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Conditional autoencoder
pre-training and optimization
algorithms for personalized care of
hemophiliac patients

Cédric Buche1,2*, François Lasson1 and Sébastien Kerdelo1

1ENIB, Brest, France, 2IRL 2010, CNRS, Adelaide, SA, Australia

This paper presents the use of deep conditional autoencoder to predict the

e�ect of treatments for patients su�ering from hemophiliac disorders. Conditional

autoencoder is a semi-supervised model that learns an abstract representation

of the data and provides conditional reconstruction capabilities. Such models are

suited to problems with limited and/or partially observable data, common situation

for data in medicine. Deep conditional autoencoders allow the representation of

highly non-linear functions which makes them promising candidates. However,

the optimization of parameters and hyperparameters is particularly complex. For

parameter optimization, the classical approach of random initialization of weight

matrices works well in the case of simple architectures, but is not feasible for deep

architectures. For hyperparameter optimization of deep architectures, the classical

cross-validation method is costly. In this article, we propose solutions using a

conditional pre-training algorithm and incremental optimization strategies. Such

solutions reduce the variance of the estimation process and enhances convergence

of the learning algorithm.Our proposal is applied for personalized care of hemophiliac

patients. Results show better performances than generative adversarial networks

(baseline) and highlight the benefits of your contribution to predict the e�ect of

treatments for patients.

KEYWORDS

deep learning, autoencoder, incremental optimization, conditional pre-training, global

assays, hemophilia

1. Introduction

Medical errors are the third most common cause of death in the USA (Makary and Daniel,

2016). From an economic point of view, the annual international cost of these accidents is

estimated to be 42 billion dollars (Harkanen et al., 2019). In view of these statistics, the

World Health Organization advocates the development of measures to improve clinical decision

making (Sheikh et al., 2017). The aim is to reduce such errors through the use of systems to assist

in the individualization of therapies (Kawamoto et al., 2005). One method for individualization

is to analyze the content of the patient’s biological sample. In this way, biologists have sought to

identify discriminating characteristics from biological results. However, although this approach

is pertinent, it is limited by the lack of standardization of biological tests and consequent

problems of reproducibility (Lasson et al., 2019). In order to fully exploit these sources of

information, described as indicating patients’ clinical phenotypes, a suitable approach is to

extract highly abstract features using machine learning techniques.
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According to the literature, deep models are capable of compactly

representing highly non-linear functions (Bengio, 2009; Goodfellow

et al., 2016), which makes them promising candidates. Moreover,

unsupervised learning strategies such as autoencoders (AEs) are

preferable in contexts where data are costly and only partially

observable (LeCun et al., 2015), common situation for data in

medicine. The conditional extension of AEs (CAE)s are also an

interesting way to propose an independent preferential input to

answer a problem of the type p(y|x, z). In the medical context

z is a dose of medication, x is the initial biological result of

the patient and y is the result of the test performed after the

administration of the drug. This approach makes it possible to

qualify the impact of drug administration. Conditional Variational

Auto-Encoder (CVAE) has been proposed in the literature (Kingma

et al., 2014; Sohn et al., 2015). It allows to control the generation

such that pdecoder(x|h, c) where c is a categorical or continuous

variable representing a condition. Nevertheless, although these

generative models have gained recent traction among the scientific

community, they have not been developed to answer problems

of the type p(y|x, c). Therefore, such approach is not relevant for

your paper.

For these reasons, we focus on the use of a deep CAE

(DCAE). More specifically, we will make proposals concerning the

optimization procedure, which presents a two-sided difficulty. Firstly,

the objective functions of these models are strongly non-convex

functions with many critical regions. In order to avoid an impact

on the convergence of the optimization methods, it is necessary to

initialize the networks in a relevant way. Initialization strategies based

on machine learning are suitable for this purpose. In a context of

limited data, the unsupervised pre-training algorithm proves to be a

relevant solution. Nevertheless, its operating principle is not adapted

to CAEs, which is the first scientific hurdle we have to overcome.

Secondly, a high degree of combinatorial complexity is associated

with the hyperparametric optimization of networks composed of

several hidden layers. Therefore, operational research strategies based

on trial-and-error methods are of little relevance in the case of

CAEs. To overcome this difficulty, the literature suggests dynamically

adjusting the network parameters and hyperparameters. To this

end, incremental learning and the random learning rate generation

procedure ALRAO (Blier et al., 2018) can be used. However, the

combination of these techniques has not yet been studied and the

existing proposals for incremental CAEs are limited, which is the

second scientific hurdle we face.

The motivation of this work is to improve personalized care

for patients suffering from hemostasis disorders. In this context,

this paper presents the use of DCAE to predict the effect

of treatments. The contributions of this work are solutions to

optimize the parameters and the hyper-parameters of DCAE. To

do so, proposals describe conditional pre-training algorithm and

incremental optimization strategies. This article is organized as

follows. Section 2 presents the operating principle of CAEs and

highlights the complexities of parametric and hyperparametric

optimization. In Section 3, we detail our proposal, a conditional pre-

training procedure for parametric optimization. In Sections 4, 5, we

present our proposal of strategy based on incremental learning for

hyperparameter optimization. Section 6 explains the application to

the personalized management of hemophiliac patients. Finally, in

Section 7, we review the results obtained and examine perspectives

for future work.

2. State of the art

2.1. Autoencoders

An AE (Lecun and Soulie Fogelman, 1987) is a parametric model

capable of extracting characteristic predicates from an unlabeled

learning database (Géron, 2017). It is, therefore, an unsupervised

model. An AE has two main parts: first an encoder function that

maps the message (x) to a code, and second a decoder function that

reconstructs the message (r) from the code. h represents the code

(named the hidden layer). The dimension of the hidden layer h,

means the size in the code layer, is a hyperparameter. The encoding

and decoding functions should not be limited to trivial identity

functions. In order to avoid this, it is necessary to constrain the

dimensions of the hidden layer h. In this sense, there are two

possible representations of the architecture of an AE. An AE is said

to be undercomplete (Lecun and Soulie Fogelman, 1987) when the

dimension of the hidden layer h is smaller than that of the input

data x and overcomplete in other cases (Hinton et al., 2006; Vincent

et al., 2008). Overcomplete AEs have additional properties, such as a

decoding function robust to variations in h (Vincent et al., 2008), an

encoding function able to withstand small perturbations in x (Rifai

et al., 2011) or the ability to meet additional supervised criteria (Ng,

2017).

Autoencoders may be augmented in many different ways

(Makhzani et al., 2016). It is common to append a one-hot label

vector, y, to the inputs of the encoder and decoder. One interesting

approach is CAEs (Makhzani et al., 2016). The aim of the learning

phase is to minimize the hybrid cost function, which is defined by

Equation (1). Jreconstruction(θ) evaluates the unsupervised task (see

Equation 2), Jsupervised(θ) quantifies the error associated with the

conditional supervised criterion (see Equation 3 where ŷ corresponds

to the prediction of y), and �(h) is the sparsity penalty (see Equation

4). Sparsity regularization methods seek to exploit the assumption

that the output variable can be described by a reduced number

of variables in the input space. It penalizes the objective function

of the model, thus favoring the most relevant weights during the

learning phase to answer the considered task. The parsimony penalty

penalizes the absolute value of activations in layer h for observation

i, scaled by a tuning parameter λ (Zhou et al., 2012a) and therefore

regularizes the weights of a network. The value λ has a constant in

this regularization term that needs to be treated as a hyperparameter.

J(θ) = Jreconstruction(θ)+ Jsupervised(θ)+ �(h) (1)

Jreconstruction(θ) = MSE(r, x) (2)

Jsupervised(θ) = MSE(ŷ, y) (3)

�(h) = λ

∑

i

|h(i)| (4)

Deep architectures are able to represent in a compact manner

highly non-linear functions, which are difficult to represent by means

of simple architectures (Hinton and Salakhutdinov, 2006; Bengio

et al., 2007; Bengio, 2009). In such cases, the AEs are referred to as

deep conditional autoencoders (DCAEs).
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FIGURE 1

Breakdown of the DCAE into three sub-architectures.

2.2. Optimization challenges

The learning phase of an AE aims to encode useful information

in a neural network in a compact and distributed manner (Lecun and

Soulie Fogelman, 1987). This implies defining the parameters and

hyperparameters of the model.

2.2.1. Parameters
Parametric optimization of deep AEs (DAEs) is a major difficulty.

Unsupervised pre-training offers a relevant solution (Hinton et al.,

2006). Using a greedy process, the parametric functions associated

with the extraction of features from the distribution of the input

data p(x) are iteratively initialized. This approach takes advantage

of the simple AE optimization procedure. In the case of DCAEs, a

conditional supervised criterion of type p(y|x, c) with {x, c} ∈ {Rn,R}

and y ∈ R
n should be respected. By applying the unsupervised

pre-training algorithm, we could then initialize the parameters

associated with the extraction of characteristic predicates of p(x),

i.e., those related to pencoder(hx|x) and pdecoder(x|hx). The parameters

of the supervised conditional criterion psupervised(y|hx, c) would be

considered a posteriori to the initialization phase. The cost function

Jsupervised(θ) risks leading to a bad convergence of the learning

algorithm as the response to the supervised conditional criterion

is achieved by a juxtaposition of hidden layers. The cost function

Jsupervised(θ) is likely to have many critical regions. Therefore, the

unsupervised pre-training algorithm does not seem to be a relevant

initialization strategy in the case of DCAEs. So here we face a

scientific obstacle.

2.2.2. Hyperparameters
The hyperparametric optimization of deep models based on

incremental learning (Fahlman and Lebiere, 1990) is relevant for

data that can evolve over time. Also the ALRAO procedure (Blier

et al., 2018) proves to be effective in assigning the learning rate

to each node individually. This would make it possible to address

this combinatorial complexity by means of a quasi autonomous

strategy. Only two hyperparameters would then have to be defined:

the minimum and maximum values of the learning rate. However, all

the various methods we have just outlined have limitations. Indeed,

the proposal of Zhou et al. (2012a), which makes it possible to

dynamically define deep architectures in static database contexts,

implies the optimization of many hyperparameters and proves

to be sensitive to the initial dimensions of the hidden layers.

Conversely, the non-parametric approach of Pratama et al. (2018),

which presents itself as an efficient solution for optimizing simple

DAEs on continuous streams of data, is not applicable to cases of

deep architectures and is specific to e-learning (Ashfahani et al.,

2020). Moreover, in order to eliminate the problem of overfitting

encountered in the ALRAO proposal (Blier et al., 2018), it could be

compatible to use it in combination with incremental learning. This

would make it possible to promote the pruning of networks in order

to remove unnecessary parameters without impairing performance

(LeCun et al., 1990; Reed, 1993). Although the various theoretical

concepts associated with these proposals are relevant, none of them is

a turnkey solution. Therefore, we are faced another scientific obstacle.

3. Parametric optimization

In this section, we present our proposed conditional pre-

training algorithm to address the complexity of parametric

DCAE optimization.

The procedure for optimizing simple AEs is efficient and does

not pose any difficulties. To take advantage of this, we split the

architecture of the DCAE into three basic building blocks (Figure 1).

Two of these are associated with the distributions of the input p(x)

and output data p(y) while the third corresponds to the supervised

conditional link p(hy|hx, c), where hx and hy are the compact

representations of x and y.

We propose to initialize the DCAE by adopting a greedy strategy

(see Figure 2). First, we treat the parametric functions associated with

feature extraction of the data distributions p(x) and p(y), considering

them as two DAEs. It is possible to initialize these networks by

applying the unsupervised pre-training algorithm (Hinton et al.,

2006) (step 1). Next, the initialization of the parameters (Wb and

Wc) associated with the supervised conditional link is performed.W

is the weight matrix. A CAE links the two AEs to the condition c

(step 2). Following this pre-training, the parameters of the AEs and

CAEs are copied to initialize the DCAE, which will, in turn, be trained

in a conditionally supervised way (step 3). We detail each of these

steps below.
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FIGURE 2

Conditional pre-training strategy. First, we treat the parametric

functions associated with the extraction of features of the data

distributions p(x) and p(y), considering them as two deep AEs. As

previously pointed out, it is possible to initialize these networks by

learning by applying the unsupervised pre-training algorithm. Being

independent, these two models can be processed in parallel (step 1:

parallel pre-training). After this first step, we are able to extract the

probabilities of the hidden layers hy and hx1 by inference. The

initialization of the parameters associated with the supervised

conditional link is then performed through an CAE trained to answer

the problem p(hy |hx1, c) (step 2: supervised conditional link). These

two successive steps initialize all the hidden layers of the DCAE. It is

then necessary to then export the various weight matrices within the

deep architecture in order to jointly adjust all the parameters of the

network (step 3: copying of the parameters).

3.1. Step 1: Parallel pre-training

The distributions of the input and output data are independent,

so we can process them in parallel. p(x) aims to initialize the

parameters associated with pencoder(hx|x) and pdecoder(x|hx). We can

apply the unsupervised pre-training algorithm (Hinton et al., 2006).

In the case of p(y), it is the parameters associated with pdecoder(y|hy)

that we wish to initialize in a consistent manner. This consists in

defining a DAE of the same dimension, with the aim of extracting

the hy representation from the y data. By reasoning by analogy, the

unsupervised pre-training of this model is sufficient to obtain the

desired values. As illustrated in Figure 3, this approach allows us to

initialize the two sub-architectures associated with p(x) and p(y). By

inference, we can then deduce the distributions pencoder(hx|x) and

pencoder(hy|y).

3.1.1. Step 2: Supervised conditional link
Following this first step, the parameters associated with the

conditional supervised link should now be considered. In the

architecture of the DCAE, it is not conceivable to initialize them

randomly. This would generate a break in the gradient descent chain,

which would cancel the initialization of the parameters associated

with pdecoder(y|hy). We can consider a CAE whose goal is to answer

the problem p(hy|hxn−1, c), where hxn−1 is the layer before hx. At

the end of the parallel pre-training stage, we know the distributions

of the hidden layers hxn−1, hy as well as the parameters associated

with the reconstruction of hxn−1. It is then necessary to randomly

initialize the other parameters of this simple architecture before

applying the gradient descent algorithm. The compact representation

hx is then adjusted during the learning phase to acquire the additional

properties necessary to meet the conditional supervised criterion.

3.1.2. Step 3: Parameter adjustment
The previous steps encode the useful information in the initial

parameter distribution, it is then necessary to continue training

the model by applying the learning algorithm. In this phase, the

parameters of the three previously considered sub-architectures will

be adjusted jointly. The cost function of the DCAE is presented in

Equation (1). Nevertheless, given the properties of the unsupervised

pre-training strategy, it is possible to cancel the regularization term

�(h) present in the latter (Equation 5). Indeed, the study by Erhan

et al. (2010) presents this initialization technique as a form of

regularization in its own right. As indicated in Rifai et al. (2011)

and Goodfellow et al. (2016), taking into account sparsity penalties

during the pre-training phase proves to be a sufficient condition

for obtaining a regularized deep model. Such property has been

supported by experiments described in Lasson (2020, 46) and is inline

with analysis made by Rifai et al. (2011) and Goodfellow et al. (2016).

J(θ) = Jreconstruction(θ)+ Jsupervised(θ) (5)

4. Hyperparametric optimization for AEs

Hyperparametric optimization can be achieved by jointly and

dynamically adjusting the parameters and hyperparameters of

networks. In this section we will consider simple incremental AEs.

Section 5 will use the results obtained on a simple AE for cases of

DAEs and DCAEs. A schematic overview of the operating principle

of our proposal is shown in Algorithm 1.

4.1. Initialization

Incremental learning involves defining an initial situation. It is a

matter of initializing the size of its hidden layer and its learning rates.

Two approaches can be considered for this stage, one consisting of

manual initialization by the user, the other based on the reuse of a

previously trained model. Whichever approach is used, it is necessary

to complete this initialization stage by applying the gradient descent

algorithm to the entire learning base.

In the first case, it is important to note that the initial size

of the hidden layer will influence the convergence speed of the
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FIGURE 3

Parallel pre-training step. Concerning p(x), we aim at initializing the parameters associated to pencoder(hx|x) and pdecoder(x|hx). To do so, we have previously

shown that it is possible to apply the unsupervised pre-training algorithm. Concerning p(y), it is the parameters associated with pdecoder(y|hy ) that we seek

to initialize in a consistent manner. To this end, we consider defining a deep AE of the same dimension, whose goal is to extract the hy representation of

the data y. Reasoning by analogy, the unsupervised pre-training of this model is su�cient to obtain the values values. This approach allows us to initialize

the two sub-architectures associated to p(x) and p(y). By inference, we can then deduce the distributions pencoder(hx|x) and pencoder(hy |y).

algorithm. In order to avoid the need for a large number of

iterations to solve these optimization problems, it is possible to

use more sophisticated strategies of adding and removing hidden

units than those proposed by Pratama et al. (2018). Underpinned

by the assumption that the performance of an over-fitted model

can be achieved by a narrower architecture (LeCun et al., 1990), we

will favor the definition of overcomplete architectures during this

initialization phase. We will, therefore, have to develop a pruning

technique capable of efficiently removing superfluous information

from the networks. For the definition of the learning rates, we

will use the random generation procedure ALRAO. It will then be

necessary to carry out a grid search during this initialization stage

to determine the order of magnitude of the two hyperparameters

that this method integrates (maximum and minimum learning rate).

Furthermore, we will also have to define the type of regularization

we wish to use. In their work, Zhou et al. (2012a) and Pratama

et al. (2018) used DAEs. We will study the applicability of

this incremental strategy to the cases of DAE, sparse AE and

unregularized AE.

In the second case, we wish to perform parametric and

hyperparametric optimization of a model that has been trained

upstream. Through this approach, we will be able to incrementally

enrich its network to adapt it to a similar context, i.e., to achieve

unsupervised learning by transfer or domain adaptation.

4.1.1. Stopping criteria
As a stopping criterion, Zhou et al. (2012a) propose to confront

the cardinal of the set of poorly discriminated training samples with

a threshold (τ ). This approach implies the optimization of a new

hyperparameter. In a continuous learning context, it could be seen

as an expectation criterion. Its value would then be allocated to the

size of the mini-batches used by the learning algorithm. In a static

database context, however, its value is correlated with the quantity

and quality of the training samples. It is then necessary to optimize

it by means of an operational research using the generalization error

obtained from the learning phase. In other words, the adjustment of

this value implies running this incremental protocol several times.

In order to develop a quasi-autonomous optimization strategy

whose aim is to obtain models that neither overfit nor underfit:

the role of the stopping criterion is to stop the algorithm once

the objective has been reached. Without it, the joint parameter

adjustment step would be repeated in a loop until overfitting occurs.

The hidden units removal step would then take over, with the risk

of degrading the model’s performance. In order to avoid such a

situation, we will have to check the impact of this pruning on the

model’s performance. In the event that performance will decreased,

the units considered will have to be retained. Moreover, it will also

be necessary to stop the algorithm before the appearance of this

divergence. To do this, we propose to use the early stopping principle
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/* Initial topology */

1 Definition of the model hyperparameters or import

existing architecture

/* Main */

2 while True do

3 Application of the gradient descent algorithm to

the training base

4 Evaluation of the stopping criterion

5 if Criterion met then

6 END

7 else

8 Selection of subset B

9 Evaluation of underfitting

10 if Underfitting found then

11 Reduction of underfitting

12 end

13 Evaluation of overfitting

14 if Overfitting found then

15 Reduction of overfitting

16 end

17 end

18 end

Algorithm 1. Simple incremental AE.

(Prechelt, 1996). Therefore we will have to estimate the generalization

error during iterations on an additional validation set.

4.1.2. Automatic selection of the subset
For the selection of the subset of poorly discriminated training

data (denoted B), the convergence of the learning algorithm must

be taken into account. To do this, we will use the value of the cost

function J(θ). The k-means data partitioning algorithm can separate

the training samples into two subsets without using a threshold

value. However, this algorithm turns out to be highly sensitive to its

initialization (choice of centroids). Therefore, we will proceed in a

similar way to Zhou et al. (2012b), using the expectation of J(θ) as a

threshold value. This indicator is a relevant solution for selecting the

subset B as it is highly sensitive to extreme values.

4.1.3. Reducing underfitting
Although overfitting can be effectively addressed through

pruning techniques, the number of hidden units needed to reduce

underfitting is complex to determine. Therefore, we will proceed in a

similar way to Pratama et al. (2018) adding a maximum of one unit

per iteration. The idea is to assign the opposite value of the residual

error rate to the parameters of this new unit. In addition to the fact

that it is not compatible with mini-batch learning, the application of

the latter to a static database context would induce a high sensitivity

to outliers. Therefore, we propose to optimize these parameters on

the subset B by applying the gradient descent algorithm (on a single

epoch). During this stage, the other parameters of the model will be

frozen. As we wish to use the ALRAO procedure, the learning rate

associated with this new unit will be initialized via a pseudo-random

number generator.

4.1.4. Reducing overfitting
It is possible to use more advanced pruning strategies than those

put forward by Zhou et al. (2012b) and Pratama et al. (2018). The

former allows the removal of a maximum of one unit per iteration,

while the latter is not able to limit the influence of the initial topology.

Therefore, we propose to use a non-parametric strategy based on

a data partitioning method called affinity propagation (Frey and

Dueck, 2007). This iterative algorithm is based on a principle of

sharing similarities, called affinities, with the aim of building a tree

between observations considered similar (Frey and Dueck, 2007).

Unlike the k-means algorithm, the affinity propagation automatically

determines the number of classes present in the observation set.

Applied to our context, it would allow us to select the subset of

hidden units with the lowest degrees of activation. We would then

have 1 ≤ 1M ≤ (L − 1), where 1M is the number of units to be

deleted and L the width of the hidden layer. In order to avoid an

unintentional degradation of the model’s performance, we will have

to estimate the generalization error a priori and a posteriori of unit

deletion. This pruning step will be validated only if it is beneficial to

the network.

4.1.5. Conditional extension
Because of its working principle, our proposal can also be applied

to the case of a CAE. Indeed, the probability that the hidden layer

of this model is equal to pencoder(h|x). It is, therefore, independent

of the conditional variable and so we will use the unsupervised task

pdecoder(x|h) to estimate the presence of overfitting or underfitting.

The only difference will be in the steps of evaluating the stopping

criterion and selecting the subset B, which will use the hybrid cost

function presented in Equation (1).

5. Hyperparametric optimization for
DAEs and DCAEs

The unsupervised pre-training algorithm is a relevant solution

for dealing with the strongly non-convex cost functions of DAEs

(Hinton et al., 2006). Also, it is less costly to independently optimize

a series of n single AEs than to deal jointly with the n hidden

layers of a DAE (Rifai et al., 2011). In other words, pre-training

can also be used to reduce the combinatorial complexity that is

associated with the hyperparametric optimization of these models.

Therefore, we propose to dynamically define the DAE topology

using a greedy algorithm similar to the unsupervised pre-training

method. To do so, we will consider simple incremental AE as building

blocks. The working principle of our proposal, which we have named

the unsupervised incremental optimization strategy, is illustrated in

Algorithm 2.

5.1. Initial topology

In order to define the initial situation of this procedure,

we propose to optimize a single incremental AE. The initial
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/* Initial topology */

1 Incremental learning of an AE to reconstruct p(x)

2 Estimation of the generalization error

3 while True do

/* Evaluation of the stopping criterion */

4 Evaluation of the statistical contribution of

the hidden layer hn−1

5 if Increased generalization error then

6 Restoration of the model

7 END

8 else

9 Save the model

/* Addition of a new hidden layer */

10 Computation of the distribution p(hn−1|X)

11 Incremental learning of an AE to reconstruct

p(hn−1)

12 end

13 end

Algorithm 2. Unsupervised incremental optimization.

topology of this simple model can then be specified through

the two approaches previously described, namely by the user

or by reusing a previously trained model. Following this

definition, this quasi-autonomous model needs to be optimized

before estimating its generalization error on an additional

validation set.

5.2. Evaluation of the stopping criterion

With the objective of adjusting the parameters and

hyperparameters of a deep architecture incrementally, we need

to define a stopping criterion for our algorithm. Hence, we

propose to evaluate the statistical contribution of the hidden

units that have been optimized in the last iteration. The

parameters of all the layers are then exported into a single

architecture and jointly optimized by applying the learning

algorithm. The generalization error of the resulting model is

then estimated and compared with the errors of the previous

iterations. When a decrease in the error rate is observed, the

values of these parameters and hyperparameters are saved.

Otherwise, the contribution of the central layer is deemed

negative. The algorithm is then stopped and the previously

saved values restored.

5.3. Addition of a new hidden layer

To increase the degree of abstraction of the model, we propose

to proceed in a similar way to classical pre-training. For this

purpose, the distribution of the hidden layer of the previously

considered block is obtained by applying the encoding functions.

It is then used during the next iteration to optimize a new

incremental AE.

5.4. Application to DCAEs

Given the conditional pre-training algorithm that we proposed,

we are able to adapt this optimization strategy to the case of

DCAEs. Our first intention was to follow its operating principle as

closely as possible. To do this, we proposed to optimize in parallel

the two DAEs associated with the distributions p(x) and p(y) by

adopting the strategy shown in Algorithm 2. Then, after obtaining

the compact representations by applying the encoding functions, we

would have optimized the parameters and hyperparameters of the

supervised conditional link via an incremental CAE. The gradient

descent algorithm would then have been applied in order to jointly

adjust the set of weight matrices that compose the DCAE thus

obtained. However, by this approach, the hyperparameters of the

DAEs associated with the distributions p(x) and p(y) are optimized

through our unsupervised incremental proposal. Therefore, the cost

function J(θ) of the DCAE is not considered when evaluating the

statistical contribution of these various hidden layers. In order

to remedy this, i.e., to take into account the function y =

f ∗(x, c) to be approximated during this optimization phase, we

considered a second protocol. This method, which we have named

the conditional incremental optimization strategy, is illustrated in

Algorithm 3.

First, we need to evaluate the performance of a simple

architecture whose objective is to complete the supervised

conditional task p(y|x, c). We propose to train a CAE incrementally

before estimating its generalization error on an additional validation

set. In order to ensure the relevance of this hyperparametric

optimization, we consider the DCAE cost function when evaluating

the stopping criterion. To this end, we reconsidered the operating

principle of conditional pre-training in order to deal with the

distributions p(x) and p(y) in a sequential manner. In the first step,

we propose to define the deep architecture that is associated with

the input data. At each iteration, an incremental AE is then trained

to reconstruct the compact representation of p(x) and then an

incremental CAE is trained in turn to answer the problem p(y|hx, c).

In order to evaluate the statistical contribution of this new hidden

layer hx, the set of parameters associated with the reconstruction

of p(x) and the supervised link is then exported within a DCAE.

By applying the gradient descent algorithm, the dynamics of

the generalization error of this deep conditional model is then

estimated on an additional validation set. When an improvement

of the performances is obtained, the model thus obtained is saved.

Otherwise, this new hidden layer should be rejected. The previous

version of the DCAE is then restored. The second step is to repeat

this protocol for the p(y) distribution. Incremental CAEs are then

iteratively trained to answer the problem p(hy|hx, c) until the

stopping criterion is met, hy being the compact representation of y.

6. Application

In this section, we present the application to predict the minimal

dose of medication sufficient to reduce the risk of bleeding or

thrombosis in a patient with a hemostasis disorder. The stakes of

such an optimization are the improved quality of care and therapeutic

results, plus decreased treatment costs.
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/* Initial topology */

1 Incremental learning of an AE to answer p(y|x, c)

2 Estimation of the generalization error

3 STEP 1 : Distribution considered p(x)

4 while True do

/* Evaluation of the stopping criterion */

5 Evaluation of the statistical contribution of

the hidden layer

6 if Increased generalization error then

7 Restoration of the model

8 if Step 1 then

9 STEP 2 : Distribution considered p(y)

10 GO TO line 17 (add new hidden layer)

11 end

12 if Step 2 then

13 END

14 end

15 else

16 Save the model

/* Addition of a new hidden layer */

17 Calculation of the distribution of the

considered distribution

18 Incremental learning of an AE to reconstruct

this representation

19 Optimization of the supervised conditional

link by incremental learning of an CAE

20 end

21 end

Algorithm 3. Conditional incremental optimization.

6.1. Biological proposal

The problem can be modeled as a regression of type p(y|x) where

x is the result of the patient’s biological test and y is the optimal dose

of drug to administer. Usually, the answer to such a problem is a

function y = f (x) where the rule f is derived from expert knowledge.

It could, therefore, be established based on data from sick patients,

receiving treatment or not, for which the {x, y} pairs would have

been determined by clinical evaluations. However, in view of the

high temporal and economic costs necessary for creating a specific

cohort and generating these data, this approach cannot be taken. To

circumvent this need for clinical assessments, we considered taking

advantage of the predictive nature of biological tests. Therefore, we

propose here to qualify the impact that administering a drug could

have on the patient’s overall test result. This is a conditional model

whose aim is to complete a task of type p(y|x, c), where c is a drug

dose, x is the initial biological result of the patient and y is the result

of the test performed after the drug administration.

6.2. Dataset

The dataset was constructed by in vitro simulation of 115

plasmas from severe hemophilia A patients without inhibitors, for

which increasing doses of therapeutic factor VIII concentrates were

FIGURE 4

Example of {x, c, y} data. The abscissa represents the measurement

time while the ordinate illustrates the concentration of thrombin

(normalized). The dose is expressed over the whole [0,1], c ≈ 0.67

corresponds to the injection of a concentration of 83.62% of

therapeutic factor VIII.

artificially injected. It was thus composed of 1992 triplets of {x, c, y}

data in which, x is the result of the thrombosis generation test (GT)

of a simulated patient, c is a dose of therapeutic factor VIII and y is

the thrombinogram (evolution of thrombin concentration) resulting

from the injection. Of these triplets, 1,297 were associated with the

training set (73 plasmas), 325 with the validation set (19 plasmas),

while the remaining 370 were reserved for the test base (23 plasmas).

Figure 4 shows an example of a triplet. In this case, we have 180

measurements in 60 min (three concentration measurements per

minute). Therefore, dimensions of x and y are 180 and c is a value.

6.3. Baseline

Generative adversarial networks (GANs) are generative models

that were proposed in response to problems of increasing database

size. In our case study, GANs are used as reference models, applying

them to a conditional problem of type p(y|x, c) where c is a dose of

factor VIII, x is the initial thrombinogram of the patient and y is

the thrombinogram of the GAN test carried out after the injection.

It would, therefore, be appropriate to employ conditional GANs

(Mirza and Osindero, 2014): an extension is presented in Figure 5,

which aims to constrain the inputs of these two networks by adding

visible units.

6.4. Objectives

6.4.1. Robustness
We will compare the convergence of our proposal with that of a

more classical strategy. By the mean values and standard deviations

of the reconstruction errors, we will ascertain the robustness

of the incremental CAE and, therefore, our contribution to the

hyperparametric optimization of simple conditional architectures.
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FIGURE 5

Application of GANs to a task of type p(y|x, c). By interacting with the

discriminant, the generator is trained to reconstruct the output datum

y via the synthetic datum h2.

6.4.2. Parameter optimization
Following this first evaluation, we will compare the average

error rates obtained by the conditional pre-training with those

resulting from a random initialization by the heuristic of Glorot and

Bengio (2010), i.e., by pitting our proposal against the only feasible

initialization method available in the literature.

6.4.3. Hyperparameter optimization
It will then be necessary to evaluate the convergence of our

conditional incremental optimization strategy, a proposal we have

developed in response to the dual difficulty of optimizing these

deep architectures.

6.4.4. CAE vs. GAN
Finally, we will compare the reconstruction errors thus obtained

with those of a reference model: the conditional GAN. This

evaluation will allow us to justify our initial choice for the DAEs and,

thus, to underline their interest for systems to assist individualization

of therapies.

6.4.5. Metrics
For thrombinograms, the peak height (maximum amplitude) is

inversely proportional to the severity of the hemophilia. So, in view

of the constitution of the databases considered, it seems appropriate

to estimate the reconstruction error by means of a normalized square

error.We will use the square root of the normalized root mean square

error (NRMSE). This metric, which is defined in Equation 6 (where x

is a vector, x̂ is the prediction of x, n the dimension of x), will also be

used in the objective functions of the previous models.

NRMSE =
1

n

√

n
∑

i=1
(xi − x̂i)2

max(x)−min(x)
(6)

6.5. Experimental method

We will first deal with the case of simple architectures by taking

the following two approaches:

TABLE 1 Performances obtained on the in vitro database.

Approach Learning error Test error

n.o 1 9.03e−2

±5.54e−4

9.35e−2

± 4.61e−4

n.o 2 1.49e−1

±6.42e−2

1.50e−1

± 7.04e−2

n.o 3 6.19e−2

±7.41e−4

6.11e−2

± 6.13e−4

n.o 4 9.25e−2

±4.46e−2

1.00e−1

± 3.96e−2

n.o 5 6.46e−2

±3.20e−2

8.14e−2

± 2.58e−2

• Approach n.o 1: application of an incremental CAE to the

considered database.1 The duration of its optimization will be

denoted durationn.o 1;

• Approach n.o 2: hyperparametric optimization of a CAE via a

random search.2 The duration of the latter will be limited to the

durationn.o 1.

In order to study the convergence of these two optimization

approaches, they will both be rerun ten times. Following this first

evaluation, we will focus on the case of DCAEs by considering the

following three optimization strategies:

• Approach n.o 3: Use of our conditional incremental

optimization proposal (see text footnote 1). The duration

of its application will be denoted durationn.o 3;

• Approach n.o 4: hyperparametric optimization of a DCAE

performed through a random search3 limited to the

durationn.o 3. The parameters of this model will be initialized by

the heuristic of Glorot and Bengio (2010) and optimized with

respect to the regularized objective function (see Equation 1).

• Approach n.o 5: hyperparameter optimization of a DCAE

performed through a random search (see text footnote 3) limited

to the durationn.o 3. The parameters of this model will be

initialized by our proposal of conditional pre-training and then

optimized with respect to the unregularized objective function

(see Equation 5).

1 The minimum and maximum values of the learning rates are optimized

by a grid search during the initialization phase of the topology such that

(lrmin , lrmax) = {(5e−4 , 1e−3), (1e−3 , 5e−3), (5e−3 , 1e−2)}. The initial width was defined

as L = 360, i.e., twice the dimension of the input data.

2 The hyperparameters are randomly selected from the following sets: width

of the inner layer L ∈ [1, 360], learning rate lr ∈ {1e−2; 5e−3; 1e−3; 5e−4} and

sparsity penalty λ ∈ {1e−3; 1e−4; 1e−5}.

3 The depths of the networks associated with p(x) and p(y) are randomly

defined between 1 and 4 hidden layers. The widths of the hidden layers are

randomly specified in the range L ∈ [1, 360]. A decreasing sequencing for p(x)

and increasing one for p(y) is nevertheless ensured. The learning rates required

for the gradient descent algorithm and pre-training are selected from the set

lr ∈ {1e−2; 5e−3; 1e−3; 5e−4}. The sparsity penalty is equal to λ ∈ {1e−3; 1e−4; 1e−5}.
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FIGURE 6

Examples of predictions by approaches n.o 1 and 2.

FIGURE 7

Representation of the error rates associated with Table 1.

In order to study the large combinatorial complexity of

hyperparametric optimization of DCAEs and the convergence

of our proposals, these three approaches will also be rerun

10 times. Moreover, in order to justify our initial choice of

DAEs, we will try to apply GANs to this conditional task. Given

the specificity and complexity of their learning procedure, it

would not be relevant to adopt a hyperparametric optimization

strategy with a time constraint. Therefore, a progressive

adjustment of the topologies will be made through various grid

searches.4

4 In order to optimize the depth of these two networks (L ∈ [1, 3]), their widths

as well as their activation functions (sigmoidal units or hyperbolic tangents),

various grid searches were performed. Taking into account the retries, 663

configurations were evaluated.

6.6. Results

Experiments were made using the following programming

libraries and hardware configuration:

• Memory: 15 GiB

• Processor: Intel R©CoreTMI7-6700 CPU@3.40 GHz x8

• Python: 2.7.12

• Tensorflow: 1.8.0

• Numpy: 1.16.6

6.6.1. Simple architectures
The application of the incremental CAE optimization

procedure (approach n.o 1) on the in vitro database took 730s

on average. Considering the ten retries performed, 324 CAE were

optimized through approach n.o 2. The associated reconstruction
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TABLE 2 DCAE architectures obtained by approach n.o 3 on the in vitro database.

Sub-architecture associated with:

p(x) p(hy|hx, c) p(y)

A x → hx1 → hx2 → hx → ĥx2 → ĥx1 → rx (hx , c) → hy hy → hy1 → hy2 → y

B x → hx1 → hx2 → hx → ĥx2 → ĥx1 → rx (hx , c) → hy hy → hy1 → hy2 →

hy3 → y

C x → hx1 → hx2 → hx3 → hx → ĥx3 → ĥx2 → ĥx1 → rx (hx , c) → hy hy → hy1 → hy2 → y

D x → hx1 → hx2 → hx3 → hx → ĥx3 → ĥx2 → ĥx1 → rx (hx , c) → hy hy → hy1 → hy2 →

hy3 → y

error rates (NRMSE) are shown in Table 1 and illustrated in

Figure 6.

6.6.2. Deep architectures
The application of our proposed conditional incremental

optimization strategy (approach n.o 3), based on in vitro data, lasted

1,176 s on average. From the ten retries, a total of 304 DCAEs were

optimized by approach n.o 4 and 101 DCAEs by approach n.o 5. The

associated reconstruction error rates (NRMSE) are shown in Table 1

and illustrated in Figure 7.

Moreover, despite the low standard deviations of the error

rates obtained by approach n.o 3, four types of final topologies

resulted from the dynamic optimization of the parameters and

hyperparameters. Their architecture is detailed in Table 2.

6.7. Discussion

In Figure 8, the means and standard deviations of the error rates

are lower in the case of the incremental CAE (approach n.o 1) than in

the random search (approach n.o 2). In addition to the fact that this

low variance underlines the robustness of our incremental building

blocks to their initial topology (parameter values and learning rates),

it highlights their regularization property and their interest for

parametric and hyperparametric optimization of simple conditional

architectures. Regarding the DCAEs, we can first note the interest

of our proposed conditional pre-training (approach n.o 5) which, by

its regularization effect, also allows us to reduce the combinatorial

complexity of this operational research. The application of our

conditional incremental optimization strategy (approach n.o 3),

whose operating principle is based on the combination of the first

two proposals, allows us to override the performance of the GAN

and shows strong repeatability. In view of these results, we are

able to address the difficulties of parametric and hyperparametric

optimization of DCAEs.

7. Conclusion and future work

Therapeutic individualization is a method that entails the use of

biological assays close to physiological reality. In the context of blood

coagulation, routine laboratory tests only provide a partial assessment

of the formation of a blood clot, whereas global assays have proved

to be promising contenders in improving personalized care for

patients suffering from hemostasis disorders. However, despite their

FIGURE 8

Box plot summarizing the error rates obtained by approaches n.o 1 to

5 on the in vitro database. The orange horizontal line indicates the

performance of the GAN (NRMSE = 0.066).

relevance, these tests lack standardization, and their results have

proved difficult for non-specialized clinicians to interpret.

In order to fully exploit the predictive behavior of global assay

results, highly abstract characteristics can be extracted through deep

architectures. In this respect, we have provided solutions to the

challenge of both parametric and hyperparametric optimization of

deep autoencoders. These solutions, characterized by a conditional

pre-training algorithm and incremental optimization strategies,

reduce the variance of the estimation process and enhance the

convergence of the learning algorithm. Applying these solutions in

the context of personalized care of hemophiliac patients, therefore,

makes it possible to exceed the performance of generative adversarial

networks and highlights the benefits of AE.

Since any f :Rn → R
n function where n is a finite value can

be considered as a forward propagating neural network (Goodfellow

et al., 2016), we have found the answer to our problem by omitting

the temporal aspect (static approach). Nevertheless, it could be

interesting to further develop our biological proposal by employing

models specialized in the processing of sequential data, such as

recurrent neural networks (Rumelhart et al., 1986; Hochreiter

and Schmidhuber, 1997). Through a very deep computational

graph, these models share the same parameters for all input

features. They are then able to process data of variable size and

to overcome the difficulties of phase shift that we encountered
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(Goodfellow et al., 2016). With this same objective in mind, we

could also consider enriching the architecture by adding a temporal

memory (Lasson et al., 2017). Combined with a sliding window

principle, this approach would also allow the network parameters to

be shared among all the input characteristics. We could then take

into account the temporal aspect of kinetics while benefiting from the

proposed optimization strategies.
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