnostic

decisions (28, 33).

AI algorithms have been shown to augment the accuracy of

existing endoscopic screening procedures. For example, computer-

aided detection (CADe) can be used during colonoscopy to increase

adenoma detection rates by highlighting abnormal areas of an image

(18, 32). One systematic review and meta-analysis consisting of five

randomized clinical trials (RCTs) found that adenoma detection rates

(36.6% vs. 25.2%, P < 0.01) and overall polyp detection rate (50.3% vs.

34.6%, P < 0.01) were significantly higher in the CADe group

compared to the control group (11). In another meta-analysis of 10

RCT, adenoma detection rates (35.4% vs. 24.9%, P < 0.001) and polyp

detection rates (48.6% vs 33.8%, P < 0.001) were significantly higher

when compared with routine colonoscopy (12).

During colonoscopy, computer-aided diagnosis (CADx)

algorithms can be used to characterize the region based on the

probability of its malignancy (18, 32). Kambe et al. conducted a

randomized control trial to investigate whether a CADe model could

reduce AMR during colonoscopy (34). Compared to the standard

colonoscopy group which had an AMR of 36.7%, the patients who

received CADe-assisted colonoscopy had a significantly lower AMR

of 13.8% (P < 0.01). Brown et al. investigated AMR, sessile-serrated

lesion (SSL) miss-rate and adenomas per colonoscopy (APC) in

patients who underwent high-definition white light colonoscopy

(HDWL) versus colonoscopy assisted with CADe (35). This

randomized control trial found significant lower AMR (20.1% vs.

31.3%, P = 0.025), lower SSL miss-rate (7.1% vs. 42.1%, P = 0.048),

and higher first-pass APC (1.19 vs. 0.90, P = 0.03) in the CADe group

compared to the HDWL group. Interestingly, another randomized

control trial found that CADe-assisted colonoscopy significantly

increased adenoma detection rate compared to the control group

(53.3% vs. 44.5%, P < 0.01) (36). Other programs such as supervised

learning (SL) algorithms can predict clinical outcomes after being

trained using pre-labeled endoscopic images (18). In addition, various

algorithms using convolutional neural networks have also been used

for tumor identification, and the emergence of AI-based computed
Frontiers in Oncology 04
tomography (CT) colonography has further enabled the detection of

flat neoplasms with greater accuracy (27).

Many polyps are missed during current practice, and they may

present as precursors to CRC (37). Deep learning (DL) algorithms can

enhance adenoma detection due to its ability to efficiently detect

premalignant polyps (18). Such detection begins with adequate bowel

preparation before colonoscopy, which is a pertinent step for the

visualization of premalignant polyps. A recent study found that a

novel AI based CNN model have a higher Boston bowel preparation

scale and, therefore, higher quality of bowel preparation for detecting

polyps compared to current routine practice (38). Polyp detection and

localization systems that operate in real time are extremely useful in

clinical practice and as of 2022 there has been 20 out of 43 studies

with the ability to operate as such (39). Wang et al. were the first to

perform a prospective research trial with polyp detection pipelines

and had a frame-based evaluation (F1) of 0.91 (40). Recently a large

database composed of 28,576 images were modeled into a DL pre-

trained YOLOv3 (You Only Look Once) network for real time

adenoma detection. The pipeline had an (F1 ) of 0.88 and a

sensitivity reaching 90% for detecting and localizing polyps.

Additionally Li K. et al. created a large CNN model for both polyp

detection and classification, and had a sensitivity reaching 91% and

70%, respectively (41). Ozawa et al. used over 27,000 endoscopic

images to design a CNN algorithm that can detect and classify polyps

with a detection sensitivity of 0.92 and a classification sensitivity of

0.83 (42). Another CNN algorithm designed by Akbari et al. can

perform polyp segmentation and produce an accurate probability

map with a 99.3% sensitivity (43). A faster region-based CNN (Faster

R-CNN) combined with a single shot multibox detector (SSD) was

also used to detect polyps with a precision 0.8154 (44). Similarly,

Godkhindi et al. used 825 CT images to develop a CNN algorithm for

polyp detection (45). The resulting model could detect polyps with an

accuracy of 0.87. In addition, RetinaNet can automatically localize

polyps with a precision of 0.537 using a CNN-based algorithm (46).

Moreover, as shown in the Medical Image Computer and Computer

Assisted Intervention (MICCAI) 2015 Endoscopic Vision Challenge,

the methods utilizing AI outperformed those that relied on manually

extracted features (47) These AI-based algorithms have proven to be
TABLE 1 Continued

Section Ref Year(s) Type of
study N Modalities Major findings

Metastatic
Colorectal
Cancer

Russo et al.
(25)

2007-2022
Systematic
review and
meta-analysis

26 studies
(10 studies
in meta-
analysis)

Radiomics using various
machine learning models

AI-based methods to predict response to
chemotherapy alone or with targeted therapy in
patients with metastatic CRC was analyzed. Overall
weighted means of the AUCs were 0.90 and 0.83 in
the training and validation sets.

CRC Surgery
Anteby et al.
(26)

2016-2020
Systematic
review and
meta-analysis

32 studies
(4 studies
in meta-
analysis).
3004
videos

BN-GoogLeNet, Mask Regional
CNN, ResNet, Faster R-NN,
Attention-guided Network,
AlexNet, YOLOv3, 3D CNN,
Inception-ResNet, Spatio-
tempora-Net, Caffle framework

Various applications of AI in CRC surgery—
instrument recognition and detection, phase
recognition, anatomy recognition and detection,
action recognition, surgery time prediction, and gauze
recognition. Pooled sensitivity of 0.93 and specificity
of 0.96 in meta-analysis.
RCT, Randomized controlled trial; CADe, Computer-aided polyp detection; ADR, adenoma detection rate; APC, adenoma per colonoscopy; AQCS, Automatic quality control system; PDR, polyp
detection rate; CNN, convolutional neural network; SVM, support vector machine; RNN, recurrent neural networks; DCRN, densely connected recurrent convolutional network; R2U-Net, recurrent
residual U-Net; FCN, fully convolutional networks; LSM, locality-sensitive method; LSTM, long short-term memory; GAN, generative adversarial network, CAD, computer-aided diagnosis; SfM,
structure from motion; DNN, deep neural network; CWC, color wavelet covariance; RF, random forest; ANN, artificial neural network.
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more advantageous than traditional radiomics methods that may be

susceptible to errors as they rely on tumor segmentation and

subsequent identification of clinically pertinent radiomic features.

That said, its apparent that incorporating AI into routine

colonoscopy can decrease adenoma miss rates (AMR) through

better detection, identification, and localization of the tumors,

especially small ones <10mm, which has achieved a 50% reduction

in a recent multicenter, multicounty study (31). This shows that AI-

driven colonoscope approaches has important future implications on

CRC screening moving toward better risk stratification,

prognostication, and improvement of patient outcomes. However,

further research is still needed in this area, especially to see if such

improvements in adenoma recognition is not as same as a better

mucosa exposure for adenoma detection.
Histopathology

Histopathological characterization is often the last step in the

diagnosis of CRC and is based on the texture, structure, and

morphological features of the tissue (48). Precise tumor

classification is vital for prognostication and is particularly

important as even experienced pathologists may often disagree on

the grading of tissue (49). AI applications may be useful in this step by

preventing diagnostic inconsistency and improving inter- and intra-

observer variability. One application of a hybrid deep learning (hDL)

algorithm was used to distinguish low-grade CRC from high-grade

CRC lesions with an accuracy of 99.1% (48). Moreover, a DL

algorithm was used to automatically classify tissues without the

need for segmentation (49). This model was able to differentiate

between normal mucosa, hyperplastic polyps, adenoma, and

adenocarcinoma with an accuracy of 80% (49). Another DL

algorithm used ResNet to classify colorectal polyps on whole slide

images (50). This program was shown to differentiate between

hyperplastic polyps, sessile serrated polyps, traditional serrated

adenoma, tubular adenoma, and villous adenoma with an accuracy

of 93%. One meta-analysis found that AI could improve histology

prediction, including those involving diminutive polyps, with a

pooled specificity of 89.8% and sensitivity of 92.3% (15). In another

systematic review focused on CRC pathology image analysis using

artificial intelligence found that while applications were still in early

stages, the results were still promising with respect to accurately

diagnosing CRC (16). Furthermore, in another systematic review

focused on the use of deep learning for the diagnosis of CRC via

histopathological images found that various studies have promise in

aiding the diagnosis, predicting relevant molecular features,

identifying prognostic features with correlations to metastasis, and

assessing tumor microenvironments (17).

CNN-based algorithms can also enable precise image

classification; in fact, these algorithms have been shown to more

accurately classify colorectal tumors when compared to endoscopists

(51). Iizuka et al. used a CNN-based algorithm to automatically

classify tissues as non-neoplastic, adenoma, or adenocarcinoma

(52). Using annotated whole slide images, a CNN program was

trained by a max-pooling method and a recurrent neural network

(RNN). The resulting program could differentiate the tissues with an

AUC of 0.96 for adenocarcinoma and 0.99 for adenoma.
Frontiers in Oncology 05
Moreover, SL algorithms can be applied to support vector

machines (SVMs) for the grading of unlabeled biopsies. One SVM

algorithm was employed by Takemura et al. to discriminate neoplastic

from nonneoplastic lesions with a high predictive power and

detection accuracy of 97.8% (53). CADx algorithms can also be

used to differentiate neoplastic from non-neoplastic polyps. Tamai

et al. utilized a CADx algorithm in conjunction with narrow-band

imaging (NBI) to accurately classify and differentiate between

hyperplastic lesions, adenocarcinomas, and submucosal lesions (54).

Similarly, Chen et al. used neural networks (NNET) to detect

hyperplastic and neoplastic polyps that are smaller than 5 mm with

96.3% sensitivity (55).

In conclusion, several AI based algorithms has shown promise on

accurate histopathologic diagnosis with some showing high

performance on pathologic image analysis (56). These new

techniques can ease the identification of cancer status in an

accurate manner, which can eventually revolutionize the prediction

performance in a way that may exceed the accuracy of

pathologist analysis.
Blood testing

CRC can also be detected using noninvasive procedures including

blood testing. These procedures may be advantageous over

endoscopic procedures such as colonoscopy which requires bowel

preparation, carries a risk of bowel rupture, and is not indicated in

patients with peritoneal irritation and anorectal stenosis (57). Pan

et al., evaluated the predictive value of serum glycomic profiling in

tandem with AI algorithms to identify advanced colorectal adenomas

(57). In this study, the biomarkers of interest were multi-antennary

N-glycans and core-fucosylated N-glycans, which were positively and

negatively correlated with CRC stage, respectively. Subsequently, an

algorithm which utilized random forests, logistic model trees (LMT),

and SVM programs was employed to identify those patients who were

at an advanced stage of CRC with an accuracy of 75%.

Moreover, Ivancic et al. investigated various serum protein

biomarkers to identify those that were indicative of CRC (58).

Using machine learning and SVM algorithms, it was shown that

five biomarkers were strongly predictive of CRC, including

superoxide dismutase 3, leucine-rich alpha-2-glycoprotein 1, inter-

alpha- trypsin inhibitor heavy-chain family member 4, hemopexin,

and epidermal growth factor receptor, with a specificity of 70% and a

sensitivity of 89%. In one study, an AI learning algorithm

(ColonFlag™) was used in patients with iron deficiency anemia

who underwent a fecal immunochemical test. The study found that

the AI learning algorithm may improve the prioritization of urgent

referral as it was able to reduce the prioritization of patients from 592,

who were referred based on their hemoglobin concentration, to 304

(59). A recent review summarizes various studies that utilize liquid

biopsy and AI in CRC in order to detect signatures of colorectal

malignancies and aid in stratification (18).

With such advancement in AI-based blood testing to diagnose

CRC, it becomes clear that the future holds promise toward fewer

procedural screening to accurately diagnose and identify high risk

CRC, which can become an efficient alternative method to decrease

procedural complications and improve patient flow.
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Imaging

Molecular imaging can be crucial in the practitioners’ ability to

make effective decisions regarding the detection, diagnosis, and

staging of colorectal tumors, in addition to predicting response to

therapy (60). Existing molecular imaging techniques can be improved

with the use of AI algorithms. For instance, feature-detection

algorithms used in conjunction with magnifying chromoendoscopy

has been shown to improve the discernment of neoplastic from non-

neoplastic lesions (18). In addition, SVMs can be applied to

endocytoscopy procedures to improve the discrimination of

between benign lesions and neoplastic carcinomas (18). A

systematic review and meta-analysis found that AI could improve

the characterization of polyps after detection, with a sensitivity of 92%

and accuracy of 87% (19).

AI algorithms can use confocal laser endomicroscopy (CLE) to

augment the detection of polyps (61). CLE is a useful imaging

technique that can identify subcellular features of the gastrointestinal

mucosa due to its high magnifying capabilities (62). One AI model used

the k-nearest neighbor algorithm to discriminate malignant lesions from

benign lesions with 90% accuracy (63). In more recent developments,

Stefanescu et al. used CADx algorithms in conjunction with CLE to more

readily identify morphometric and malignant characteristics of the

mucosa, which can aid in the diagnosis of CRC (61).

For patients that have a higher risk of complications associated

with colonoscopy and those that cannot tolerate sedation, an

alternative method of CRC screening is possible, including colon

capsule endoscopy (CE) (18, 64). Colon CE is a minimally invasive

procedure that allows practitioners to obtain images of the

gastrointestinal lumen. This imaging procedure can also be

augmented using AI algorithms. For instance, CNN algorithms

have been applied to colon CE procedures which has allowed for

the improved identification and localization of polyps with a high

degree of sensitivity and specificity (28).

With further advancement in AI- based imaging modalities, we

anticipate a paradigm shift toward improved image-guided detection

of CRC, leading to fewer procedural interventions and complications.

This can potentially increase patient convenience and medical cost,

while keeping precision medicine intact.
Metastatis detection

Lymph node metastasis (LNM) is the most common method for

the spread of CRC (65). The precise assessment of LNM is vital for

making clinical decisions as it can help establish the most effective

treatment for CRC (66). However, LNM is cumbersome to predict

before surgery, as the current standards for staging such as CT have

an accuracy of 56.5% (67). Other techniques such as magnetic

imaging resonance (MRI) can also be used to determine nodal

staging; however, this also has a low diagnostic accuracy of 63%

and a relatively low sensitivity (65, 67). To this end, current research

shows that AI programs may be used to facilitate treatment decisions

by improving the prediction of LNM. Liu et al. designed a multimodal

multiple instance learning (MMIL) algorithm to predict lymph node

metastasis (67). The MMIL was designed using a two-pronged

approach: first, tumor-specific serum biomarkers (including CEA,
Frontiers in Oncology 06
CA125, CA19-9, and AFP) were inputted into a feed-forward

network. Subsequently, this information was integrated with a

feature extraction tool based on annotated whole slide images of

the tumor microenvironment. The resulting MMIL model could

predict lymph node metastasis with an area-under-the-curve (AUC)

of 0.93, 0.88, 0.81, and 0.86 for stages T1, T2, T3, and T4, respectively.

One systematic review and meta-analysis found that AI could

improve pre-operative staging of lymph nodes and lead to a more

accurate prediction of metastasis compared to traditional radiomics

models (20).

Another algorithm applied five ML models to predict LNM,

including SVM, random forests (RFs), NNET, logistic regression

and extreme gradient boosting (66). The latter two models could

predict LNM with an AUC of 0.87 and 0.90, respectively. Moreover,

both of these algorithms were more effective in predicting LNM when

compared to standard 18F-FDG PET/CT (18F-Fluorodeoxy Glucose

Positron Emission/Computed Tomography) imaging. Ding et al.

utilized a DL algorithm that could target specific features of 414

MRI images to predict metastatic lymph nodes (65). Subsequently, a

faster R-CNN model was applied which resulted in LNM prediction

with an AUC of 0.91.

In addition, AI algorithms can also be used to determine liver

metastasis in CRC, which is a significant contributor to mortality in

these patients. Kiritani et al. applied probe electrospray ionization-

mass spectrometry in combination with ML to identify malignant

spectrum patterns from tissue samples (68). The resulting algorithm

was shown to predict liver metastasis with an accuracy of 99.5%.

Such progressive advancement in AI based metastatic detection

has the potential to make the staging of CRC easily achievable with

high accuracy, leading to a more efficient, personalized, and precise

therapeutic approach. These advancements hold promise to the

patient and the healthcare system as a whole due to a more efficient

diagnostic processes while accurately individualizing patient care.

In conclusion, many AI-based applications holds promise toward

the diagnoses of colorectal cancer through effective polyp detection,

localization, identification, segmentation, and classification, which

can eventually decrease adenoma miss rates and better predict clinical

outcomes. The expansion of such approaches to accurate blood and

histopathologic diagnoses, along with the use of various image-guided

modalities to accurately determine the stage of CRC, has an overall

ability to improve diagnostic variability and can revolutionize the

current prognostication systems for a precise therapeutic approaches

and better patient outcomes.
Cancer genetics: prediction of
mutation type and microsatellite
instability
The carcinogenesis of CRC can be explained by several different

molecular pathways, including the chromosomal instability pathway,

microsatellite instability pathway, and the CpG island methylation

pathway. In particular, microsatellite instability (MSI) is a key

biomarker in CRC and is linked to deficient DNA mismatch repair

(69). This indicator is very useful when making treatment decisions;

for instance, it is used to screen for Lynch syndrome and patients with
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advanced CRC who present MSI are eligible to receive immune

checkpoint blockade therapy (69, 70). MSI status is also useful after

surgery when clinicians are selecting adjuvant chemotherapy. Existing

tests for MSI status rely on methods that are resource-intensive and

not readily available in most treatment facilities, including PCR

analysis of microsatellite markers (69).

Several studies have shown that AI algorithms may be useful in

detecting MSI. For instance, Echle et al. trained deep neural networks

(DNNs) to detect MSI using hematoxylin-eosin (HE) tissue slides

(69). The model could successfully identify MSI status with an AUC

greater than 0.85 in eight out of the nine cohorts tested. Cao et al. used

an integrated AI model—Ensemble Patch Likelihood Aggregation

model (EPLA)—to predict MSI status based on whole slide images

from the Cancer Genome Atlas (TCGA-COAD) cohort and the Asian

CRC cohort (Asian-CRC) (70). An MSI-sensor algorithm assigned

MSI status using paired genome sequencing based on MSI-sensor

scores greater than or equal to 10. Furthermore, distinct microsatellite

loci were analyzed using capillary electrophoresis to classify the

cohort into MSI-high and MSI-low groups. A CNN-based

algorithm—Resnet-18—was used to generate patch-level prediction

of MSI, and the resulting data was inputted into the Patch Likelihood

Histogram (PALHI) pipeline and the Bag of Words (BOW) pipeline.

The combination of both pipelines using ensemble learning allowed

for the prediction of MSI with an AUC of 0.89 in the test cohort.

In addition, AI algorithms can also be used in other genetic

applications; for instance, a CNN model was used to predict tumor

mutational burden-high (TMB-H) with an AUC of 0.93 (71).

Moreover, AI has been shown to detect the presence of the KRAS

proto-oncogene which may be implicated in the pathogenesis of CRC

(72). In fact, 65% of carcinomas in the colon have been linked to

mutations in the RAS family of genes, which includes the KRAS

proto-oncogene (73). Identifying whether a patient has a mutated

KRAS gene may be crucial as some individuals with this mutation

may not be responsive to existing therapies, including anti-EGFR

agents. To this end, one study conducted by Gonzalez-Castro et al.

utilized several ML algorithms including SVM, Grade Boosting

Machines, NNET, and RFs to identify if the KRAS gene is mutated

(72). After extracting textural characteristics from CT images, the

algorithms were able to classify the images as KRAS positive or

negative. It was found that NNET in conjunction with Haralick

texture analysis was most efficient, with an accuracy of 83% and

sensitivity of 88.9%. In a systematic review focused on the prediction

of microsatellite instability based on tumor histomorphology using

AI, the algorithms for CRC had great performance with the highest

standard of 0.972 (21).
Role of AI in CRC prognostication

Prediction of patient survival

Prognostic predictors are valuable tools for treatment decision-

making by helping clinicians choose the most suitable treatment

modality for each patient (74, 75). Survival prediction may be

particularly valuable in early-stage CRC, as it can help clinicians

decide whether adjuvant chemotherapy is suitable or not. Skrede et al.

used CNN algorithms to stratify CRC patients based on survival rate
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to identify those patients who would likely not benefit from adjuvant

chemotherapy versus those patients who would require such

treatment (76). Similarly, another CNN algorithm developed by

Jiang et al. could predict disease recurrence risk and overall survival

for stage III CRC using gradient boosting (74). A CNN algorithm was

also used to predict survival based on stromal microenvironment data

obtained from HE slides (77). The HE slides were categorized into

nine distinct classes, including adipose tissue, background, debris,

lymphocytes, mucus, smooth muscle, normal colonic mucosa, cancer-

associated stroma, and CRC epithelia. Subsequently, the CNN

algorithm was trained, and a deep-stroma score was obtained to

determine overall survival as the primary endpoint, and disease-

specific survival and relapse-free survival as the secondary outpoints.

The resulting model was found to predict these endpoints with a nine-

class accuracy of 94%. Our group has also shown that MRI-based

texture features of intra-tumor heterogeneity were associated with

survival outcomes and improved the performance of standard

clinicopathological variables in predicting survival in 55 patients

stage IV CRC (78). A random forest ML model found an AUC of

0.83 for the standard clinicopathological prognostic variables and 0.94

when imaging-based heterogeneity features were added.

AI algorithms have not only shown to be capable of predicting

survival data, but they may also be able to predict remaining lifespan

for advanced-stage CRC. Wang et al. used the Surveillance,

Epidemiology, and End Results (SEER) database and tree-based

classification to predict whether patients will survive in five years,

along with their estimated remaining months if they are predicted to

die within five years (75). The model was shown to predict survival

with an accuracy of 0.71 and a sensitivity of 0.85. Al-bahrani et al. also

used the SEER database and DNN for survival prognostication of

CRC (79). The DNN algorithm was trained using patient

characteristics including tumor size, age at diagnosis, reason for no

surgery, grade, and diagnostic confirmation. The resulting model

could predict one, two, and five-year survival with an AUC of 0.87.

Finally, Gupta et al. used several ML algorithms including random

forests and SVMs to predict tumor stage and disease-free survival

based on tumor aggression score (80). An accuracy of 84% was

obtained using this model. In one systematic review focused on

radiomics for the prediction of treatment outcome and survival,

Staal et al. found that the literature had heterogenous methods and

included features, but they nonetheless found good performance with

respect to predicting response in rectal cancer in robust studies (22).
Therapeutics: predicting response
to therapy

Personalizing and planning treatment

Planning treatment for colorectal lesions is a multifaceted

approach and involves several therapeutic modalities depending on

TNM staging criteria, and other clinicopathological characteristics

(81, 82). For instance, for patients with stage IV CRC, anti-EGFR,

immunotherapy or anti-VEGF may be selected depending on

mismatch repair and MSI status (74). In other cases, preoperative

neoadjuvant chemoradiotherapy in combination with mesorectal
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excision might be recommended for T3 and T4 node positive tumors,

while T1 and T2 node negative cases may be more suitable for

submucosal excision with no preoperative therapy (67, 81). To this

end, AI can help in disease staging for treatment planning in patient

with CRC. One study conducted by Kim et al. showed that AI could

be used to differentiate T2 and T3 rectal cancers (81). Using 290 MRI

images from 133 patients, a CNN algorithm was developed to

automatically segment and classify tumors as either T2 or T3 with

an accuracy of 94%. More recently, Wu et al. utilized faster region-

based CNNs to create an automatic diagnosis platform for T staging

of rectal cancer via MRI (83). The study found AUC of 1 for T1-T4

stages in the horizontal plane and 0.96, 0.97, 0.97, and 0.97 for T1-T4,

respectively. In addition to T stage, AI is being increasingly used in

lymph node staging for CRC. A recent systematic review and meta-

analysis included 17 studies focused on detecting lymph node

metastasis in CRC that were published from January 2010 to

October 2020 (20). 12 (70.6%) of the studies that met inclusion

criteria utilized radiomics models and 5 (29.4%) used deep learning

models. The analysis found a per-patient AUC of 0.92 for the deep

learning and 0.81 the radiomics models, which were significantly

greater than that of the radiologists 0.69 in rectal cancer. Similar

results were seen in CRC, where the per-patient AUC in the radiomics

model 0.73 was greater than that of the radiologist 0.68. Furthermore,

lymph node metastasis is an important consideration for additional

surgery in T1 CRCs following endoscopic resection. Ichimasa et al.

analyzed 690 patients with T1 CRCs that were surgically resected and

developed an AI model with 45 clinicopathological factors to predict

presence or absence of lymph node metastasis compared to

American, European, and Japanese guidelines (84). The study

found a significantly lower rate of unnecessary additional surgery

attributable to the false positive detection of lymph node metastasis

(AI model: 77% versus 85%, 91%, and 91% in the American (NCCN),

European (ESMO), and Japanese (JSCCR) guidelines, respectively; all

P < 0.001).

Apart from staging, AI can also aid in the treatment decision-

making for CRC via personalized evidence-based consulting through

supporting systems such as IBM’s Watson for Oncology (WFO).

Aikemu et al. evaluated the concordance between treatment

recommendations for 250 patients with CRC from WFO and those

from a multidisciplinary team at a major center (23). The study found

an overall concordance of 91%, and in subgroup analyses, they found

overall concordance rates of 83, 94, and 88% for stages II, III, and IV,

respectively, and 97, 93, 89, 87, and 100% for neoadjuvant, surgery,

adjuvant, first line, and second line treatments, respectively.
Primary colorectal cancer

A recent systematic review analyzed the use of radiomics in

predicting response to treatment for both primary and metastatic

CRC (24). The review included 27 studies in primary CRC 2015-2019.

All of the included studies focused on the response to

chemoradiotherapy. 21 (77.8%) studies obtained radiomic features

from MRI. 26 (96.3%) of these studies evaluated the pathologic

response to treatment with various methods. While 10 studies

evaluated the predictive power of individual radiomic features, most

studies either found multiple radiomic feature that were significantly
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associated with the response to treatment or had developed

combination models that were predictive of the response to

chemoradiotherapy. Interestingly, four of the identified studies were

able to incorporate clinicopathological and/or treatment

characteristics into the pre-treatment radiomic features to generate

prediction models. For instance, Bibault et al. combined clinical and

radiomics features from pretreatment CT scans to create a DNN to

predict the complete response to neoadjuvant chemoradiation in 95

patients with T2-4 N0-1 rectal adenocarcinoma (85). The study found

that the DNN had an 80% accuracy in predicting complete response

and was better than a linear regression model (69.5% accuracy) that

used only TNM stage as a predictor and a SVM model (71.58%

accuracy) utilizing the same features of the DNN. Cusumano et al.

obtained morphological (tumor geometry and shape), statistical

(entropy, skewness, and kurtosis), and fractal (tumor heterogeneity)

features from the gross tumor volume of T2-weighted pre-treatment

MR scans in 198 patients with locally advanced rectal cancer (LARC)

(86). They found that most predictive model had accounted for

clinical T and N stage. Yi et al. developed a radiomics SVM-based

model that incorporated both MRI-based texture analysis and

clinicopathological features to predict response to neoadjuvant

chemoradiotherapy in 134 patients with LARC (87). The study

found that their predictions of pathologic complete response, good-

response, and down-staging had high classification efficiencies with

AUC of 0.91, 0.90, and 0.93, respectively. Liu et al. also developed a

radiomics model that incorporated radiomics signatures and

clinicopathologic risk factors, which showed AUC of 0.98 (88).

More recent efforts have focused on predicting pathologic

complete response to neoadjuvant chemoradiotherapy in LARC in

innovative ways with larger cohorts. Feng et al. utilized a previously

validated radiopathomics model, RAdioPathomics Integrated

prediction System (RAPIDS), that integrated radiomics features

from MR scans and pathomics features from H&E-stained biopsy

slides to predict the pathological complete response in patients with

LARC (89). They found an AUC of 0.87 in their training cohort of 303

patients, an AUC of 0.86 in their validation cohort of 280 patients, an

AUC of 0.81 in another validation cohort of 150 patients, and an AUC

of 0.81 in a prospective cohort of 100 patients. Lou et al. developed an

AI model by utilizing digital pathological images on 842 patients with

LARC and found an AUC of 0.71 in the testing cohort and 0.72 in the

external validation cohort (90).
Metastatic colorectal cancer

A systematic review included six studies in patients with

metastatic colorectal cancer, five of which were focused on

colorectal liver metastases (24). Most of these studies evaluated

response to chemotherapy and radiomic features from CT imaging.

However, only three (60%) of the studies found moderate predictive

power (AUC 0.74-0.81). Ahn et al. utilized baseline CT texture

analysis in 235 patients with colorectal liver metastasis who

underwent chemotherapy using FOLFOX and FOLFIRI (91). They

found that the lower skewness in 2D showed an AUC of 0.80 and a

narrower SD on 3D showed an AUC of 0.79. In contrast, Zhang et al.

used baseline MR texture analysis in 26 patients with 193 colorectal

liver metastasis and found that a higher variance, entropy, contrast,
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and a lower angular second moment, correlation, and inverse

difference moment were associated with response to chemotherapy

with AUCs of 0.60-0.78 (92). In their multivariable logistic regression

analysis, variance and angular second momentum could predict

lesions that responded to therapy from those that did not. Helden

et al. evaluated radiomic features in patients with metastatic CRC who

had pre-treatment 18F-FDG PET/CT scans and underwent first- or

third-line palliative systemic treatment, and they found significant

correlations with clinical outcome and select radiomic features (93).

In a more recent systematic review and meta-analysis, Russo

et al. analyzed the use of AI in predictive models of the response to

cytotoxic chemotherapy alone or combined with targeted therapy in

patients with metastatic CRC in 26 original articles (25). In their

meta-analysis, which included ten articles, they found that the

overall weighted means of the AUC were 0.90 in the training sets

and 0.83 in the validation sets. Additionally, the delta radiomics and

gene signatures were able to accurately identify up to 99% of patients

with metastatic CRC that were responders and up to 100% of

patients who were non-responders.
AI in colorectal cancer surgery

Artificial intelligence has also begun to make an impact in CRC

surgery (94). One application of AI is in phase recognition, which

involves classifying segments of an operation into predetermined

surgical phases. Kitaguchi et al. used CNN-based deep learning for

automatic surgical phase recognition on 71 laparoscopy

sigmoidectomy cases (95). The study found good accuracy of for

the automatic surgical phase recognition (91.9%) and 89.4% and

82.5% for the automatic surgical action recognition of

extracorporeal action (89.4%) and irrigation (82.5%). In another

study, Kitaguchi et al. developed an annotated video dataset of 50

transanal total mesorectal excision procedure, and their deep

learning-based model in automatic surgical step recognition

resulted in an overall accuracy for all classification steps of 93.2%

(96). Moreover, AI has increasing potential for intraoperative

guidance with image-based recognition. Kolbinger et al. recently

trained CNNs to discriminate surgical phases, anatomical

structures, and tissue planes in 57 robot-assisted rectal resection

cases (97). Igaki et al. similarly developed a deep learning-based

model that could detect the areolar tissue area in a total mesorectal

excision plane with a dice coefficient of 0.84 (98). AI has also

allowed for real-time microcirculation analysis of colonic

perfusion status via indocyanine green angiography to predict

anastomotic complications following laparoscopic colorectal

surgery (99). Park et al. analyzed and found significantly greater

accuracy and consistency in their AI model, which predicted risk of

anastomotic complications in patients who underwent laparoscopic

surgery for their CRC and that were based on a self-organizing map

network, than in the conventional quantitative parameter-based

method (99). Mazaki et al. utilized auto-AI model to develop a

model that predicted anastomotic leakage in patients who

underwent curative surgery for CRC, and they found an AUC of

0.77 (100).

AI has allowed for improvements in surgical training in

colorectal surgery. For instance, Kitaguchi et al. generated a 3-D
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CNN to automate surgical skill assessment in 1480 videos from 74

laparoscopic colorectal surgeries (101). The study found that model

was able to automatically classify video clips into screening

categories with a mean accuracy of 75.0% and a standard

deviation of 6.3%.

Finally, AI has been used to predict outcomes and surgical

management of patients with CRC. A recent study by Masum et al.

analyzed 4336 patients who underwent colorectal surgery between

2003 and 2019 and built a prediction model for length of stay,

readmission, and mortality (102). They achieved an accuracy of 83%

with support vector regression algorithms to predict length of stay,

an accuracy of 87.5% with a Bidirectional Long Short-Term

Memory (BI-LSTM) model that predicted readmission, and an

accuracy of 80-96% in their classification predictive modeling

predicted three different CRC mortality measures–overall, 31-,

and 91-days mortality. A meta-analysis focused on using deep

learning networks to analyze videos of laparoscopic procedures

found 32 studies with various applications in instrument

recognition and detection, phase recognition, anatomy recognition

and detection, action recognition, surgery time prediction, and

gauze recognition (26).
Clinical validation, applications,
limitations, and future directions
Several ML models have been clinically validated to a limited extent.

One machine learning-based model successfully predicted the ability to

distinguish patients with metastatic colorectal cancer who showed

increased overall survival and time-to-next treatment benefit with

FOLFOX chemotherapy from those with decreased benefit in clinical

trial cohorts (103). A weakly supervised DL framework that incorporated

three separate CNNs was developed to predict the status of molecular

pathways and mutations, such as MSI, in CRC from histology images

(104). The algorithm was externally validated on the Pathology Artificial

Intelligence Platform challenge cohort, which included 47 slides from

three centers in South Korea (105). Furthermore, several ongoing clinical

trials are currently validating the use of PolyDeep, which is a CADe and

CADx model. PolyDeep Advance 1 (106) aims to explore whether

PolyDeep is more sensitive than blinded endoscopists to detect

colorectal polyps, PolyDeep Advance 2 (107) aims to evaluate whether

Polydeep assisted colonoscopy can reduce the rate of missed adenomas in

the first withdrawal, while PolyDeep Advance 3 (108) aims to see if

Polydeep can improve the adenoma detection rate. In another clinical

trial, a gradient-boosted machine learning model was developed and

validated on participants in the prostate, lung, colorectal and ovarian

cancer screening (PLCO) Trial who were diagnosed with CRC during

follow-up to predict the risk of death within 10 years from diagnosis

(109). Moreover, one DNNmodel developed from 326 histopathological

slides for automated classification of colorectal polypos achieved an

internal accuracy of 93.5% and an accuracy of 87% following external

validation in 24 US-based institutions (110). Similarly, another AI-based

radiopathomics model was developed to predict pathological complete

response to neoadjuvant chemoradiation in LARC, and was verified in

two external, retrospective cohorts and in a multicenter, prospective

observational study (89).
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Although recent strides have been made to validate current AI

models, the application of AI systems into clinical practice still requires

further investigation (111). It is possible that health information

technologies such as AI may be an over-confident approach due to its

potential risks and limitations. In particular, there may be inherent biases

in the data that is used to train the AI models (111). For instance, racial

biases and healthcare inequalities may go unnoticed by AI systems, which

may be due to the underrepresentation of minority groups and lack of

diversity in the training data. In particular, one AI model for MSI

detection had lower performance in a cohort involving a high number of

Ashkenazi Jews due to their elevated proportion of the BRAF mutation

(69). To this end, there may also be overrepresentation of certain groups

and the presence of inter-rater variability in the data-labelling process

(111, 112). For this reason, algorithms must be externally validated in

which outcomes are reproduced in different contexts to ensure the rigor

of the models. Moreover, AI algorithms may not be able to adapt to the

evolving nature of real-world data (111). Discrepancy between the

training data and subsequent data can create data drifts which may

hinder the clinical utility of the algorithm. Other concerns involve ethical

responsibility and accountability in the presence of AI errors. There is

also a lack of structure and standardization regarding the storage and

collection of data (111, 112).

While promising, the use of AI in clinical medicine is still at an early

stage (113). One of the biggest limitations with AI is that models tend to

be limited by the amount and quality of available labeled data for model

development and validation. The generalizability of the models is also

based on the type of data used in training. Large datasets that are

ethnographically diverse will be required to ensure that models can be

applied for decision-making in diverse patient populations. Furthermore,

there is a need to establish ethical guidelines before models can ever be

widely employed to ensure their appropriate use and access (27). Another

issue with the clinical application of AI and ML is the “black box”

problem, in which we are able to see the inputs and outputs of a model,

but not the variables that are used by themodel to generate those outputs.

More efforts are needed to make the algorithms, especially deep learning

algorithms, interpretable to clinicians and to allow streamlining of data

preprocessing (114). Additionally, most of the studies have a

retrospective design, and more evidence on the effectiveness of AI is

needed from multicenter, prospective studies. Finally, standards need to

be established for the required accuracy rates to ensure the safe use and

legality of AI technology. Efforts are needed to ensure that sensitive data

is kept confidential (115). Nonetheless, the potential of AI in medicine,
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and specifically CRC is promising. AI is likely to prove beneficial and be

closely intertwined with the practice of medicine.
Conclusion

In conclusion, the use of AI for CRC is highly promising despite

being in its early stages of development. AI has exceeding potential to

revolutionize the scope of CRC management with substantial

progress already made in diagnostics, prognostication, and

therapeutics during the past decade. While there remains certain

challenges to overcome with regards to the generalizability, validation,

and clinical application of these technologies, future developments

may eventually lead to improved outcomes and to a paradigm shift in

how we care for patients with suspected or diagnosed CRC.
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