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and Ai Lian Liu1*
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Background: To investigate the value of amide proton transfer weighted (APTw)

imaging combined with modified Dixon fat quantification (mDixon-Quant)

imaging in determining the degree of differentiation of cervical squamous

carcinoma (CSC) against histopathologic.

Methods: Magnetic resonance imaging (MRI) data were collected from 52 CSC

patients. According to histopathologic results, patients were divided into the

poorly differentiated group (37 cases) and the well/moderately differentiated

group (15 cases). The APTw value by APTw imaging and the fat fraction (FF) and

transverse relaxation rate R2
� values by mDixon-Quant were independently

measured by two radiologists. Intra-class correlation coefficients (ICCs) were

used to test the consistency of APTw, FF, and R2
� values measured by the two

observers. The Mann-Whitney U test was used to analyze the difference in each

parameter between the two groups. Logistic regression analysis was used to assess

the association between the degree of differentiation on histopathology and

imaging parameters by APTw and mDixon Quant. The ROC curve was used to

evaluate the diagnostic efficacy of various parameters and their combination in

distinguishing the degree of CSC differentiation on histopathology. The DeLong

test was used to access the differences among the area under the ROC curves

(AUCs). The Pearson correlation coefficient was used to evaluate the correlation

between APTw and mDixon-Quant imaging parameters.

Results: The APTwmeans were 2.95 ± 0.78% and 2.05 (1.85, 2.65)% in the poorly and

well/moderately differentiated groups, respectively. The R2
� values were 26.62 (21.99,

33.31)/s and 22.93 ± 6.09/s in the poorly and well/moderately differentiated groups,

respectively (P < 0.05). The AUCs of APTw, R2
�, and their combination were 0.762,

0.686, and 0.843, respectively. The Delong test suggested statistical significance

between R2
� and the combination of APTw and R2

�. R2
� values showed a significant

correlation with APTw values in the poorly differentiated group.
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Abbreviations: APTw, amide proton transfer weighted; m

Dixon fat quantification; CSC, cervical squamous carci

resonance imaging; ICC, intra-class correlation coeffi

operating characteristic; AUC, area under the ROC curv

imaging; ROI, region of interest.
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Conclusions: APTw combined with mDixon-Quant can be used to efficiently

distinguish the differention degrees of CSC diagnosed on histopathology.
KEYWORDS

magnetic resonance imaging, amide proton transfer weighted, modified Dixon-Quant,
transverse relaxation rate, cervical squamous carcinoma
1 Introduction

Cervical cancer is a malignant tumor that threatens the health and

life of women worldwide. According to the global cancer data in 2018,

cervical cancer ranks fourth in the incidence and mortality of female

patients with malignant tumors (1). Cervical squamous carcinoma

(CSC) is a common pathologic type of cervical tumors. The degree of

tumor differentiation is a prognostic factor of CSC, especially during

the early stages of the disease. The higher the pathologic tumor grade,

the worse the degree of differentiation, the easier for the tumor to

locally invade and form distant metastases, the higher the recurrence

rate, the worse the prognosis, and the lower the survival rate (2–5).

Histopathologic tumor types, the degree of tumor differentiation, and

the stages of cervical cancer are key factors when choosing a treatment

plan and assessing prognosis. Therefore, accurately determining the

degree of cervical cancer differentiation on histopathology is critical.

Cervical biopsy is a common diagnostic method for cervical

cancer, but it is an invasive method and not suitable for patients

with cervical or vaginal stenosis. Besides, the accuracy of cervical

biopsy can be affected by human factors, such as sample size, location

of sampling, etc. MRI, as a noninvasive examination method, plays an

important role in evaluation of the staging and degree of

differentiation of cervical cancer. The modified Dixon fat

quantification (mDixon-Quant) technique is a water-fat separation

technology that enables semutaneous mapping of proton density fat

fraction and transverse relaxation rate R2
� = 1/ T2

� (6), thus reflecting

the fat contents and iron deposition in tissues. mDixon-Quant has

been used to diagnose spinal lesions (7), detect liver lesions (8, 9),

measure testicular and epididymal fat content (10), and quantitatively

analyze muscle fat content (11).

Amide proton transfer weighted (APTw) imaging is a subtype of

chemical exchange saturation transfer imaging, which use off-

resonance saturation pulses to detect free protein and polypeptide

molecules in cell cytoplasm without using an exogenous contrast

agent (12). It has been widely explored for clinical applications, such

as evaluating glioma grades (13), diagnosing and estimating the

severity of Parkinson’s disease (14), differentiating benign and

malignant tumors of the head and neck (15) and breast (16),

diagnosing prostate cancer and performing risk assessments (17),
Dixon-Quant, modified

noma; MRI, magnetic

cient; ROC, receiver

e; T2WI, T2 weighted

02
evaluating the prognostic factors of rectal adenocarcinoma (18), and

predicting the histologic grade of hepatocellular carcinoma (19).

To the best of our knowledge, the use of quantitative APTw and

mDixon-Quant imaging to evaluate the degree of CSC differention

compared with histopathology has not been reported. This study

explored the value of APTw and mDixon-Quant in evaluating the

degree of CSC differention and thus provides valuable information for

preoperative diagnoses and treatments.
2 Materials and methods

2.1 Study population

The patients with cervical cancer who underwent MRI

examinations from May 2019 to February 2022 were retrospectively

identified from the database. We included patients who meet the

criteria of 1) a tumor size > 1 cm in diameter; 2) had not received

radiotherapy, chemotherapy, or any other treatment. Pelvic 3.0T MRI

examinations were performed before the surgeries. The exclusion

criteria were 1) incomplete pathologic information or lack of grading-

related information, and 2) poor image quality. Finally, 52 cases of

CSC were included in this study, which was divided into a poorly

differentiated group (37 cases) and a well/moderately differentiated

group (15 cases) based on the pathologic results. The CSC patients in

current study were commonly associated with abnormal vaginal

bleeding, while the clinical manifestations in patients with poorly

differentiated and well/moderately tumors were similar (Table 1).
2.2 Imaging protocol

MR scans, including T2 weighted imaging (T2WI), APTw, and

mDixon-Quant, were performed on a 3.0T MRI scanner (Ingenia CX,

Philips Healthcare, Best, the Netherlands) equipped with a 32-

channel abdominal coil. MR scan parameters are listed in Table 2.

APTw imaging used a 3D fast spin-echo sequence. Signals were

acquired with the radiofrequency saturation pulses applied at

frequencies of ±2.7, ± 3.5, and ±4.3 ppm using the B1 intensity

(rms) of 2 mT and a duration of 2 seconds for fitting of the Z-spectrum

(with the water frequency definited as 0 ppm). The reference scan is

obtained by setting the saturation frequency to -1540 ppm. The data

from three different echo times were collected at the saturation

frequency of +3.5 ppm to generate the B0 map for the B0

correction of the Z-spectrum in each image voxel. The APTw value

was obtained by calculating the asymmetry of the traditional
frontiersin.org
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magnetization transfer effect at 3.5 ppm on both sides of the water

signal (20).

mDixon-Quant uses a 3D gradient echo sequence. In this study, it

measured images at the 6 echo times (TEs) of 1.11, 1.81, 2.61, 3.41,

4.21, and 5.01 ms, respectively. The post-processing of both APTw

and mDixon-Quant imaging was performed on the MR console after

data collection. After phase correction, accurate fat quantification was

achieved with a seven-peak spectral fat model that enabled T2*
corrections (21). The proton density fat fraction (FF) map was

computed as the ratio of the fat signal over the sum of fat and

water signals.
2.3 Image processing and data analysis

Images were uploaded to the IntelliSpace Portal (ISP v9.0, Philips

Healthcare) workstation for quantitative measurements. Regions of

interest (ROIs) were drawn independently by two radiologists (both

with 10 years of diagnostic experience in abdominal radiology), who

were blinded to the clinical information and histopathologic results.

The ROIs of lesions on the APTw images were delineated on the slice

showing the largest lesion diameter with reference to the T2WI images

(Figure 1). The ROIs aimed to encompass the entire tumor, excluding

regions such as cystic changes, hemorrhage, necrotic areas, and tumor

boundaries to avoid partial volume effects. ROIs of the mDixon-

Quant images were drawn to match as closely as possible the position

of the lesion drawn on the APTw images.
2.4 Statistical analysis

All statistical analyses were conducted with SPSS 26.0 software

unless otherwise specified. Intra-class correlation coefficients (ICCs)
Frontiers in Oncology 03
were used to test the consistency of the APTw, FF, and R2
� values

determined by the two observers. The ICC < 0.40; 0.40 ≤ ICC < 0.75;

and ICC ≥0.75 were regarded as poor, medium, and good consistency,

respectively. Mean values by the two observers were used for

subsequent statistical analysis. Continuous variables were compared

between the poorly differentiated and well/moderately differentiated

groups with the independent samples t test or Mann-Whitney U test,

and categorical variables were compared with the chi-square test or

Fisher’s exact test. Kolmogorov Smirnov test was used to test the

normality of the continuous variables. Logistic regression was used to

assess the association between the degree of differentiation on

histopathology specimens and imaging parameters by APTw and

mDixon-Quant. The receiver operator characteristic (ROC) curve was

used to evaluate the diagnostic efficacy of different parameters. From

the ROC curves, the area under the curve (AUC), threshold,

sensitivity and specificity were obtained. The difference in AUCs

between models was detected with the Delong test using

MedCalcv15.2.2 software (MedCalc Software, Ostend, Belgium).

The Pearson correlation coefficient was used to evaluate

correlations between the APTw and mDixon-Quant parameters. A

P-value < 0.05 was considered statistically significant.
3 Results

3.1 Comparison of the clinical data between
the poorly differentiated and well/
moderately differentiated groups

Age, menopause status, and vaginal bleeding of the patients in the

poorly differentiated and well/moderately differentiated groups are

persented in Table 1. There was no significant difference in clinical

indices between the two groups (P > 0.05).
TABLE 2 T2WI, APTw, and mDixon-Quant scan parameters.

TA
(min/sec) NSA TR (ms) FOV (mm2) Pixel size (mm2) Slice thickness/gap (mm)

T2WI 59s 1 3672/95 240×240 0.7×0.7 4.0/1.0

APTw 4 min 45s 1 5174/7.8 130×130 2.0×2.0 7.0/0.0

mDixon-Quant 15s 1 6 375×375 2.3×1.8 5.0/-2.5
TA, acquisition time; NSA, number of signal averages; TR, repetition time; FOV, field of view; T2WI, T2 weighted imaging; APTw, amide proton transfer weighted.
TABLE 1 Comparison of clinical data of patients in the poorly differentiated and well/moderately differentiated groups.

Poorly differentiated group (n=37) Well/moderately differentiated group (n=15) t/c2 values P-value

Age (yr) 53.9 ± 11.1 55.2 ± 7.0 -0.488* 0.629

Menopause status
pre 14 (37.8%) 4 (26.7%)

0.588 0.443
post 23 (62.2%) 11 (73.3%)

Vaginal bleeding
with 27 (73.0%) 10 (66.7%)

0.207 0.907
without 10 (27.0%) 5 (33.3%)
fron
*: t values.
tiersin.org

https://doi.org/10.3389/fonc.2023.1105867
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Meng et al. 10.3389/fonc.2023.1105867
3.2 Data consistency between the
two observers

The intra-class agreements between the two observers were good for

the APTw, FF, and R2
� values in both groups (all ICC ≥ 0.75, Table 3).
3.3 Comparison of parameters between the
two groups

The APTw and R2
� values of the poorly differentiated group were

significantly higher than those of the well/moderately differentiated

group (P < 0.05, Table 4). There were no statistically significant

difference in FF measurements between the two groups (P > 0.05).

Representative images from a patient in the poorly differentiated

group and one in the well/moderately differentiated group are

presented in Figure 1.
3.4 Diagnostic performance of each
parameter and their combination for
diagnostic efficacy

The APTw and R2
� values with significant difference between the

two histopathologic groups were included in the ROC test (Table 5).
Frontiers in Oncology 04
The AUCs of APTw and R2
� values for diagnosis of poorly and well/

moderately differenciation of CSC were 0.762 and 0.686, respectively.

The combined R2
� value signifcantly improve the diagnostic

performance (AUC = 0.843). The result of the Delong test

suggested a statistical significance between AUCs by R2
� and

combined APTw + R2
� values (Table 6).

R2
� values were significantly correlated with APTw values in the

poorly differentiated group (P<0.05) (Table 7).
4 Discussion

APTw and mDixon-Quant imaging were evaluated in this study

for discrimination of the differention degree of CSC by

histopathology. The APTw and R2
� values of the poorly

differentiated group were significantly higher than those of the well/

moderately differentiated group. And the combination of APTw and

R2
� values showed a high diagnostic efficacy in discrimination of CSC

with different differention degrees.

A previous study on cervical cancer showed that moderately and

poorly differentiated tumors were more common than well-

differentiated tumors (22). In this study, the sample size of the

poorly differentiated group was also much larger than that of the

well/moderately differentiated group. The treatment scheme of CSC is

highly based on the degree of histopathologic differentiation.
TABLE 3 APTw, FF, and R�
2 measurement consistency between two observers.

Observer 1 Observer 2 ICC

APTw (%)
poorly differentiated group 2.95 ± 0.79 2.94 ± 0.80 0.959

well/moderately differentiated group 2.10(1.80, 2.70) 2.20(1.70, 2.40) 0.963

FF (%)
poorly differentiated group 2.17(1.17, 3.38) 2.32 ± 1.20 0.899

well/moderately differentiated group 2.42 ± 0.84 2.32 ± 0.88 0.813

R2
� (/s)

poorly differentiated group 28.09 ± 7.90 27.25 ± 6.99 0.921

well/moderately differentiated group 22.13 ± 5.81 23.72 ± 6.73 0.936
frontier
ICC, intraclass correlation coeifficient; APTw, amide proton transfer weighted imaging; FF, fat fraction.
FIGURE 1

(A-D) A 62-year-old patient with a poorly differentiated cervical squamous carcinoma (CSC): (A) T2WI image, (B) fused APTw and T2WI image with the
APTw value for the lesion of 2.45%; (C, D) FF and R�

2 images with FF and R�
2 values for the lesion of 2.69% and 19.62/s, respectively; (E-H) A 56-year-old

patient with well/moderately differentiated CSC: (E) T2WI image; (F) fused APTw and T2WI image with an APTw value for the lesion of 2.05%; (G, H) The
FF and R�

2 images with FF and R�
2 values for the lesion of 1.04% and 19.51/s, respectively.
sin.org
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Compared with well-differentiated CSC, poorly differentiated CSC

has a poorer prognosis and shorter survival time. In a study by

McCluggage et al, the total survival time of patients with well,

moderately, and poorly differentiated CSC was 143.4 months, 124.2

months, and 86.1 months, respectively (23).
Frontiers in Oncology 05
Early cervical cancer is primarily asymptomatic and may be

accompanied by watery vaginal secretions, post-coital bleeding, or

intermittent punctate bleeding. Usually, these early symptoms are not

noticed by patients, and the disease often becomes more serious with

delays in treatment. In our study, older postmenopausal patients with

abnormal vaginal bleeding were common; however, the clinical

manifestations of patients in the poorly differentiated and well/

moderately differentiated CSC groups were similar.

The R2
� value can be non-invasively determined by the mDixon

Quant with elimination of the interference from fat signals. Iḋilman

et al. (24) evaluated iron concentrations with R�
2 values in fat-rich

organs, such as the liver, pancreas, and bone marrow, and found that

the iron content in organs was underestimated without fat

suppression and significantly improved after fat suppression. In this

study, the R2
� values of poorly differentiated tumors were significantly

higher than those of the well/moderately differentiated tumors. As we

know, R2
� is sensitive to local magnetic field inhomogeneity (25).

When the paramagnetic material of blood metabolites including

deoxyhemoglobin and hemosiderin produce local inhomogeneous

magnetic field, the R2
� value increases (26). In cervical cancer, the

growth and metabolism in poorly differentiated tumor cells can be

more vigorous and tissue oxygen consumption increases, resulting in

a state of hypoxia and a need for more nutrients, such as sugar,

protein, and oxygen (27). An increase in the concentration of

paramagnetic material ensues with an increase in the R2
� value.

The results of this study showed that the APTw values of poorly

differentiated CSC were significantly higher than those of well/

moderately differentiated CSC. Liu et al. showed that tumor cell

densities and tumor pathologic grades positively correlated in patients

with uterine cervical cancer (28). In our study, the poorly

differentiated CSC were commonly with a higher degree of

malignancy compared with well/moderately differentiated CSC.

Therefore, poorly differentiated CSC cells should have more active

proliferation and higher cell densities than well/moderately

differentiated CSC cells, allowing additional free proteins and

polypeptides to be synthesized. APTw signal reflects free protein

and polypeptide concentrations in tissues, and can be affected by the

heterogeneity and composition of tumors (16). Thus, APTw values in

poorly differentiated cancer types are higher than those in well/

moderately differentiated cancer types, as has been reported

previously (29–31).

Combination of APTw and R2
� image analysis can provide

information about cell proliferation by measuring the changes in protein

concentrations and iron content in tumor microenvironments, and thus

showed improved diagnosis between poorly and well/moderately CSC.

APTw and R2
� values were significantly correlated in poorly differentiated

CSC cases but not in the well/moderately differentiated CSC cases. These

observations need verification with research on larger samples.

This study has some limitations. First, the sample size is relatively

small, and thus the well- and moderately- differentiated CSC were

combined into one group. As a result, the difference between the two

degrees of differentiation were not fully compared. Also limited by

sample size, microsatellite instability and other immunohistochemical

indexes have not been studied in detail. Further studies with increased

sample sizes are expected to exploit the capacity of APTw to
TABLE 5 Diagnostic efficacy of each parameter.

AUC Sensitivity
(%)

Specificity
(%)

Threshold
value

APTw 0.762 81.1 73.3 2.25%

R2
� 0.686 51.4 80 26.53(/s)

APTw + R�
2 0.843 67.6 93.3 —
AUC, area under the curve; APTw, amide proton transfer weighted imaging; APTw + R2
�, APTw

combined with R2
�:
TABLE 4 Comparison of APTw and mDixon-Quant parameters between
the two groups.

poorly
differentiated
group (n=37)

well/moderately
differentiated
group (n=15)

z
values

P
value

APTw
(%)

2.95 ± 0.78 2.05 (1.85, 2.65) -2.940 0.003

FF (%) 2.13 (1.32, 3.09) 2.37 ± 0.79 -0.495 0.621

R2
� (/s) 26.62 (21.99, 33.31) 22.93 ± 6.09 -2.090 0.037
APTw, amide proton transfer weighted imaging; FF, fat fraction.
TABLE 6 Receiver operating characteristic curve paired with the Delong test.

Z-values P-values

APTw vs. R2
� 0.629 0.5294

APTw vs. APTw + R2
� 1.189 0.2345

R2
� vs. APTw + R2

� 2.284 0.0224
APTw, amide proton transfer weighted imaging; APTw + R2
�, APTw combined with R2

�:
TABLE 7 Correlations between the APTw and mDixon-Quant parameters.

Poorly differentiated
group

Well/moderately differentiated
group

APTw APTw

r values P-values r values P-values

FF 0.089 0.599 0.074 0.793

R2
* -0.394 0.016 -0.188 0.503
FF, fat fraction; APTw, amide proton transfer weighted imaging.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1105867
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Meng et al. 10.3389/fonc.2023.1105867
differentiate other prognostic factors and predict cervical

cancer prognosis.
5 Conclusions

APTw and mDixon-Quant imaging were investegated for clinical

non-invasive evaluation of CSC differentiation. APTw combined with

R�
2 values showed a high efficacy in discriminating poorly from well/

moderately differentiated CSC, and may help the treatment design

and prognosis prediction of CSC.
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