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Boreal forests, the second continental biome on Earth, are known for their massive

carbon storage capacity and important role in the global carbon cycle.

Comprehending the temporal dynamics and controlling factors of net

ecosystem CO2 exchange (NEE) is critical for predicting how the carbon

exchange in boreal forests will change in response to climate change. Therefore,

based on long-term eddy covariance observations from 2008 to 2018, we

evaluated the diurnal, seasonal, and interannual variations in the boreal forest

ecosystem NEE in Northeast China and explored its environmental regulation. It

was found that the boreal forest was a minor CO2 sink with an annual average NEE

of -64.01 (± 24.23) g CO2 m
-2 yr-1. The diurnal variation in the NEE of boreal forest

during the growing season was considerably larger than that during the non-

growing season, and carbon uptake peaked between 8:30 and 9:30 in the

morning. The seasonal variation in NEE demonstrated a “U” shaped curve, and

the carbon uptake peaked in July. On a half-hourly scale, photosynthetically active

radiation and vapor pressure deficit had larger impacts on daytime NEE during the

growing season. However, temperature had major control on NEE during the

growing season at night and during the non-growing season. On a daily scale,

temperature was the dominant factor controlling seasonal variation in NEE.

Occurrence of extreme temperature days, especially extreme temperature

events, would reduce boreal forest carbon uptake; interannual variation in NEE

was substantially associated with the maximum CO2 uptake rate during the

growing season. This study deepens our understanding of environmental

controls on NEE at multiple timescales and provides a data basis for evaluating

the global carbon budget.

KEYWORDS

net ecosystem CO2 exchange, eddy covariance, boreal forest, carbon budget,
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1 Introduction

Global climate change, characterized by global warming, is one of

the most important issues people face today, and it is essential to

significantly reduce greenhouse gas emissions to keep world

temperatures 1.5°C above pre-industrial levels (Bosch et al., 2017;

Tian et al., 2020; IPCC, 2021). Terrestrial ecosystems have a net

carbon uptake of 3.4 ± 0.9 Pg C yr−1 from the atmosphere, playing a

significant role in the global carbon cycle and reducing global

warming (IPCC, 2021). Therefore, it is vital to comprehend the

terrestrial ecosystems carbon budget and environmental regulations.

As one of the major terrestrial ecosystems, forests contribute

nearly half of the terrestrial production and can effectively reduce CO2

accumulation in the atmosphere (Reichstein and Carvalhais, 2019).

Among them, boreal forest ecosystems are the second continental

biome on Earth and contain approximately 30% of all forests in terms

of carbon storage (Pan et al., 2011). Boreal forests have the potential

to reduce atmospheric carbon emissions by increasing carbon storage

in plants, soil, and wood products and by displacing fossil fuels (Baul

et al., 2017; Cintas et al., 2017). Additionally, there is evidence that the

boreal forest region is one of the most rapidly warming regions

globally (Walsh, 2014). Boreal forests are considered to be more

vulnerable to climate change than other ecosystems in the world and

are one of the critical climate tipping points of the world, where

climate change may cause widespread boreal forest dieback (Bonan,

2008; Lenton et al., 2008; Gauthier et al., 2015; Venalainen et al., 2020;

Mckay et al., 2022). Therefore, boreal forests are a key area for global

carbon cycle research, and they have attracted increasing attention

from researchers in recent years (Venier et al., 2018; Holmberg et al.,

2019; Piznak and Backor, 2019; Frelich et al., 2021), but there are still

debates on their carbon source/sink issues (Heijmans et al., 2004;

Soloway et al., 2017). Boreal forests may function as a net CO2 source

or sink at the ecosystem scale or may switch between the two states. In

a study of an artificial boreal forest in Maoer Mountain, China, the

forest absorbed an annual average of 575.66 g CO2 from 2008 to 2018

(Liu et al., 2021). The annual average uptake of afforested temperate

white pine forest in Ontario was 382.74 g CO2 from 2003 to 2013

(Chan et al., 2018). It experienced a transformation from carbon sink

to carbon source in the Manitoba boreal black spruce forest, with an

annual average release of 66 g CO2 (Dunn et al., 2007). In central

Sweden, the major boreal forest ecosystem was a constant CO2 source,

shedding approximately 250.5 g CO2 m
-2 yr-1 over a ten-year period

(Hadden and Grelle, 2017). In summary, boreal forests demonstrate

large spatial variations from the net ecosystem exchange perspective.

Since the establishment of ChinaFlux in 2002, carbon flux

observations have been conducted in diverse forests (Yu et al.,

2006; Zhu et al., 2006; Yu et al., 2014; Wang et al., 2016), but there

have been few reports on the original boreal forest ecosystem, except

for the Genhe station in Inner Mongolia (Li and Zhang, 2015).

Research on carbon flux dynamics in boreal forest ecosystems in

China is still in its infancy.

Some studies have demonstrated that the factors controlling net

ecosystem CO2 exchange (NEE) on different scales are quite different

(Fu et al., 2017b, Wu JK et al., 2020). On half-hourly and daily scales,

radiation and temperature are often considered the dominant factors

in NEE variation, but precipitation and soil moisture have stronger
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effects on NEE in some arid regions (Park et al., 2011; Li et al., 2014;

Rebane et al., 2019, Wang Y et al., 2019). NEE interannual variation

(IAV) is predominantly influenced by physiological (e.g., maximum

carbon uptake rate) and phenological factors (e.g., length of the

growing season); however, some studies have indicated that it is

strongly associated with annual mean temperature and cumulative

precipitation (Oquist et al., 2014; Xu et al., 2019; Jia et al., 2021; Liu

et al., 2021). Although, owing to the lack of long-term continuous

high-quality observational data, there are few systematic studies on

the factors influencing NEE at diverse scales in boreal forest

ecosystems, and the control mechanism is still obscure (Venalainen

et al., 2020).

Additionally, the boreal forest ecosystem is situated in the middle

and high latitudes of the Northern Hemisphere, where rapid climate

change and frequent extreme temperatures are common (Seneviratne

et al., 2021). Temperature has a strong influence on plant

photosynthesis , soi l microbial act ivity , organic matter

decomposition, phenology, and consequently, NEE (Horemans

et al., 2020; Kang et al., 2020). When extremely high temperatures

occurred in Southern Australia during the summer of 2013, the

maximum daily carbon uptake of temperate forests in the region

decreased, which in turn affected the cumulative NEE during the

growing season (Van Gorsel et al., 2013). Net carbon uptake during

the growing season decreased in 2003 due to the high temperatures in

European forests. For example, carbon uptake in the growing season

decreased by approximately 160 g C m-2 yr-1 in the evergreen

coniferous forest of Italy (Ciais et al., 2005). In the summer of the

same year, the subtropical region of East Asia also experienced

extremely high temperatures, which significantly reduced forest

ecosystems carbon uptake during the growing season (Saigusa et al.,

2010; Wen et al., 2010). Previous discussions of the impact of extreme

temperatures on NEE have majorly focused on the tropics and

subtropics, whereas boreal forests have been ignored (Yuri et al.,

2021). Considering that the scale and intensity of extreme

temperature events may increase in the future, to accurately

evaluate the carbon sink capacity of forest ecosystems, it is essential

to elucidate the response characteristics of net carbon uptake of boreal

forests to extreme temperatures (Meehl and Tebaldi, 2004; Shao

et al., 2022).

Therefore, based on 11-year eddy covariance observations from a

boreal forest ecosystem in China, this study aimed to (1) quantify the

dynamic characteristics of diurnal, seasonal, and interannual

variations of CO2 fluxes in the boreal forest; (2) comprehend the

environmental regulations on CO2 flux changes at diverse time scales;

and (3) explore the effects of extreme temperature on the boreal

forest NEE.
2 Materials and methods

2.1 Site description

The research was conducted at the Research Station for

Ecosystem Positioning of Chinese Northern Coniferous Forests (51°

46’52”N, 126°01’04”E; 773 m a.s.l.), maintained by the Institute of

Botany, the Chinese Academy of Sciences, and the Heilongjiang
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Huzhong National Nature Reserve Administration. The area had

cold, dry winters and hot, rainy summers, with a typical continental

monsoon climate. The long-term annual average air temperature

(1991–2020) was -2.95°C, and the annual average precipitation was

approximately 500.8 mm. Additionally, there were significant

seasonal (approximately 70% of precipitation occurring in the

summer) and interannual (272.4–748.8 mm) variations in

precipitation. Larix gmelinii was the only dominant species at the

research site, while Betula platyphylla was the primary companion

tree species. Ledum palustre , Vaccinium vitis-idaea , and

Rhododendron dauricum constituted most of the understory.
2.2 Eddy-covariance and
supporting measurements

Using an Open Path Eddy Covariance (OPEC) system installed at

35.0 m, carbon (the net ecosystem exchange of CO2, NEE) and water

fluxes were observed. The OPEC system included a 3-D sonic

anemometer (CAST3, Campbell Scientific, Inc., Logan, UT, USA),

which measures wind speed and virtual temperature, and an infrared

gas analyzer (IGRA; LI-7500, LI-COR, Inc., Lincoln, NE, USA), which

monitors changes in CO2 and water vapor densities. The sampling

rate for flux data was 10 Hz.

Additionally, a quantum sensor (LI-190SB, LI-COR, Inc., Lincoln,

NE, USA) and a four-component net radiometer (CNR1, Kipp &

Zonen, Crop., Delft, Holland) were utilized to measure

photosynthetically active radiation (PAR) and net radiation (Rn)

32 m above the ground. A thermo-hygrometer was used to measure

the relative humidity (RH) and air temperature (Ta) (HMP45C, Vaisala,

Inc., Helsinki, Finland). Soil temperature (Ts; 107 L, Campbell Scientific,

Inc., Edmonton, Alberta, Canada) at six depths (0, 0.05, 0.1, 0.15, 0.2,

and 0.3 m) and volumetric soil water content (SWC, CS616, Campbell

Scientific, Inc., UT, USA) at 0.08 m were measured. A rain gauge

(52203, RM Young, Inc., Traverse City, MI, USA) mounted on the top

of the tower was utilized to measure precipitation (37 m). All

meteorological data were collected as 30 min averages using a data

logger (CR23XTD, Campbell Scientific, Inc., UT, USA).
2.3 Post-processing of
eddy-covariance measurements

Half-hourly CO2 fluxes were computed and corrected from raw

OPEC recordings using EddyPro 7.0.6 (LI-COR Inc., Lincoln, NE).

The major post-processing procedures included spike removal,

double-coordinate rotation, corrections for frequency losses and

sonic temperature, corrections for density fluctuations (i.e., the

Webb–Pearman–Leuning correction), and flux computation (Webb

et al., 1980). It should be noted that because the infrared gas analyzer

(LI-7500) surface temperature differs from the air temperature due to

electronic instrument heating, solar radiation, and radiative cooling,

the Burba Equation should be utilized for further correction during

processing (Burba et al., 2008). Rain events, outliers (Papale et al.,

2006), and nighttime data that occurred under low friction velocity

(u*) circumstances were used to filter the flux data during these times.

The u* threshold was estimated using the method described by Zhu
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et al. (2006). Using the marginal distribution sampling (MDS)

technique, flux data gaps were filled (Reichstein et al., 2005). A

positive (negative) NEE value indicates that the ecosystem is a

carbon source (sink). The growing season usually started in early

May and ended in late September; the remaining period was defined

as the non-growing season.
2.4 Data analysis

The maximum CO2 uptake (MCU) and release rate (MCR)

obtained from the smoothed daily NEE curves were considered as

ecosystem physiological metrics (Fu et al., 2019). A Savitzky–Golay

filter was applied to smoothen the daily NEE (Savitzky and Golay,

1964). The number of days with a net carbon uptake (NEE < 0 g CO2

m-2 d-1) was defined as the net CO2 uptake period (CUP).

According to the 27 extreme climate indices defined by the Expert

Team on Climate Change Detection and Indices (ETCCDI) (Peterson

and Manton, 2008), the relative threshold index computed from the

maximum/minimum temperature in the boreal forest ecosystem

growing season from 1991 to 2020 was 30°C/-4°C. Temperature

extremes occur when daily maximum/minimum temperatures during

the growing season are above the high threshold (30°C) or below the low

thresholds (-4°C). The number of days when it occurred was defined as

the number of high/low-temperature days, and the period when the

number of high/low-temperature days lasted for six days or more was

defined as an extreme high/low-temperature event. The effect of extreme

temperatures on NEE during the growing season was characterized by

the relative rate of change (a) of NEE (Tatarinov et al., 2016).
3 Result

3.1 Environmental conditions

3.1.1 Heat-related environmental factors
Ta, Ts, and PAR values of the boreal forest ecosystem

demonstrated clear seasonal variations (Figure 1). The daily average

Ta ranged from -34.02 to 24.11°C, and its seasonal variation was

similar among different years. The daily average Ts ranged from

-19.88 to 17.84°C, and its overall Ts trend was consistent with that of

Ta, but the seasonal amplitude of Ts was smaller than Ta. The average

Ts was higher than Ta, and the seasonal variation in Ts was smoother,

exhibiting hysteresis. Ta and Ts at the end of November 2009 and

January-February 2014 were lower than those in other years. The

daily accumulative PAR ranged from 0.72 to 55.94 mol m-2 d-1, with a

peak appearing fromMay to July. PAR in the growing seasons of 2011

and 2018 was usually small, which was related to excessive rainfall

during the growing seasons in these years.

3.1.2 Moisture-related environmental factors
The vapor pressure deficit (VPD) ranged from 0.13 to 1.88 kPa,

and the maximum VPD value appeared from June to August. Due to

heavy rains during the growing season in 2009, 2010, and 2011, the

VPD was lower than 1.0 kPa. Precipitation varied greatly over the

years, with more precipitation in summer, which accounted for more

than 50% of the annual precipitation. The variation in the daily
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average SWC was closely related to precipitation and ranged from 4.1

to 34.1%. SWC in the entire growing season in 2014 remained above

25%, which was related to the greater number of rainfall days in the

growing season of this year.
3.2 Diurnal variations in NEE and its
environmental regulation

According to the monthly average diurnal variations in NEE, the

diurnal amplitude of NEE during the growing season was noticeably

higher than that in the non-growing season (Figure 2). NEE during
Frontiers in Plant Science 04
the non-growing season demonstrated no clear diurnal variation

(Figure 2A), and the boreal forest acted as a net carbon source.

However, a significant diurnal pattern resembling a “U” curve

(Figure 2B) was observed during the growing season, with positive

values (net carbon release) at night and negative values (net carbon

uptake) in the daytime. The peak of carbon uptake appeared at 8:30–

9:00 in the morning, ranged from -0.03 (May) to -0.91 mg CO2 m
-2 s-1

(August). The earliest time for the NEE value to switch from positive

to negative was in June and July (5:30), and the longest daily carbon

sequestration time (14 h) occurred in June.

According to the determinative coefficient, PAR and VPD were

the prominent environmental control factors, and the order of
A B

FIGURE 2

Diurnal variations in NEE (net ecosystem CO2 exchange) on a monthly average from 2008 to 2018: (A) non-growing season, (B) growing season. Jan,
January, Feb, February, Mar, March, Apr, April, Jun, June, Jul, July, Aug, August, Sep, September, Oct, October, Nov, November, Dec, December.
FIGURE 1

Dynamic changes in environmental factors in the boreal forest ecosystem. PAR, photosynthetically active radiation, VPD, vapor pressure deficit, Ta, air
temperature, Ts, soil temperature, SWC, volumetric soil water content, PPT, precipitation.
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intensity of influence of each environmental factor on daytime NEE in

the growing season was PAR > VPD >Ta >Ts >SWC (Table 1). The

direct and indirect path coefficients of the environmental factors

reflect whether the factor affects NEE majorly through direct or

indirect ways. From the path coefficient value, PAR and Ta have a

direct impact on NEE. The PAR direct path coefficients and Ta were

-0.354 and -0.220, respectively, which were larger than their indirect

path coefficients (0.016, 0.00), indicating that these two driving

factors had significant effects during the daytime during the

growing season. However, SWC had an indirect impact, which

affected daytime NEE during the growing season by influencing

other factors, but the determinative coefficient was small and the

influence was not significant. There was little difference between the

direct and indirect impacts of VPD and Ts. The direct and indirect

path coefficients of VPD were 0.392 and -0.344, respectively, which

inhibited CO2 uptake. Ts had equivalent direct and indirect effects on

NEE and their combined effects contributed to CO2 uptake.

Temperature had the greatest impact on NEE during the growing

season at night and during the non-growing season (Table 1). In

general, ecosystem respiration is more active and releases more CO2

at high temperatures. According to the determinative coefficient, the

effect of Ta on NEE was majorly indirect, by affecting Ts and VPD,

whereas that of Ts was direct. Additionally, during the non-growing

season, NEE was majorly affected by Ta and was relatively less affected

by Ts.
3.3 Seasonal variations in NEE and its
environmental regulation

The boreal forest station initially only observed fluxes in the

growing season, and carbon fluxes have been observed throughout the

year since 2014. The seasonal variations in NEE and its environmental

regulation were evaluated based on data from 2014 to 2018. The
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seasonal variation in NEE in boreal forests demonstrated a unimodal

curve (Figure 3), which indicated it to be a CO2 source during the

non-growing season and a CO2 sink during the growing season.

Boreal forests began to germinate in early May, and as the leaves grew,

photosynthesis and respiration were both enhanced, but the

respiration rate was higher than that of photosynthesis, resulting in

a small CO2 emission peak (5.69 ± 1.75 g CO2 m
-2 d-1) in late May.

The CO2 uptake in boreal forests usually peaked in early July (-20.35

± 2.91 g CO2 m
-2 d-1). The growth of the boreal forests decelerated at

the end of August, with the net carbon uptake gradually decreasing. In

mid-September, boreal forests switched from carbon sinks to sources

and reached their peak CO2 emissions (7.58 ± 2.08 g CO2 m
-2 d-1) in

late September. The plants entered dormancy from October to April

of the following year and the metabolic activity of the ecosystem was

minimal. During the non-growing season, there was no discernible

variation in CO2 flux, with the NEE varying from 0 to 3.5 g CO2 m
-2

d-1.

During the growing season, Ta was the dominant controlling

factor for seasonal variation in NEE in boreal forests, followed by

PAR. On a daily scale, the boreal forests carbon uptake increased with

increasing Ta and PAR (Table 2). Ta exerted a direct effect on the

seasonal variation in NEE, whereas PAR had a greater indirect effect.

During the non-growing season, the daily NEE was predominantly

influenced by Ts and SWC, both of which positively encouraged CO2

release, exerting direct effects on the NEE.
3.4 Interannual variations in NEE and its
environmental regulation

On an annual scale, boreal forest ecosystems are carbon sinks for

atmospheric CO2 (Table 3). The mean NEE accumulation in the

growing season from 2008 to 2018 (2013 was excluded) was -676.01

(± 134.07) g CO2 m-2 growing season-1, and mean annual carbon
TABLE 1 Direct and indirect path coefficients of environmental factors on NEE (net ecosystem CO2 exchange) diurnal variation.

Period Factors Related
coefficient

Direct path
coefficient The sum of indirect path coefficient Determinative coefficient

Daytime in growing season

PAR -0.354 -0.369 0.015 0.1251

VPD 0.048 0.392 -0.344 0.1160

Ta -0.220 -0.220 0.000 0.0484

Ts -0.225 -0.125 -0.100 0.0406

SWC 0.074 0.001 0.073 0.0002

Nighttime in growing season

VPD -0.025 -0.080 0.055 0.0024

Ta 0.212 -0.147 0.359 0.0839

Ts 0.267 0.443 -0.176 0.0403

SWC 0.094 0.124 -0.030 0.0079

Non-growing season

VPD 0.184 0.187 -0.003 0.0338

Ta 0.188 -0.252 0.440 0.1582

Ts 0.254 0.343 -0.089 0.0566

SWC 0.136 0.029 0.107 0.0071
PAR, photosynthetically active radiation, VPD, vapor pressure deficit, Ta, air temperature, Ts, soil temperature, SWC, volumetric soil water content.
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budget from 2014 to 2018 was -64.01 (± 24.23) g CO2 m
-2 yr-1. There

were no significant relationships between the environmental factors

and annual cumulative NEE. However, the yearly NEE anomalies

during the growing season (NEEg) were significantly correlated with

the maximum CO2 uptake rate (MCU) (p < 0.001; Figure 4A) and

maximum CO2 release rate (MCR) anomalies (p < 0.01; Figure 4B)

but not with the carbon uptake period (CUP) anomalies (p =

0.182; Figure 4C).
3.5 Impact of extreme temperature events
on NEE

The boreal site experienced extremely high temperatures for 5–24

d during each growing season from 2014 to 2018 (Table 4). The

cumulative growing-season NEE was found to decrease only in 2014,

2015, and 2017 when the number of extreme high-temperature days

lasted long enough to form an extreme heat event. Conversely, the

cumulative growing-season NEE did not decrease in 2016 and 2018,

when the number of consecutive days of extremely high temperatures

was insufficient to form an extreme heat event. After a short period of

extreme high temperatures, the NEE recovered quickly and the

cumulative NEE in the growing season increased. In comparison,

the effect of extremely low temperatures on NEE was different. The

occurrence of extreme low-temperature days lead to a decrease in the

cumulative growing-season NEE even if it did not last long enough to

constitute an extreme low-temperature event. The decreasing

percentage of NEE increased with the number of extreme low-

temperature days (Table 4).
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4 Discussion

4.1 Magnitude of NEE

Owing to variations in ecosystem types, climatic conditions, and

subsurface materials, NEE diurnal variation typically exhibits distinct

patterns and magnitudes (Zhou et al., 2009, Wu JK et al., 2020, Zhang

et al., 2020). In this study, the diurnal NEE dynamics in the boreal

forest ecosystem displayed a single peak curve, and the peak CO2

uptake period occurred between 8:30 and 9:30 in the morning. This is

consistent with previous studies of Korean pine and boreal-leaved

mixed forests in the Changbai Mountains (Guan et al., 2006). The

maximum carbon uptake rate at this research site during the growing

season attained -1.068 mg CO2 m
-2 s-1, which is substantially larger

than those reported for a Larix gmelinii forest in Central Siberia

(-0.475 mg CO2 m-2 s-1, Nakai et al., 2008), and for a hemiboreal

forest ecosystem in Estonia (-0.792 mg CO2 m-2 s-1, Rebane et al.,

2020), but is similar to that from a Larix gmelinii forest in

Daxing’anling Mountains (-1.09 mg CO2 m
-2 s-1, Li and Zhang, 2015).

In our study, the seasonal variation in NEE was a U-shaped curve

with a peak from June to July, which is consistent with earlier studies

(Welp et al., 2007; Gill et al., 2015; Frelich et al., 2021). However, higher

temperatures (17.54°C in August 2015 and 17.33°C in August 2017

compared to the 30-year average value of 15.38°C from 1991 to 2020)

and ample precipitation (221.4 mm in August 2015 and 155.6 mm in

August 2017 compared to the 30-year average value of 115.1 mm from

1991 to 2020) led to the occurrence of an additional small peak in

August of 2015 and 2017. In the growing season from 2008 to 2018

(2013 was excluded), the average daily NEE accumulation was -4.69 (±
TABLE 2 Direct and indirect path coefficients of environmental factors on NEE (net ecosystem CO2 exchange) seasonal variation.

Period Factors Related
coefficient Direct path coefficient The sum of indirect path coefficient Determinative coefficient

Growing season

PAR -0.220 -0.080 -0.140 0.0274

Ta -0.551 -0.530 -0.021 0.3029

SWC -0.119 -0.060 -0.059 0.0002

Non-growing season SWC 0.633 0.350 0.283 0.3206

Ts 0.690 0.490 0.200 0.4361
PAR, photosynthetically active radiation, Ta, air temperature, Ts, soil temperature, SWC, volumetric soil water content.
FIGURE 3

Average daily NEE (net ecosystem CO2 exchange) seasonal variation from 2014 to 2018.
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13.07) g CO2 m
-2 d-1, which was within the range reported in previous

studies (Table 5).

The boreal forest had an annual CO2 budget of -64.01 ± 24.23 g

CO2 m-2 yr-1 over the studied years, and it acted as a CO2 sink.

Previous studies on the forest ecosystems annual CO2 budget had a

variety of magnitude values, most of which were carbon sinks

(ranging from -382.74 g to -823.16 g CO2 m
-2 yr-1). A few of them

shifted from a carbon source to a sink, such as the boreal black spruce

forest in Manitoba, Canada (Table 5). Comparatively, the boreal

forest in this study was a relatively small carbon sink, mostly due to

the colder climate and shorter growing season at higher latitudes.
4.2 Environmental regulations of
NEE variations

4.2.1 Effects of radiation on NEE
Radiation, particularly PAR, has a significant impact on ecosystem

photosynthesis and consequently, NEE (Baldocchi, 2014; Wang Y et al.,

2019). This study also demonstrated that PAR elucidated most of the

variance in half-hourly daytime NEE during the growing season
Frontiers in Plant Science 07
(Table 1) and that the Michaelis–Menten model was a good fit to the

relationship between daytime NEE and PAR (r2 > 0.76, p < 0.01; details

in Table 6 and Figure 5). The parameters estimated from the model,

including the initial light utilization rate (a), maximum photosynthetic

rate (Amax), and daytime respiration intensity (Rd), are usually used as

plant photosynthetic capacity indicators. In this study, the a values

ranged from 0.0009 to 0.0019 mg CO2 mmol photon-1, with its

maximum value (0.0019 mg CO2 mmol photon-1) appearing in June;

Amax ranged from 0.0985 to 0.4995 mg CO2 m
-2 s-1, with its maximum

value appearing in July (0.4995 mg CO2 m
-2 s-1), Rd ranged from 0.0994

to 0.1555 mg CO2 m
-2 s-1, with its maximum value appearing in June

(0.1555 mg CO2 m
-2 s-1). Therefore, ecosystem carbon models should

take into account the seasonal dynamics of photosynthetic capacity

parameters to accurately estimate the carbon budget. Among them,

Amax represents photosynthesis intensity in the ecosystem under

saturated light intensity and reflects the impact of biochemical

processes and physiological conditions on photosynthesis in the

ecosystem (Zhou et al., 2017). Amax of boreal forests in this study

was lower than that in previous studies, which could account for the

comparatively low yearly carbon uptake of boreal forests (Li and Zhang,

2015; Li et al., 2019; Wang Q et al., 2019).
A B C

FIGURE 4

The relationship between the carbon flux (NEEg) anomalies during the growing season and (A) the maximum CO2 uptake rate (MCU), (B) maximum CO2

release rate (MCR), and (C) carbon uptake period (CUP) anomalies.
TABLE 3 Interannual variation in cumulative NEE (net ecosystem CO2 exchange) during the growing season and throughout the year.

Year
Accumulated NEE in the growing season

(g CO2 m
-2 growing season-1)

Accumulated NEE throughout the year
(g CO2 m

-2 yr-1)

2008 -983.841 \

2009 -440.372 \

2010 -710.226 \

2011 -682.285 \

2012 -656.673 \

2014 -697.633 -28.492

2015 -634.698 -71.689

2016 -601.431 -72.245

2017 -643.571 -54.232

2018 -709.366 -93.410
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4.2.2 Effects of temperature on NEE
Temperature was the most important controlling factor for night

NEE in the growing season and for the NEE in the non-growing season

(Table 1). We determined the model parameters for each month using

the Lloyd and Taylor model for simulating the response of ecosystem
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respiration to varying soil temperatures (Table 7). Respiration at the

reference temperature (RTref) gradually increased as the temperature

rose, peaking in July; except for May, wherein in the initial growth

stage, the temperature sensitivity (Q10) continuously decreased as the

temperature increased (Chen et al., 2010; Han and Jin, 2018). As a
TABLE 4 Extreme temperature day/event and their effects on cumulative NEE (net ecosystem CO2 exchange) during the growing season.

Year Type Number of extreme temperature days Number of extreme temperature events Duration a

2014
Heat 15 1 6.27–7.02 -1.45%

Cold 6 0 \ -2.26%

2015
Heat 24 1 7.05–7.20 -5.94%

Cold 7 0 \ -1.29%

2016
Heat 5 0 \ 1.56%

Cold 15 1 8.25–8.30 -5.76%

2017
Heat 17 2 6.24–6.26 -6.50%

Cold 12 0 7.02–7.08 -4.22%

2018
Heat 9 0 \ 1.71%

Cold 3 0 \ 1.51%
frontie
a, relative rate of change of NEE (net ecosystem CO2 exchange) during the growing s.
TABLE 6 Parameters of NEE (net ecosystem CO2 exchange) light response curves during the growing seasons in the boreal forest ecosystem.

Month
a Amax Rd

R2 p
(mg CO2 ·mmol photon-1) (mg CO2 · m

-2 · s-1) (mg CO2 · m
-2 · s-1)

5 0.0009 0.0985 0.0994 0.7625 <0.01

6 0.0019 0.4144 0.1555 0.9337 <0.01

7 0.0011 0.4995 0.0681 0.9225 <0.01

8 0.0011 0.4282 0.0894 0.9391 <0.01

9 0.0013 0.1621 0.0991 0.8154 <0.01
r

a, initial light utilization rate, Amax, maximum photosynthetic rate, Rd, daytime respiration intensity.
TABLE 5 Comparison of growing season and annual CO2 budget among diverse forest ecosystems.

Site Ecosystem type Latitude
Daily average of NEE in growing

season
(g CO2 m

-2 d-1)

NEE in the whole
year

(g CO2 m
-2 yr-1)

Period Source

Ontario, Canada
Afforested temperate white pine
forest

42°39’ \ -382.74
2003–
2016

(Chan et al.,
2018)

Manitoba, Canada Boreal black spruce forest 55°53’ \ -212–308
1995–
2004

(Dunn et al.,
2007)

Inner Mongolia,
China

Cold temperate coniferous
forest

50°49’ -2.42 \ 2013
(Li and Zhang,

2015)

Jilin, China
Broad-leaved Korean pine
mixed forest

42°24’ -7.05 -823.16
2003–
2004

(Zhang et al.,
2006a)

Harbin, China
Temperate deciduous
broadleaved forest

45°24’ \ -575.66
2008–
2018

(Liu et al.,
2021)

Beijing, China Deciduous broad-leaved forest 40°30’ \ -407.00 2019 (Li et al., 2019)

Heilongjiang,
China

Cold temperate coniferous
forest

51°46’ -4.69 -64.01
2008–
2018

This study
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result, Q10 was higher during the non-growing season than during the

growing season. The rapid increase in the root and rhizosphere

respiration rates at the beginning of the growing season might be the

cause of the increased Q10 in May (Shabaga et al., 2015).

4.2.3 Effects of extreme temperature on NEE
Extreme temperatures have diverse effects on ecosystem

photosynthesis and respiration; the net carbon uptake in the

growing season is reduced when the adverse impact on

photosynthesis is greater than that on respiration (Tatarinov et al.,

2016; Krasnova et al., 2022). For example, in the Qianyanzhou

subtropical coniferous forest, an extreme heat event lasting 36 days

resulted in a 6.7% decrease in the annual ecosystem carbon uptake

(Zhang et al., 2018). In a mixed conifer-broadleaved forest in

Southern Estonia, an extreme high-temperature event that lasted

for 19 days in 2018 caused the forest to change from a carbon sink

to a carbon source (Krasnova et al., 2022). In this study, we found that

the impact of extreme temperatures on carbon uptake was related to
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its duration and intensity. When extreme temperature events with

short durations occur, if the temperature and water conditions in the

early and late stages are suitable, the forest will maintain better

resilience, and the net carbon uptake will reach the original level

(Ciais et al., 2005; Zhang et al., 2018). For example, in the studied

boreal forest, the cumulative growing season NEE did not decrease in

2016 and 2018 when the number of consecutive days of extreme high

temperatures was insufficient to form an extreme heat event.

Meanwhile, given that extreme temperature events often occur

together with extreme drought, it is essential to evaluate the

changes in carbon uptake under the synergy of the two (Wu HD

et al., 2020, Yan et al., 2020).
5 Conclusion

The boreal forest ecosystem served as a weak carbon sink with an

annual average NEE accumulation (2014–2018) of -64.01 ( ± 24.23) g
FIGURE 5

Responses of NEEd (net ecosystem CO2 exchange in the daytime) to photosynthetically active radiation (PAR) during the growing seasons in boreal forest
ecosystem.
TABLE 7 Monthly respiration-temperature response equation parameters of boreal forest ecosystems.

Month RTref T0 Q10 R2

1 0.0268 146.2057 1.241 0.45

2 0.0374 166.0404 1.243 0.41

3 0.0337 138.7903 1.205 0.49

4 0.0300 135.5546 1.176 0.47

5 0.1066 189.0448 1.441 0.80

6 0.1999 129.2273 1.131 0.55

7 0.2443 157.8814 1.199 0.39

8 0.2357 184.8783 1.152 0.72

9 0.1232 113.9823 1.141 0.47

10 0.0829 159.9415 1.267 0.63

11 0.0310 143.6633 1.278 0.38

12 0.0290 164.0277 1.356 0.36
RTref, the respiration at the reference temperature, T0, the test constant, Q10, the temperature sensitivity.
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CO2 m-2 yr-1 and growing season average (2008–2018; 2013 was

excluded) of -676.01 (± 134.07) g CO2 m-2 growing season-1.

Additionally, diurnal, seasonal, and interannual variations in NEE

had obvious dynamic characteristics. In the growing season, PAR was

the primary controlling factor of daytime NEE on a half-hourly scale,

whereas Ta dominated the seasonal NEE variation on a daily scale.

Conversely, Ts consistently had the greatest effect on non-growing

season NEE across the half-hourly and daily scales. The interannual

variation in NEE in the growing season was significant in relation to

the MCU but not to the environmental factors and CUP. Extreme

temperature events can reduce boreal forests carbon uptake, and the

impact of extreme temperature on carbon uptake during the growing

season is related to its duration and intensity.
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