
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Dalia Barsyte-Lovejoy,
University of Toronto, Canada

REVIEWED BY

Dominic Owens,
University of Toronto, Canada
Michael Aregger,
National Cancer Institute at Frederick
(NIH), United States
Lei Gao,
City of Hope National Medical Center,
United States

*CORRESPONDENCE

Yuliang Wu

yuliang.wu@usask.ca

Franco J. Vizeacoumar

franco.vizeacoumar@usask.ca

SPECIALTY SECTION

This article was submitted to
Cancer Molecular Targets
and Therapeutics,
a section of the journal
Frontiers in Oncology

RECEIVED 02 November 2022

ACCEPTED 28 December 2022
PUBLISHED 26 January 2023

CITATION

Arna AB, Patel H, Singh RS,
Vizeacoumar FS, Kusalik A, Freywald A,
Vizeacoumar FJ and Wu Y (2023)
Synthetic lethal interactions of
DEAD/H-box helicases as targets
for cancer therapy.
Front. Oncol. 12:1087989.
doi: 10.3389/fonc.2022.1087989

COPYRIGHT

© 2023 Arna, Patel, Singh, Vizeacoumar,
Kusalik, Freywald, Vizeacoumar and Wu.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 26 January 2023

DOI 10.3389/fonc.2022.1087989
Synthetic lethal interactions of
DEAD/H-box helicases as
targets for cancer therapy

Ananna Bhadra Arna1, Hardikkumar Patel2,
Ravi Shankar Singh1, Frederick S. Vizeacoumar2,
Anthony Kusalik3, Andrew Freywald2,
Franco J. Vizeacoumar4* and Yuliang Wu1*

1Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon,
SK, Canada, 2Department of Pathology and Laboratory Medicine, University of Saskatchewan,
Saskatoon, SK, Canada, 3Department of Computer Science, University of Saskatchewan, Saskatoon,
SK, Canada, 4Division of Oncology, College of Medicine, University of Saskatchewan and
Saskatchewan Cancer Agency, Saskatoon, SK, Canada
DEAD/H-box helicases are implicated in virtually every aspect of RNA

metabolism, including transcription, pre-mRNA splicing, ribosomes

biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA

editing. Most of these helicases are upregulated in various cancers and

mutations in some of them are associated with several malignancies. Lately,

synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where

genetic interactions of cancer-related genes are exploited as therapeutic

targets, are emerging as a leading area of cancer research. Several DEAD/H-

box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1),

and DDX41 (Sacy-1), have been subjected to SL analyses in humans and

different model organisms. It remains to be explored whether SDL can be

utilized to identity druggable targets in DEAD/H-box helicase overexpressing

cancers. In this review, we analyze gene expression data of a subset of DEAD/

H-box helicases in multiple cancer types and discuss how their SL/SDL

interactions can be used for therapeutic purposes. We also summarize the

latest developments in clinical applications, apart from discussing some of the

challenges in drug discovery in the context of targeting DEAD/H-box helicases.
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Introduction

Helicases constitute a ubiquitous group of molecular motors

that couple the energy from nucleoside triphosphate hydrolysis

with the unwinding and/or remodeling of DNA or RNA

molecules, and occasionally, with the disruption of protein-

nucleic acid interactions. The human genome encodes 95

known helicases; out of them, 64 are RNA helicases and 31 are

DNA helicases (1). These enzymes are involved in virtually all

aspects of nucleic acid metabolism, including replication, repair,

recombination, transcription, splicing, chromosome segregation

and telomere maintenance (2–5). To support augmented

proliferation and match the requirements of accelerated

nucleic acid metabolism, helicases are frequently overexpressed

in cancer cells (6). Meantime, naturally occurring loss of

function (LOF) mutations in helicases are associated with

many diseases, including cancers (7). Therefore, helicases

become attractive targets for chemotherapeutic developments.

Unfortunately, direct targeting of these molecules may represent

a serious challenge, as normal cells are also highly dependent on

their cellular functions. Therefore, alternate strategies

are required.

Given that many helicases are overexpressed or lost in

cancers, identifying their synthetic lethal (SL) and synthetic

dosage lethal (SDL) interactions may represent an effective

strategy to exploit them for cancer therapeutics. Two genes are

said to exhibit SL interaction, if LOF of both these genes affect

cellular viability, while neither of them has any effect on their

own (8). This concept facilitates the development of targeted

therapies that will selectively kill cancer cells, while sparing

normal cells. Over the last decade, the most successful clinical

application in the field of SL is the development of poly (ADP-

ribose) polymerase-1 (PARP-1) inhibitors in BRCA1/2-mutant

breast and ovarian cancers (9). In this review, we will highlight

the potential of DEAD/H-box helicase in the invention of cancer

therapeutics using the SL approach. We will also discuss

potential opportunities to implement the SDL approach, where

LOF of one gene affects cell viability only when a partner gene is

overactivated, to exploit overexpressed DEAD/H-box helicases

for cancer therapeutics.
DEAD/H-box helicases

Based on substrate specificity and polarity, helicases are

classified as RNA or DNA helicases and as 5ʹ–3ʹ or 3ʹ–5ʹ

helicases (10). Based on their conserved motifs, helicases are

grouped into six superfamilies (SF1 - SF6) (11). Among them,

SF2 is the largest superfamily and is characterized by its 12

“signature”motifs (Q, I, Ia, Ib, Ic, II, III, IV, IVa, V, Va, and VI).

SF2 is further classified into several subfamilies, including

DEAD/H-box RNA helicases, RecQ-like family, and Snf2-like
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enzymes based on their sequences, structures, and mechanisms

of action (12, 13).

The DEAD/H-box protein family is named after the

sequence (Asp-Glu-Ala-Asp/His) in motif II (14). They are all

composed of two RecA-like domains, while some are

additionally flanked by N- and/or C-terminal accessory

domain(s) (Figure 1A). Cooperatively, these domains are

involved in RNA binding, ATP binding and hydrolysis,

unwinding, strand annealing, and protein-protein interactions

(15). There are at least 36 DEAD-box helicases and 14 DEAH-

box helicases in humans (16). Despite sharing the conserved

helicase core, a substantial difference is observed between

DEAD-box and DEAH-box helicases from the biochemical

perspective. To disrupt nucleic acid structures, DEAD-box

helicases use simple cycles of RNA duplex binding, unwinding,

and release, while DEAH-box helicases function only as

translocases in the 3’!5’ direction (17). In terms of their

nucleic acid-related functions, both DEAD-box and DEAH-

box proteins are implicated in virtually every aspect of RNA

metabolic processes, including transcription (18–20), ribosomes

biogenesis (21, 22), small RNA process (23, 24), pre-mRNA

splicing (25, 26), RNA storage and decay (27, 28), nuclear export

(29–31), liquid–liquid phase separation (32–34), RNA

degradation (35, 36), translation (37–42), and so on

(Figure 1B). Some of them are also involved in DNA

metabolism, such as DNA repair (43–47). On a biological

level, they are involved in innate immunity responses (48),

signal transduction (49), cell differentiation and organ

development (50, 51), programmed cell death (52), and

mitochondrial regulations (53). Dysregulation of the

expression or function of these proteins is likely to be one of

the reasons behind the development of cancer and various

diseases. For instance, mutations in DDX11 (ChlR1) are

associated with Warsaw Breakage syndrome (WBS) and

Roberts syndrome (54). Germline mutations in DDX3 account

for 1%-3% of unexplained intellectual disability cases (55–59).

Mutations in DDX6 cause intellectual disability and dysmorphic

features (60). Mutations in DDX41 are associated with

myelodysplastic syndromes (MDS), acute myeloid leukemia

(AML), and myeloid neoplasms (MNs) (61, 62).
Abnormal expression of DEAD/H-
box helicases in cancer

To achieve the hallmark of excessive cell proliferation,

DEAD/H-box helicases are often overexpressed in cancer cells

(Table 1). For example, DDX3 is highly expressed in breast

cancer (124), Ewing sarcoma (68), glioblastoma (125) and

gallbladder carcinoma (126). DDX27 is upregulated in gastric

tumors (94), colorectal cancer (127), and breast cancer (128).

Cancer-specific antigens, DDX43 (helicase antigen gene, HAGE)
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and DDX53 (cancer-associated gene, CAGE), are overexpressed

in almost all cancers (129), while DDX20 (dp103) is highly

expressed in breast cancer (130). Nevertheless, controversial

findings are reported for some DEAD/H-box helicases. For

example, although DDX21 is highly expressed in breast cancer

(131), colorectal cancer (89), gastric cancer (132) and

neuroblastoma (90), low DDX21 levels are associated with

poor clinical outcome of breast cancer patients (91). Moreover,

up-regulation of DEAD/H-box helicases correlates with

advanced stage and poor prognosis in cancer patients (7). For

example, high DDX1 levels are associated with higher

pathological grades and poorer prognosis in hepatocellular

carcinoma (63) and breast cancer (133). The expression of

DDX23 is enhanced in glioma tissues, and this is associated

with poor survival of glioma patients (92). In computational

analyses of 15 DEAH-box RNA helicases, elevated expression of

12 of them are associated with poor prognosis and worse clinical

features in hepatocellular carcinoma (111). Because of their

overarching role in RNA metabolism, DEAD/H-box helicases
Frontiers in Oncology 03
are likely to affect multiple aspects of cell behaviors, including

cell proliferation, which may lead to cancer development.

Given that there is only sporadic data available for each of

these helicases, we examined the expression of these helicases in

24 different cancer types, using gene data from patient samples

available in The Cancer Genome Atlas (TCGA). This revealed

that few of the helicases are always lost across the cancers

examined, such as DDX3X and DDX6. Some of them are only

overexpressed across human cancers, such as DDX27, DDX41

and DDX56, while most of them are both overexpressed and lost

in different cancer types (Figure 2). We noticed few

inconsistencies between the TCGA data and published

findings for some helicases, which might be due to analyzing

cell lines instead of patient samples (68, 134, 135). In fact,

inconsistencies between data obtained from cancer cell lines

and cancer patient tissues are not uncommon and have been

reported (136, 137).

Apart from differential expression of these genes,

mutations in DEAD/H-box helicases have also been
A

B

FIGURE 1

General structure and functions of DEAD/H-box helicases. (A) The N-terminal and C-terminal regions are involved in protein-protein
interactions. Motifs Q, I, II, and VI are involved in ATP binding and hydrolysis; motifs III, V, and VI in RNA unwinding; motifs Ia, Ib, Ic, IV, IVa, and
V in RNA binding and annealing; motifs III and Va in coordination between ATP and RNA binding. (B) Roles of DEAD/H-box RNA helicases in the
central dogma pathway. Only the most studied top two to four helicases are shown in each catalogue. Some roles outside of the central dogma
are not shown. Related references are shown as superscripts.
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TABLE 1 Abnormal expression of DEAD/H-box helicases in cancers.

Helicasea Linked cancersb Upregulated
(Ref.)c

Notes

DDX1 Breast cancer, neuroblastoma,
hepatocellular carcinoma

(63, 64)

DDX2 (eIF4A) Various cancers (65, 66) Downregulation is reported in non-small-cell lung cancer (67)

DDX3X Various cancers (68, 69) Downregulation is reported in colorectal cancer (70) and hepatocellular
carcinoma (71). DDX3 has two paralogs: DDX3X and DDX3Y.

DDX4 (Vasa) Ovarian cancer (72, 73)

DDX5 (p68) Various cancers (74, 75)

DDX6
(RCK/p54)

Gastric cancer, colorectal cancer (76, 77)

DDX10 Various cancers (78, 79)

DDX11 (ChlR1) Renal cell carcinoma, lung
adenocarcinoma

(80, 81) Mutations are associated with WBS (54)

DDX17 (p72) Various cancers (82, 83)

DDX18 Gastric cancer, esophageal squamous
cell carcinoma

(84, 85) Mutations found in AML/MDS patients (86)

DDX20 Various cancers (87, 88)

DDX21 Various cancers (89, 90) Downregulation is reported in breast cancer (91)

DDX23 Ovarian cancer, glioma (92, 93)

DDX27 Various cancers (94, 95)

DDX31 Pancreatic ductal adenocarcinoma,
bladder cancer, renal cell carcinoma

(96, 97)

DDX39B (BAT1) Various cancers (98, 99) DDX39 has two paralogs: DDX39A and DDX39B

DDX43 (HAGE) Various cancers (100, 101) Cancer-testis (CT) antigen

DDX49 Hepatocellular carcinoma, lung cancer (102, 103)

DDX53 (CAGE) Various cancers (104, 105) Cancer-testis (CT) antigen

DDX56 Gastric cancer, colorectal cancer,
Osteosarcoma

(106, 107)

DDX58 (RIG-I) Ovarian cancer, hepatocellular
carcinoma

(108, 109) RIG-I is well known as an RNA sensor against RNA viruses; Germline
RIG-I mutations found in colon cancer (110)

DHX9 (RHA) Prostate cancer, lung cancer, colorectal
cancer, hepatocellular carcinoma

(111, 112)

DHX15 AML, prostate cancer, Burkitt
lymphoma

(113, 114)

DHX32 Hepatocellular carcinoma, breast
cancer, colorectal cancer

(115, 116) Downregulation is reported in AML (117)

DHX33 Colon cancer, Glioblastoma,
hepatocellular carcinoma

(118, 119)

DHX36 (G4R1,
RHAU)

Colon cancer, breast cancer, lung
cancer

(120, 121)

DHX37 Hepatocellular carcinoma (122, 123)
F
rontiers in Oncology
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aHelicases are listed in an ascending order, and only helicases that have been reported by at least two independent groups (in PubMed) are included, bVarious cancers stands for more
than three different cancers, and cTwo latest or the most representative references are cited.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1087989
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Arna et al. 10.3389/fonc.2022.1087989
associated with various cancers. For example, somatic

mutations in DDX3X are identified in various cancers (138).

Mutations in DDX18 (86) or DDX41 (139) are found in AML/

MDS patients and germline mutations in RIG-I (DDX58) are

found in colon cancer (110). Many missense mutations are

enriched in two conserved RecA-like domains (Ref 85–88,

TCGA and COSMIC data), and some frameshift mutations

completely remove or drastically alter these domains, which

impair the ATPase/helicase activity in these proteins. However,
Frontiers in Oncology 05
variants can also be found in the N- and C-terminal domains;

the functional consequences of these mutations remain

undetermined. Pharmacological inhibition of these helicases

that are overexpressed in cancer may benefit the patients;

however, identification of the targeted helicases and

development of the compounds are still in their infancy (134,

140–142). Moreover, it is unclear if the inhibition of these

molecules may affect normal cell functions. Application of SL

or SDL may circumvent these challenges.
FIGURE 2

Heatmap of DEAD/H-box helicases expression in 24 different cancers and normal tissues from TCGA patient data. The blue color represents
that they are significantly lost in tumor samples compared to normal samples, red color represents that they are significantly overexpressed in
tumor samples compared to normal samples, and grey means no significant difference between normal and tumor samples. Cancer type
abbreviations used are: BRCA, Breast invasive carcinoma; COAD, Colon adenocarcinoma; LUSC, Lung squamous cell carcinoma; LUAD, Liver
hepatocellular carcinoma; HNSC, Head and neck squamous cell carcinoma; STAD, Stomach adenocarcinoma; LIHC, Liver hepatocellular
carcinoma; KIRP, Kidney renal papillary cell carcinoma; UCEC, Uterine corpus endometrial carcinoma; KIRC, Kidney renal clear cell carcinoma;
KICH, Kidney Chromophobe; BLCA, Bladder urothelial carcinoma; CHOL, Cholangiocarcinoma; GBM, Glioblastoma multiforme; ESCA,
Esophageal carcinoma; READ, Rectum adenocarcinoma; PRAD, Prostate adenocarcinoma; CESC, Cervical squamous cell carcinoma and
endocervical adenocarcinoma; PCPG, Pheochromocytoma and paraganglioma; SARC, Sarcoma; PAAD, Pancreatic adenocarcinoma; SKCM, Skin
cutaneous melanoma; THYM, Thymoma; THCA, Thyroid carcinoma. BAT1 is DDX39B and EIF4A1 is DDX2.
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Synthetic lethality and synthetic
dosage lethality

SL represents functional relations between pairs of genes

whose concomitant alteration-of-function is lethal (8). SL in

DNA damage repair pathways is a promising strategy for DNA

damage response. BRCA1 and BRCA2 play pivotal roles in

homologous recombination (HR) repair that enable precise

repair of DNA double-strand breaks (DSBs) using sister

chromatids as templates (143). PARP-1 is an abundant nuclear

protein in cells and plays a vital role in repairing single-strand

breaks (SSBs) (144). PARP inhibitors (PARPis), which repress

the catalytic activity of PARP, lead to tumor-specific cell death

due to the combined deficiency in the HR and SSB repair

pathway evoked by BRCA1/2 mutations and PARP inhibition

respectively (145). PARPis are the first and most successful drugs

designed to exploit the concept of SL (9), which provides a novel

strategy for targeting other genes. In this regard, DEAD/H-box

helicases, whose expression is lost in cancer, would provide a

‘tumor-specific context’ in which a second gene (SL partner)

becomes a ‘vulnerable target’ that can be used to eliminate

cancer cells (Figure 3A).

Synthetic dosage lethality (SDL), a variant of SL, decreases cell

viability only when a gene is overexpressed and a second gene is

inactivated (146). For DEAD/H-box overexpressed cancers,

inhibition of its interaction partner will cause lethality in the

cancer cells only (Figure 3B). Using the SDL genetic approach, a

genome-wide SDL screen identified a deletion in the histone

deacetylase, RPD3 gene, as selectively sensitive to the

overexpression of yeast TDP1, a tyrosyl-DNA-phosphodiesterase

(147). The SDL interaction was conserved in a human

rhabdomyosarcoma cell line with innate TDP1 levels, and these

cells were sensitive to the treatment with histone deacetylase

inhibitors (147). However, so far, no SDL approach has been

utilized to target DEAD/H-box helicases.
Frontiers in Oncology 06
Synthetic lethal interactions of
DEAD/H-box helicases

Although SL/SDL interactions between gene pairs in cancer

biology have been viewed from the target perspective, these

genetic approaches also have been extensively applied in yeast to

discover functional relationships, as they conserve their

functions across organisms. Accordingly, we highlight several

DEAD/H-box helicases below, that have been studied in model

organisms as well as in human cells for synthetic lethal

interactions (Table 2).
DDX3

DDX3 has two paralogs, DDX3X on the X-chromosome and

DDX3Y on the Y-chromosome. Sharing more than 90% identity,

they are redundant for protein synthesis (155), cell proliferation

and survival (156), and temperature-sensitive in hamster cell line

(157), but distinct for liquid-liquid phase separation, dissolution,

and translation repression (34). Interestingly, the combination

of DDX3 inhibitor RK-33 and PARP inhibitor Olaparib causes

SL in BRCA1-proficient breast cancer (148). DDX3X is reported

to be actively recruited to sites of DNA damage in live cells (44),

and it regulates the expression of DNA repair genes (158),

indicating DDX3X is essential for DNA repair, such as non-

homologous DNA end joining (NHEJ). RK-33 is a small

molecule that binds DDX3X and inhibits its helicase activity

(134). Mechanistically, RK-33 might inhibit NHEJ repair.

Combination of RK-33 and PARPis, which inhibit DDX3X

and PARP and block SSB and NHEJ repair pathways

respectively, leads to cell death, representing a classical

‘between-pathway’ SL interaction. Whether RK-33 can

manipulate any other SL interactions of DDX3X for better

outcomes requires further investigation. More recently,
A B

FIGURE 3

Schematic illustration of synthetic lethality (A) and synthetic dosage lethality (B) for DEAD/H-box helicases. Cross on a gene stands for mutation
or inhibition.
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analyses of multiple-omics datasets and experimental validation

revealed that redundancy exists between DDX3X and DDX3Y

(159); therefore, we have to consider the gender of the patient

and look for any loss of chromosome Y in male patients before

applying RK-33. In addition, it remains to be determined,

whether RK-33 binds and inhibits the DDX3Y protein in

addition to DDX3X.

It is worth noting that DDX3 has been reported to function

as both an oncogene and a tumor suppressor. DDX3 exerts

oncogenic roles in glioblastoma (160, 161), meningioma (162),

Ewing sarcoma (68), prostate cancer (134), chronic lymphocytic

leukemia (163, 164), pancreatic ductal adenocarcinoma (165),

and gallbladder cancer (126). In contrast, DDX3 acts as a tumor

suppressor in natural killer/T-cell lymphoma (166) and

cutaneous squamous cell carcinoma (20). Moreover, the dual

role of DDX3 have been reported in same type of cancer,

including breast cancer (124, 167–169), hepatocellular

carcinoma (170, 171), lung cancer (142, 172), colorectal cancer

(70, 173, 174), and head and neck squamous cell carcinoma (69,

175, 176). So far, there are no mechanistic explanations for the

complex behavior of DDX3 in these cancers, which appears to be

context dependent. For its tumor suppressive function,

particularly in cases of LOF mutations, we believe that the SL

approach can be used for drug development; for its oncogenic

roles, the SDL strategy could be potentially applied.
DDX9 (Dbp9)

As mentioned above, SL interactions in yeast reveal

functional relationship between gene pairs. DDX9 (Dbp9),

encoding an essential nucleolar protein involved in 60S-

ribosomal-subunit biogenesis, exhibits an SL relation with

DDX6 (Dbp6), a component required for 60S-ribosomal-

subunit assembly in yeast (177). Interestingly, dbp6/dbp9

double mutants show synthetic lethality: no viable dbp9/dbp6
Frontiers in Oncology 07
double mutants could be recovered, indicating a functional

interaction of Dbp9 with Dbp6, and accumulated defects in

ribosome biogenesis lead to cell death (149). Our analyses of

the TCGA data (Figure 2) show that DDX6 is downregulated in

multiple cancers. If the yeast interactions are conserved,

inhibition of DDX9 in these cancers may result in a

therapeutically relevant SL interaction.
DDX10 (Dbp4)

Parkinson’s disease (PD) is characterized by loss of

dopaminergic neurons in midbrain and the presence of Lewy

inclusion bodies, which are predominantly composed of

misfolding and aggregation of the a-synuclein protein.

Interestingly, a reciprocal susceptibility was observed in the

PD patients towards the occurrence of melanoma (178).

Although fundamentally divergent, the common link between

the two disorders is the accumulation of a-synuclein into

amyloid fibrils. Gerhard Braus’s group expressed human a-
synuclein in yeast cells and monitored dosage-dependent

toxicity effects on the formation and reduction of inclusions

bodies (150). They identified the nucleolar DDX10 (yeast

ortholog Dbp4) as a strong enhancer of a-synuclein toxicity.

While downregulation of Dbp4 rescued cells from a-synuclein
toxicity, overexpression of Dbp4 led to an SL phenotype. These

findings provide a novel link between nucleolar processes and a-
synuclein-mediated toxicity, with DDX10 emerging as a

promising drug target for melanoma.
DDX11 (ChlR1)

RNAi-dependent knockdown of DDX11 causes premature

sister chromatid separation and a profound delay in mitotic

progression of human cells, suggesting that DDX11 is required
TABLE 2 Synthetic lethality and synthetic dosage lethality interactions of DEAD/H-box helicases.

Helicase Targets identified Cell line and system used Notes Ref.

DDX3X PARP Human BRCA1 pro- and deficient breast cancer cell
lines

(148)

DDX9
(Dbp9)

dbp6 S. cerevisiae (149)

DDX10
(Dbp4)

a-synuclein S. cerevisiae, HEK293 SDL used: overexpression of dbp4
leads to synthetic lethality

(150)

DDX11
(ChlR1)

Anaphase promoting complex or
cyclosome (APC/C)

WBS patient fibroblast (151)

ESCO2 Human WBS and RBS patients’ fibroblasts and RPE1,
yeast, and chicken DT40 cells

RBS: Roberts Syndrome (152,
153)

DDX41
(SACY-1)

mog-2, emb-4, Y111B2A.25 C. elegans (154)
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to establish proper sister chromatid cohesion during the S phase

(179). Biallelic DDX11 mutations in humans cause WBS, which

is characterized by severe microcephaly, pre- and post-natal

growth retardation, and abnormal skin pigmentation (54). Rob

Wolthuisb and his team found that DDX11 mutations cause

cohesion defects in patient fibroblasts. This discovery prompted

them to subject patient’s fibroblasts to a genome-wide siRNA

screen to search for genes that are synthetically lethal with

mutant DDX11 (151). Screening results revealed several

components of the anaphase promoting complex or cyclosome

(APC/C) as top hits, and the DDX11 mutant cells proved to be

hypersensitive to the inhibition of the APC/C complex.

Mechanistically, they found that APC/C inhibition aggravates

cohesion defects and causes mitotic death. As the TCGA data

indicates that DDX11 is overexpressed in multiple cancers

(Figure 2), further analyses of this gene and the effect of its

overexpression in sister chromatid cohesion might reveal if

APC/C inhibition could still remain a viable therapeutic

option. The same group also found that ESCO2 (establishment

of cohesion 1 homolog 2) was one of the strongest hits in their

siRNA screen, in which they used WBS patient fibroblasts (152).

The synthetic lethality between DDX11 and ESCO2 was also

observed in yeast orthologues Chl1 (DDX11/ChlR1) and Eco1

(ESCO2) (180), and chicken DDX11 and ESCO2 (153). Thus,

some of the conserved interactions observed in yeast may be of

high relevance in humans as well.
DDX41 (SACY-1)

DDX41 is conserved across species; its orthologs abstrakt

in Drosophila (181), Sacy-1 in C. elegans (154), and DrDDX41

in zebrafish (182) have been studied. Both germ line and

acquired somatic mutations of DDX41 have been associated

with MNs, MDS and AML (62, 139). David Greenstein’s

group used a sacy-1 reduction-of-function genetic

background in C. elegans, conducted a genome-wide RNAi

screen, and identified five clones that produced increased

levels of sterility, gamete degeneration, or embryonic lethality

(183). The five RNAi clones target the transcripts of three

genes: mog-2 (one clone), Y111B2A.25 (one clone), and emb-4

(three clones) (154). Because three phenotypes have been

observed in a variety of sacy-1 mutant alleles, individual

siRNA in sacy-1 mutant animal confirmed that genes mog-

2, Y111B2A.25, and emb-4 are synthetic lethal interactors of

sacy-1 (DDX41). Interestingly, similar to DDX41, these three

genes encoded proteins that are constitutive components of

the spliceosome (154), and it remains to be seen if these

interactions are still conserved in humans. As DDX41 is

overexpressed in multiple cancers, spliceosome inhibitors

should benefit these patients, provided the functional

interaction is conserved.
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Exploiting DEAD/H-box helicases for
synthetic lethality approaches

Olaparib, rucaparib, niraparib, talazoparib, and veliparib,

classified as PARPis, are, so far, the only SL drugs for cancer

patients with BRCA1/2 mutations (9). There is an urgent need

for new SL targets in other cancers. Many DEAD/H-box

helicases are upregulated in various malignancies, while some

of their mutations are also associated with cancers. Therefore,

there is a growing interest in DEAD/H-box helicases as plausible

targets for anti-cancer therapy. Indeed, identifying and

developing SL interactions of DEAD/H-box helicases as

therapeutic targets or a direct targeting of these helicases have

been attempted (140, 150, 184, 185).

DEAD/H-box helicases have potentials to be targeted for

future drug developments due to their unveiled ties with cell

toxicity in various cancers (52). The lethal characteristic of

helicases becomes more prominent upon their inhibition in

overexpressing cancers. Upregulation of DDX5 leads to poor

patient outcomes through the promotion of tumorigenesis and

tumor recurrence (74). Consequently, depletion of DDX5 leads

to the suppression of the mammalian target of rapamycin

complex 1 (mTORC1) signaling pathway and induces

apoptosis in prostate cancer cells (184). Compounds targeting

DDX5, such as Resveratrol and RX-5902 (186), have been

developed; however, further studies are required to

evaluate anti-cancer effectiveness of these drugs. DHX9 is

overexpressed in lung cancer (187) and its suppression is

selectively lethal to cancer cells, but is tolerable for normal

cells (188). Active screening for DHX9 inhibitors is in

progress, as they can potentially be used as therapeutic agents

specifically attacking cancer cells (140).

Another exciting prospect is to identify SL and SDL partners

that have already been implicated in cell apoptosis in a cancer-

specific manner or whose DEAD/H-box helicase partners, when

overexpressed, have a putative apoptotic nature. An elevated

expression of DDX10 in cancer leads to a poor survival rate in

chondrosarcoma patients (78). Additionally, inhibition of a-
synuclein displays tumor growth suppression in melanoma cells

(189). Since DDX10 is a strong enhancer of a-synuclein-induced
toxicity (150), we can employ SDL interaction between DDX10

and a-synuclein and use a-synuclein inhibitors as promising

therapeutics for cancer, such as melanoma. Fortunately, various

drugs used in PD’s model follow the same principle of

a-synuclein inhibition and can be evaluated for cancer

therapy (185). However, this may be context dependent as

DDX10 is found to be both overexpressed as well as lost in

cancers (Figure 2).

Many DEAD/H-box helicases, such as DDX3, DDX5,

DDX10, and DDX21, have been reported to act both as

oncogenes and tumor suppressors in different contexts.

Therefore, in-depth research is essential to understand the
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intricacy and interplay of their dual antagonistic roles, and to

ultimately, to effectively use them as targets for cancer treatment.

Generally, the SDL approach might be useful in cancers with

over-expressed DEAD/H-box helicases that function as

oncogenes, while the SL approach might work with DEAD/H-

box helicases that act as tumor suppressors. In both scenarios,

the outcome is to promote cancer-specific apoptosis through

pharmacological interventions. Identifying and manipulating

these interacting partners open new avenues for drug

development in cancer-targeted therapy.

Paralog genes arise from gene duplication, an evolutionary

mechanism for creating new genes, which result in two

functionally distinct genes, or more frequently, functionally

overlapping genes. In fact, 13700 or two-thirds of human

protein coding genes are paralogous (190). Paralogs provide

both unique opportunities and challenges for the SL approach in

developing targeted therapies. If a single gene is depleted, its

paralog can compensate by taking over its function (191). Thus,

the loss of a single gene is well tolerated by the cell; this

phenomenon is called paralog buffering. However, if both

paralogs are depleted, there is no mechanism in place to

compensate for the lost function and this results in cell

lethality (190). Recent CRISPR-based screenings and mining of

publicly available data have identified several SL interactions

among paralogs (159, 190–194). Paralog dependency is found in

CSTF2-CSTF2T, DNAJC15-DNAJC19, FAM50A-FAM50B, and

RPP25-RPP25L (159), CCNL1-CCNL2, CDK4-CDK6, MEK1-

MEK2, and OXSR1-STK39 (190), CNOT7-CNOT8, COPS7A-

COPS7B, CCNE1-CCNE2, and CCNT1-CCNT2 (192), STK38–

STK38L and TET1–TET2 gene combinations (194). Paralog

redundancy has been identified in CCNL1-CCNL2, OXSR1-

STK39, EIF1-EIF1B, G3BP1-G3BP2, GFPT1-GFPT2, and

PDS5A-PDS5B (190), MAP2K1-MAP2K2, RAS-RAF,

FAM50A-FAM50B (192), sex chromosome genes ZFX-ZFY,

DDX3X-DDX3Y, EIF1AX-EIF1AY (159), SAR1A–SAR1B,

RAB1A–RAB1B, LDHA–LDHB, RBM26–RBM27 and

hnRNPF–hnRNPH3 gene pairs (194) Recently, it was reported

that VRK1 is a SL target in VRK2-mutated or silenced cancers

(195, 196) and SMARCA2 is a SL target in SMARCA4 mutated

cancers (197), suggesting SL is an excellent approach for

paralog-related cancer treatment. Although ARID1A and

ARID1B are synthetic lethal (198), it was reported that dual

ARID1A-ARID1B loss leads to rapid carcinogenesis (199). This

finding emphasizes that caution should be executed when

developing new paralog-directed SL therapies. Lastly, some

genes have more than two paralogs, such as Akt1-Akt2-Akt3

and RAD51-RAD51B-RAD51C-RAD51D-XRCC2-XRCC3,

while FRG1 has 23 paralogs (200), which should present

challenges to implementing the SL approach.

Multiple paralogues exist in the DEAD/H-box helicase

family, including DDX2A-DDX2B, DDX3X-DDX3Y,

DDX19A-DDX19B, DDX60-DDX60L and DDX39A-DDX39B.

The DDX19A-DDX19B paralog pair engages in the SL
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interaction, where enhanced DDX19A expression is strictly

required as a compensatory response to the low level of

DDX19B (191, 193). Besides the DDX3X-DDX3Y and

DDX19A-DDX19B pairs, the remaining paralog pairs have not

been studied. Thus, computational predictions combined with

experimental validation are expected to expand the horizon of

uncovering paralog genetic interactions among helicase genes

that can be used as potential therapeutic targets.
Conclusions and future perspectives

Although various small molecules have been utilized to

target patient-specific molecular alterations for personalized

cancer treatment protocols, their efficiency rate is still far from

the desired. A drawback we currently face with the personalized

treatments is their off-target effects, as these targeted

therapeutics fail to effectively differentiate normal cells from

the cancerous ones, ultimately leading to cytotoxicity. As we

solve the structure-function relationship and interaction

network of various DEAD/H-box helicases, it appears that we

cannot limit their function as only molecular motors for

nucleotides. LOF and overexpression of DEAD/H-box

helicases in specific cancers are likely to provide an effective

platform for developing more selective treatment approaches by

inhibiting SL/SDL partners of these molecules, thus

revolutionizing the arena of personalized genotype-based

targeted therapeutics. Combination therapy of SL/SDL drugs

with known chemotherapeutics might also synergistically

improve patient outcomes. These approaches may provide

a better window for therapeutic index optimization and

minimize undesirable off-target effects associated with drug

administration. It can also further optimize patient-specific

treatment plans by targeting genetic vulnerabilities associated

with their specific mutations in certain cancer subtypes and

design solutions to LOF mutations that obviously cannot be

targeted by our traditional approaches.

Despite the recent limelight and efforts in SL target

discovery, there are only a handful of success stories in SL

drug development reaching clinical trials. A molecule targeted

by an SL drug may deregulate multiple biological processes, as

different pathways share components, leading to more adverse

patient outcomes. Thus, more in-depth understanding of the

mechanisms is essential to unveil the complexities and

heterogeneity of the SL interactome to pinpoint the molecular

network and dependencies across various cancer types. The

discovery of SL/SDL interacting compounds to enhance drug

selectivity and design new effective combination therapies will

make this process even more exciting. By investigating DEAD/

H-box helicases within the SL/SDL context and implementing

the generated knowledge, we can accelerate the process of

bringing novel drugs to the bedside and positively impact

cancer patient outcomes.
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