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The fall armyworm (FAW) Spodoptera frugiperda is a destructive and polyphagous

pest of many essential food crops including maize and rice. The FAW is hard to

manage, control, or eradicate, due to its polyphagous nature and voracity of

feeding. Here, we report the characterization and functional analysis of the

detoxification gene CYP302A1 and how S. frugieprda larvae use a detoxification

mechanism to adapt host plants. Results demonstrated that CYP302A1 expression

levels were much higher in midgut tissue and the older S. frugiperda larvae. Our

current studies revealed the enhanced P450 activity in the midguts of S. frugiperda

larvae after exposure to rice plants as compared to corn plants and an artificial diet.

Furthermore, higher mortality was observed in PBO treated larvae followed by the

exposure of rice plants as compared to the corn plant. The dsRNA-fed larvae

showed downregulation of CYP302A1 gene in themidgut. At the same time, higher

mortality, reduced larval weight and shorter developmental time was observed in

the dsRNA-fed larvae followed by the exposure of rice plant as compared to the

corn plant and DEPC-water treated plants as a control. These results concluded

that the inducible P450 enzyme system and related genes could provide

herbivores with an ecological opportunity to adapt to diverse host plants by

utilizing secondary compounds present in their host plants.
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Introduction

The interaction between herbivorous pests and their host plants is

frequently cited as a textbook example of co-evolution (Vandenhole

et al., 2021). Feeding on plants is complicated because plants have

developed a wide range of morphological and chemical defensive line

tactics. To avoid or diminish feeding injury, most plants induce

complex chemical defense combinations to withstand insect attack

(Büchel et al., 2016; Lackus et al., 2018). These chemical compounds

may serve as defensive due to their unpleasant flavors and odors, or

they may be toxic or mitigate the digestibility of plant tissues (Biere

et al., 2004; Rehman et al., 2012). Nonetheless, identification and

response to phytochemicals (allelochemicals) released by plants to

defend themselves against herbivores is an important aspect of

arthropod-plant interactions (Janz, 2011; Suchan and Alvarez, 2015;

Vandenhole et al., 2021). The study of the interaction between plant

secondary chemistry and insect herbivores is essential in the

development of a successfully integrated pest management plan.

To survive, different tactics have been evolved by adapted

herbivores to deal with the defense compound present in their host

plants (Heidel-Fischer and Vogel, 2015a; Rashid War et al., 2018;

Yang et al., 2022). Similarly, some herbivores insects metabolize and

excrete plant defense compounds they consume, but others store

them in their bodies to defend themselves against all-natural enemies

(Petschenka and Agrawal, 2016; Heckel, 2018). Metabolic

detoxification of plant toxins is the primary strategy of herbivores

occurring in three phases (solubilization), phase II (conjunction) and

phase III (excretion), each with its own enzymes (Krempl et al., 2016;

Stahl et al., 2018; Lu et al., 2021). For example, cytochrome P450

monooxygenases (P450s) and carboxylesterases (CarE) carry out

phase I , g lutathione S-transferases (GSTs) and UDP-

glycosyltransferases (UGTs) phase II, and ATP-binding cassette

transporters (ABC) phase III (Nauen et al., 2022; Kennedy and

Tierney, 2013; Jin et al., 2019; Ullah et al., 2020). These enzymes

also work on endogenous substrates like hormones and lipids to carry

out additional physiological processes and housekeeping functions in

insects (Ketterman et al., 2011; Feyereisen, 2012). Host plant

utilization and dietary diversity have both been linked to elevating

detoxification enzyme activity and mRNA expression levels of related

genes (Adesanya et al., 2016; Jin et al., 2019; Israni et al., 2020). In

previous research, the increased P450 and GST activity have been

observed in lepidopteran larvae and plant-feeding hemipterans

feeding on non-preferred or less compatible plant species (Krieger

et al., 1971; Yu, 1983; Mullin, 1986; Adesanya et al., 2016; Hafeez

et al., 2021a). Similarly, higher P450 enzyme activity was observed in

the generalist caterpillar Spodoptera eridania after feeding on the

carrot, a non-preferred host plant compared to the lima bean, which

is a more favored host (Brattsten, 2012). In addition, a significant

variation in P450, CoE and GST activities in Bemisia tabaci and

Popillia japonica have been reported among different host plants that

are diverse in suitability (Xie et al., 2011; Adesanya et al., 2016). More

recent research suggests that a large number of P450 genes related to

detoxification enzymes from insects have been isolated and

characterized (Schuler, 2011; Berenbaum and Calla, 2021;

Berenbaum et al., 2021; Calla, 2021). For example, gossypol-

induced P450s genes CYP9A12, CYP9A14, and CYP9A98 showed
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high divergence in the mRNA level of Helicoverpa armigera and

Spodoptera exigua larvae (Tao et al., 2012; Hafeez et al., 2019).

CYP6B8 and CYP321A1 in the corn earworm, Helicoverpa zea, can

metabolize xanthotoxin, flavone, quercetin as well as a variety of other

phytochemicals, indicating that this insect species has evolved

systems for phytochemical detoxification (Sasabe et al., 2004;

Rupasinghe et al., 2007). Additionally, CYP6B1 and CYP6B3 in

Pailio polyxenes, which specializes on Rutaceae and Apiaceae, show

high efficiency in metabolism of furanocoumarins in its host plants

and CYP6AS could metabolize the flavonoid quercetin in Apis

mellifera (Mao et al., 2009). However, it is important to investigate

how selective or inducible enzyme systems could provide generalist

herbivores with an ecological opportunity to utilize secondary plant

compounds before expending metabolic costs for detoxification.

The fall armyworm (FAW), Spodoptera frugiperda is a damaging

insect that feeds on a variety of essential food crops, including maize

and rice (Machado et al., 2008; Gouin et al., 2017; Hafeez et al.,

2021a). Since 2016, this invasive pest has spread throughout Sub-

Saharan Africa, resulting in significant agricultural losses (Goergen

et al., 2016; Day et al., 2017; Kenis et al., 2022) and it has also made its

way into South Asia, including China, where it is also dispersing

rapidly across the region (Swamy et al., 2018; Li et al., 2020). Two

ecological strains of FAW have been recognized from natural

populations, the so-called corn and rice strains (Pashley, 1986;

Nagoshi et al., 2019). Corn strain insects are prevalent on grasses

such as maize and sorghum, while, insects belonging to the rice strain

appear to predominate on small grasses such as rice and Bermuda

grass. Although the two strains are identical physically in the field,

they do have distinct preferences for host plants and show signs of

reproductive isolation (Groot et al., 2010; Dumas et al., 2015). The

recent genome sequencing of this species has provided new insights

into how P450s function in vivo and how these enzymes and related

genes may be involved in the pest insect’s adaptive mechanism

(Gouin et al., 2017). Yet, the P450 enzymes and related genes

induced by this polyphagous pest insect for host plants adaptation

have not been characterized.

In this study, molecular characterization and functional analysis

of cytochrome P450-mediated detoxification gene involved in host

plant adaptation in S. frugiperda was examined after feeding on rice

and corn host plants for consecutive 33 generations. Tissues and stage

expression patterns of the CYP302A1 gene were also evaluated.

Additionally, we investigated how cytochrome P450-specific

detoxification enzyme led to larval mortality by PBO inhibitor

followed by feeding on rice and corn host plants. To determine if

the CYP302A1 gene functions in S. frugiperda host plant adaptation, a

functional study of the gene was carried out using RNA interference.
Materials and methods

During August 2019, larvae of S. frugiprda populations were

collected from two different corn fields in Ping Hu, Zhejiang

Province and maintained on corn seedlings in a climate control

chamber at 25 ± 2°C with a 14: 10 h light: dark photoperiod at

Zhejiang Academy of Agricultural Sciences, Hangzhou, China

according to (Hafeez et al., 2021a).
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Reagents

7-Ethoxycoumarin, 7-hydroxycoumarin, NADPH, and Piperonyl

butoxide were obtained from Sigma-Aldrich (St Louis, MO, USA).

Bovine serum albumin was purchased from Thermo Scientific

(Meridian Rd., Rockford, IL 61101, USA).
Insect rearing and host plant selection

Two populations were established to avoid any homogenization

effect. According to our previous study, the population was reared on

corn plants for 33 generations (Hafeez et al., 2021a). Larvae for

control treatment were reared on an artificial diet (Poitout and Bues,

1974). Both colonies were maintained in climate chambers at 27 ± 2°C

and 70%–75% relative humidity (R.H) under a 14: 10 light: dark

photoperiod until adult emergence. Each population was assigned a

code denoting its host plant (corn or rice).
Phylogenetic and bioinformatics analysis

We selected CYP302A1 as the representative gene to work on it

based on our previous research work (Hafeez et al., 2021a). The

protein sequence of S. frugieprda CYP302A1 was compared to other

insects’ publicly released protein sequences using Protein BLAST:

search protein databases using a protein query (nih.gov). Based on the

amino acid sequence, the protein isoelectric point (pI) and molecular

mass (kDa) were calculated using ExPASy: get pI/Mw. The MEGA 7.0

software (MEGA, Tempe, AZ, USA) was used to create a phylogenetic

tree based on multiple alignments of protein sequences performed by

ClustalW and using the neighbour-joining algorithm with bootstrap

values determined by 1000 replicates.
Tissues and stages expression analysis of
CYP302A1 by RT-qPCR

The differential mRNA expression level of the CYP302A1 gene in

different tissues of S. frugiperda larvae was analyzed after feeding on

rice and corn host plants. Samples such as midguts, fat bodies were

collected from larvae after feeding on rice, corn host plants and an

artificial diet as a control treatment for 72 h. Similarly, thoraxes, heads

and wings were collected from three days old adults respectively. A

total of 30 individuals were selected from each treatment with three

biological replicates (10 individuals per biological replicate). Three

biological replicates were used for each experiment. Total RNA was

extracted separately from all tissues (midguts, fat bodies, thoraxes,

heads as well as wings from larvae and adults of S. frugiperda) using

1mL of TRIzolTM (Invitrogen, Carlsbad, CA, USA) and cDNA was

prepared from total RNA using TransScript® OneStep gDNA

Removal and cDNA Synthesis SuperMix according to the

manufacturer’s instructions. The primer sequences used for the

candidate gene are listed in Table S1. Three biological replicates

and three technical replications for each cDNA sample were used for
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RT-qPCR analysis. The CFX96TM Real-Time PCR Detection System

(Bio-Rad Hercules, CA, USA) with the iTaq Universal SYBR Green

Supermix (BIO-RAD according to the manufacturer’s instructions

was used for RT-qPCR analysis. The relative levels of mRNAs were

quantified using three biological replicates and normalized using

GAPDH (GenBank: KC262638.1) and S30 (AF400225.1) as an

internal control according to the protocol described by (Bustin

et al., 2009). The fold changes were determined using the 2−DDCt

method followed (Livak and Schmittgen, 2001).
Measurement of P450 enzyme activity

Midguts collection and sample preparation
The midguts of the larvae were dissected at 48, 72 and 96 h after

feeding on the corn, rice plant and an artificial diet (Ck) as a control

treatment according to (Hafeez et al., 2021b). Larvae from each

treatment were cold immobilized and their midguts were separated

in 0.1 mol/L phosphate-buffered saline with pH 7.4. A total of 30

larval midguts were dissected and pooled for metabolic activity

experiments for each biological replicate and stored at −80°C until

enzymatic activity assays were performed.

Enzymatic activity of P450
Evaluation of P450 enzyme activity was carried out following the

protocol described by (Chen et al., 2018) with some minor

adjustments. According to the method described by (Chen et al.,

2018), the midguts enzyme activity of S. frugiperda larvae was

measured using 7-ethoxycoumarin (7-EC) as the substrate. The

midguts of thirty S. frugiperda 4th-instar larvae were homogenized

on ice with two millilitres of homogenization buffer 0.1 M PBS at pH

7.5. The supernatant from tubes of 2 millilitres that had been

subjected to centrifugation was collected and then used for P450s

activity assay. Immediately after the reaction, the concentration of 7-

hydroxycoumarin in the reaction mixture was determined by

employing a SPECTRA max GEMINI XS spectrofluorometer

(Molecular Devices, USA) and adjusting the excitation and

emission filters to 356 nm and 465 nm, respectively. At least three

separate experiments were carried out for each biochemical analysis

with different preparations of enzymes. The method described by

(Bradford, 1976) was utilized to get the results for the protein

concentration using bovine serum albumin as the standard protein.

The activity was recorded as nmol p-nitroanisole/min/mg protein.

Effect of piperonyl butoxide (PBO) on larval
mortality after feeding on host plants

To further confirm the possible role of metabolic detoxification

enzyme in S. frugiperda larvae to host plant adaptation. PBO solution

at the concentration of 50 mg/L was prepared in 1% (v/v) acetone. For

both rice and corn groups, acetone solution containing (1 mL) of PBO
was applied to the pronotum of each third instar larvae and 1% (v/v)

acetone only as a control using a hand applicator. Following a post-

treatment with PBO for twenty-four hours, the larvae were

transferred to the host plant treatments. Each independent plant

treatment (15-d-old corn and rice seedlings) had a total of 50 S.
frontiersin.org
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frugiperda larvae with 10 replicates (5 larvae per replicate). After

feeding on different rice and corn plants and control, the mortality

and larval mass were recorded at 48, 72, and 96 h. Each experiment

was triplicated.
Processes of preparing, quantifying, and
purifying double-stranded RNA

For dsRNA synthesis, CYP302A1 with a fragment size of 365bp

was amplified by PCR. The primers used for the CYP302A1

amplifications were designed to add the T7 polymerase promoter

sequence to the 5 ends of each strand (Table S1). Similarly, the DEPC-

treated water was used as a control treatment. The dsCYP302A1

template, which was generated through PCR and then purified, was

prepared following the instructions included in the T7 RiboMax

Express RNAi System Kit (Promega, Madison, WI, USA). The

MEGAclearTM Kit (Ambion, Austin, TX, USA) was used to purify

the resulting dsRNA. The quality of dsRNA was confirmed using 1.5%

agarose gel electrophoresis, and the concentration of the final dsRNA

of the target gene was measured using a NanoDrop®

spectrophotometer (Thermo Fisher, Waltham, MA, USA), then the

final dsRNA solution was frozen at -80 degrees Celsius until to use.
dsRNA feeding bioassays for mortality and
larval growth

In this study, we used the droplet-feeding method for RNAi to

prevent damage to S. frugiperda larvae as previously defined by

(Wang et al., 2018b; Hafeez et al., 2022). The dsRNA was first

diluted (250 mg/mL total volume of 500mL) in diethylpyrocarbonate

(DEPC)-treated water before dsRNA feeding experiments. One-day-

old 3rd-instar larvae from the Corn and Rice populations were

starved for 6 h before use for feeding bioassays. Starved larvae were

moved individually in sterilized 24-well tissue culture plates with 1 g

of artificial diet. A total of 1mL dsRNA solution (250 mg/mL) of target
CYP302A1gene was placed at the centre of each well using a 2- mL
pipette. After 24 h on an artificial diet with dsRNA solution, larvae

were transferred to host plant treatments. Similarly, the plants treated

with DEPC-treated water were used as a control treatment. Each

independent plant treatment had a total of 50 S. frugiperda larvae with

10 replicates (5 larvae per replicate). The larvae were transferred onto
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15-d-old corn and rice seedlings. For mortality analysis, the mortality

was recorded at 48, 72 and 96 h and total larval duration was assessed

until pupation after feeding on different rice and corn treatments and

control. Each experiment was repeated in triplicate.
RNA extraction and cDNA preparation
for RT-qPCR

The differential expression and knockdown of the CYP302A1

gene were studied to validate the function of CYP302A1 in host plants

adaptation. Larvae were fed on an artificial diet containing dsRNA

solution for 24 h, then transferred to the host plant and control

treatments for 48, 72 and 96 h. A total of 24 individual larvae were

selected and 8 larvae served as a biological replicate for each

treatment. Three independent biological replicates were used for

each experiment as described above.
Statistical analysis

SPSS 13.0 Software Package (SPSS Inc., Chicago, IL, USA) was

used to analyze all data including larval weight, larval growth, enzyme

activity and transcript levels of the CYP302A1 gene. Statistically

significant differences were determined by Student t-test and one-

way analysis of variance followed by Tukey’s HSD multiple

comparison tests (P < 0.05).
Results

Expression Profiling of the P450 Gene at
Developmental Stages and Tissues

Based on our previous research work (Hafeez et al., 2021a), we

found that P450 genes shows high expression. Among all the

upregulated P450 genes, we found that the CYP302A1 gene was a

highly up-regulated as compared to other P450 genes as well as FPKM

values showed the same expression pattern as compared to other

genes among different treatments (Table S2). The mRNA expression

level of the P450 gene CYP302A1 at various developmental stages and

different tissues of S. frugieprda was measured after rearing on rice

plants and corn plants for 33 generations respectively (Figure 1A).
BA

FIGURE 1

Developmental (A) and tissue-specific (B) expression pattern of Spodoptera frugiperda CYP302A1 after feeding on rice and corn plants. Real-time
quantitative RT-qPCR analysis was used to determine relative transcript levels. Data shown are mean ± SE. Treatments were compared using Student’s t
test. ** and *** represent P < 0.01 and P < 0.00, respectively.
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Results indicated that the expression level of the P450 gene

CYP302A1 was the highest in fifth-instar (rice plants; 10.7-fold)

larvae among developmental stages followed by fourth-instar larvae

(rice plants; 8.8 and corn plants; 3.7-fold), compared with the corn

plants (5th instar; 4.2-fold and 4th instar; 3.7-fold. whereas the

expression level of the CYP302A1 gene was the lowest at the first-

instar (2.6-fold) and pupal stage (0.25-fold) after rearing on rice

plants for 33 generations in comparison with corn plants (Figure 1A).

In addition, we analyzed the tissue distribution expression level of

P450 CYP302A1 gene (Figure 1B). The midguts and fat bodies were

dissected from fourth instar larvae and the different tissues were taken

from 3-d old adults (heads, thoraxes and wings) after rearing on rice

and corn plants for 33 generations respectively. The results showed

that the mRNA expressed level of CYP302A1 was the highest in the

midguts followed by fat bodies (6.7 and 2.8-fold) after rearing on rice

plants compared with midguts and fat bodies (3.9 and 1.6-fold) after

rearing on rice plants (Figure 1B). Whereas, the expression level of

CYP302A1 was the highest in thoraxes and heads with 3.1- and 2.2-

fold in the rice population compared with thoraxes and heads of the

corn population respectively (Figure 1B).
P450 enzyme activity assays of 4th

instar larvae

The purpose of this study was to investigate the potential role that

metabolic detoxification enzyme plays in the host plant adaptation

mechanism of S. frugiperda larvae. After 33 generations of rearing on

rice and corn plants, the activity of the cytochrome P450 enzyme

(P450s) in the midguts of 4th instar S. frugiperda larvae was evaluated.

Significantly enhanced P450 activity was observed in midguts of 4th

instar larvae after exposure to rice seedlings as compared to corn

seedlings and artificial diet (Figure 2). After exposure to rice and corn

plants, significantly increased activity of P450 enzyme was observed

in the midguts by 1.56, 2.56 and 2.38 as compared to corn plants 0.92,

1.21 and 1.34 at 48, 72 and 96h respectively (Figure 2). However, the

results suggest that the P450 enzyme plays a significant role in the

adaptation of S. frugiperda to its host plant.
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The effect of piperonyl butoxide (PBO) on
larval mortality

To further confirm the possible role of metabolic detoxification

enzyme in S. frugiperda larvae to host plant adaptation. PBO, a known

inhibitor of the P450 enzyme was added to the diet and fed to third-

instar larvae for 24 h followed by the exposure of rice and corn plants.

Results indicated that the mortality of larvae pretreated with PBO was

even significantly higher on rice plants as compared to the corn plant

(Figure 3). Whereas, the trend of mortality was significantly higher in

larvae pretreated with PBO followed by the exposure of rice plants at

72 and 96 h as compared with the larvae without treated of PBO

followed by the exposure of rice plants respectively (Figure 3). This

result suggesting a vital role of P450s in rice plant adaptation in

S. frugiperda.
CYP302A1 gene characterization
and phylogeny

The CYP302A1 sequence with an open reading frame (ORF) of

1518 bp long, which encodes a protein of 495 amino acid residues.

According to the translated amino acid sequence, CYP302A1 has a

theoretical pI value of 8.873 and a predicted mass of 58.84 kDa. The

alignment of the deduced amino acid sequence of S. frugiperda

CYP302A1 with members of the CYP321 family from other insect

species demonstrated that it possesses the conserved motifs and

conserved domains that are present in other P450 members

(Supplementary Figure 1). In the comparison between S. frugiperda

CYP302A1 and the putative amino acid sequences of Mamestra

brassicae, Spodoptera litura, Spodoptera littoralis, and Spodoptera

exigua, the S. frugiperda sequence shared the highest level of

similarity. (Figure 4).
FIGURE 2

Activity of P450 enzyme in midguts of the fourth-instar larvae of FAW
after feeding on rice and corn plants. The data were expressed as the
means ± SE. Treatments were compared using Duncan’s multiple
range test. * and ** represent P < 0.05 and P < 0.01, respectively.
FIGURE 3

The impact of piperonyl butoxide (PBO) on larval mortality of FAW. 1
mL of PBO was applied to the pronotum of each third instar larvae and
1% (v/v) acetone only as a control using a hand applicator for 24 h
followed by feeding on rice and host plants. After feeding on different
rice and corn treatments and control, mortality and larval mass were
recorded at 48, 72, and 96 h. Data shown are mean ± SE. Treatments
were compared using Student’s t test. * and ** represent P < 0.05 and
P < 0.01, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1079442
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hafeez et al. 10.3389/fpls.2022.1079442
Silencing of CYP302A1 by dsRNA

To assess whether the knockdown of detoxification CYP302A1

gene of S. frugiperda plays a significant role in host plant adaptation

(Figure 5). RNA-mediated down-regulation of this gene was

evaluated using early third-instar larvae feeding on rice and corn

plants. Pretreated larvae with dsRNA and DEPC-water treated plants

as control via droplet feeding using an artificial diet for 24 h followed

by feeding on rice and corn plants. Results showed significant down-

regulation of the expression levels of the dsCYP302A1 gene in the S.

frugiperda larvae after feeding on rice and corn plants compared with

the DEPC-water treated plants as control at 72 h (Figure 5).
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Silencing effect of dsCYP302A1 on larval
mortality, larval duration and weight gain

Results indicated that the down-regulation of the dsCYP302A1

significantly increased mortality of S. frugiperda larvae when larvae

were pretreated with dsRNA for 24 h followed by feeding on the rice

plants compared with the DEPC treated water plants as a control

treatment for 48 h (Figure 6A). On the other hand, no larval mortality

was observed of the corn plants when larvae were pretreated with

dsRNA for 24 h followed by feeding on the corn plants compared with

the DEPC treated water plants as a control treatment for 48 h

(Figure 6B). Similar trend was observed in larval mortality when

larvae were pretreated with dsRNA for 24 h followed by feeding on

the rice plants compared with the DEPC treated water plants as a
FIGURE 4

Phylogenetic analysis of Spodoptera frugiperda CYP302A1 and related P450s.
A phylogenetic tree was constructed by the neighbor joining (NJ) method
using Mega 7.0 software. The scale bar indicates 0.1 amino acid substitutions
per site. Bootstrap analysis was performed with 1000 iterations.
FIGURE 5

The relative mRNA transcript levels in the midguts of S. frugiperda
larvae after feeding on dsCYP302A1 DEPC-treated water for 72 h. Data
shown are mean ± SE. Treatments were compared using Student’s t
test. * represent P < 0.05.
B

C

A

FIGURE 6

Larval mortality of S. frugiperda larvae after treated with diet
containing dsCYP302A1and DEPC-treated water followed by feeding
on rice and host plants for 48 (A), 72 (B) and 96 h (C). Data shown are
mean ± SE. Treatments were compared using Student’s t test. * and **
represent P < 0.05 and P < 0.01, respectively.
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control treatment for 72 h and 96 h respectively (Figure 6C). Whereas,

no significant larval mortality was found when larvae were pretreated

with dsRNA for 24 h followed by feeding on the corn plants as

compared with the DEPC treated water plants as a control treatment

for 72 h and 96 h (Figure 6C).

The silencing effect of the CYP302A1 gene on the S. frugiperda

larval development and weight gain was evaluated after exposure to a

dsRNA-treated diet and DEPC-treated diet as a control for 24 h

followed by the feeding rice and corn plants. Our results showed that

larval duration significantly increased when early third instar larvae

were exposed to dsRNA-treated diets of dsCYP302A1 for 24 h

followed by the feeding rice plants at 72 h (Figure 7A). While, no

significant effect on larval duration was observed when early third

instar larvae exposed with dsRNA-treated diets of dsCYP302A1 for

24 h followed by the feeding corn plants at 72 h (Figure 7A). Similarly,

significantly decreased of the larvae weight gain was found when early

third instar larvae exposed with dsRNA-treated diets of dsCYP302A1

for 24 h followed by the feeding rice plants at 72 h (Figure 7B). While

no significant effect on larval weight gain was observed when early
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third instar larvae exposed with dsRNA-treated diets of dsCYP302A1

for 24 h followed by the feeding rice plants at 72 h (Figure 7B).

Further results indicated that fewer rice plants were consumed when

early third instar larvae were exposed to dsRNA-treated diets of

dsCYP302A1 for 24 h followed by the feeding rice plants compared

with corn plants and DEPC treated diet as control at 72 h

(Supplementary Figures 2A–D).
Discussion

Herbivorous insects and their host plants use signals from each

other to intensify reciprocal responses (Rashid War et al., 2018;

Yactayo-Chang et al., 2020a). Upon attack by herbivorous insects,

plants increase the synthesis of defensive compounds such as

phytochemicals and proteins to fend them off (Zhu-Salzman and

Zeng, 2015; Yactayo-Chang et al., 2020b). In response, herbivores

have to evolve diverse strategies to overcome several challenges, to

thrive on chemically defense compounds present in their host plant
B

A

FIGURE 7

Larval weight (A) and larval duration (B) of S. frugiperda larvae after treated with diet containing dsCYP302A1and DEPC-treated water followed by feeding on
rice and host plants. Data shown are mean ± SE. Treatments were compared using Student’s t test. * and ** represent P < 0.05 and P < 0.01, respectively.
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tissues by increasing the activity of their counteroffensive digestive

and detoxification mechanism (Heidel-Fischer and Vogel, 2015b;

Rashid War et al., 2018; Hafeez et al., 2021b).

In this study, we reported the characterization and functional

analysis of the detoxification gene CYP302A1 and how S. frugieprda

larvae use a detoxification mechanism to adapt host plants. The

functional and evolutionary diversification of insect P450s was likely

a key factor in accelerating the unprecedented success of insects

(Feyereisen, 2006b; Zhu et al., 2018). The deduced amino acid

sequence of S. frugiperda CYP302A1 aligned with other insect

CYP321 family members showed that it has conserved motifs and

domains (Wang et al., 2017). In previous studies, it has been shown that

P450 expression profiles vary dramatically during different

developmental stages in most insects (Feyereisen, 2006b; Wang et al.,

2018a). Similarly, it has been reported that the midgut fat bodies and

Malpighian tubules are frequently associated with higher P450 activity

(Hu et al., 2014;). In addition, the midgut is a highly crucial organ in the

process of detoxification, and the genes that code for the detoxification

enzymes involved in this process are frequently highly regulated in this

organ (Feyereisen, 2006a; Hafeez et al., 2022). In this study, we

investigated the expression profile of CYP302A1 in different tissues

and developmental stages of S. frugiperda by quantitative RT-qPCR.

Similar to the expression patterns of CYP6B48, CYP658, and CYP321B1

in S. litura larvae, which may potentially be involved in the plant

allelochemicals metabolism, our findings demonstrated that CYP302A1

expression levels were much higher in the midgut tissue and the older S.

frugiperda larvae. Similarly, the elevated expression level of CYP321E,

CYP321A8, CYP321A9, and CYP321B1 genes was reported in midguts

and fat bodies of P. xylostella and S. frugiperda (Bai-Zhong et al., 2020).

The enhanced expression level observed in midgut tissue and late larval

instars could be attributed to a greater need for xenobiotic

detoxification at this stage due to increased feeding activity

(Feyereisen, 2006a; Wang et al., 2015; Israni et al., 2020). Tissue-

specific expression levels of the CYP302A1 gene in S. frugiperda further

suggest that CYP302A1 could be involved to adapt the host plant by

detoxifying the plant xenobiotics.

Utilization of a large diversity of host plants and diet variability

increase detoxifying enzyme activity in insect herbivores (Ahmad,

1983; Adesanya et al., 2016; Erb and Reymond, 2019). Elevated

enzyme activities may be induced by the variety of phytochemicals

present across the host pant range (Feyereisen, 2005). Our current

studies revealed the enhanced P450 activity in the midguts of S.

frugiperda larvae after exposure to rice plants as compared to corn

plants and an artificial diet. Our findings are consistent with those of

earlier studies; for instance, consumption of a non-preferred host

plant by caterpillars of the Spodoptera eridania species and adult

Japanese beetles induced higher P450 enzyme activities in comparison

to the consumption of a more preferred host plant (Brattsten, 2012;

Adesanya et al., 2016). Similarly, variation in P450 activities among

five host plants that varied in suitability has been reported in Bemisia

tabaci (B-biotype), a generalist whitefly (Xie et al., 2011). To further

confirm the possible role of metabolic detoxification enzyme in S.

frugiperda larvae to host plant adaptation, higher mortality was

observed in pretreated larvae with PBO followed by the exposure of

rice plants as compared to the corn plants. Our results are consistent

with (Wu et al., 2021) who reported higher mortality of H. armigera

larvae pretreated with PBO after exposure to plant volatile than
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control. Though, selective or inducible enzyme systems could

provide generalist herbivores with an ecological opportunity to

adapt to diverse host plants. This could be accomplished by

generalist herbivores using secondary compounds present in their

host plants before expending metabolic resources on detoxification.

Functional analysis of important genes has extensively been

studied in insects using the RNAi technique (Kim et al., 2015; Choi

and Vander Meer, 2019; Adeyinka et al., 2020; Hafeez et al., 2021b;

Ullah et al., 2022). To further investigate if the host-plant-induced

gene CYP302A1 is involved in host-plant adaptation, we fed

dsCYP302A1 to S. fugiperda larvae to study the knockdown effects

of the target gene on mortality and growth parameters. The dsRNA of

target gene-fed larvae significantly showed reduced CYP302A1mRNA

expression level in the midgut followed by the exposure of rice plant as

compared to the corn plant and DEPC-water treated plants as a

control. Similar to our findings, RNAi-triggered CYPAB14, CYPA98,

CYP321A7 and CYP6B8 genes downregulation through uptake of

dsRNAs have been documented for other insect species (Li et al.,

2000; Mao et al., 2011; Hafeez et al., 2019; Hafeez et al., 2022). Present

results indicate that the dsRNA-mediated knockdown of CYP302A1 in

the S. frugieprda larvae lead to higher mortality after feeding rice plant

as compared to the corn plant and DEPC-water treated plants as

control at 72 and 96 h. Our results provide the advocacy of previous

findings by (Hafeez et al., 2019) who reported that silencing of

CYP6AB14 and CYP9A98 genes in S. exigua larvae followed by

feeding on 0.1% gossypol caused larval mortality. Similarly, silencing

of HaAK gene in H. armigera using RNAi-mediated transgenic plant

increased larval mortality when larvae were fed on the leaves of the

transgenic plant (Liu et al., 2015). In previous reports, it has been

documented that silencing of the CYP6AE14 gene in H. armigera

larvae and CYP6AB14 and CYP9A98 genes in S. frugiperda larvae by

transgenic plant-mediated RNAi retarded larval growth and weight

(2011; Mao et al., 2007; Tao et al., 2012; Hafeez et al., 2022). Similarly,

the results obtained in the present work also indicated that the RNAi-

mediated knockdown of the CYP302A1 gene increased larval

mortality, reduced the larval weight and developmental time after

exposure to a dsRNAs-supplemented diet with subsequent feeding on

host plants as compared to the control.
Conclusion

In this study, we provide evidence that the insect P450

monooxygenases play a key role in host plant adaptation by

detoxifying plant defense compounds. In the current study, tissue-

specific expression levels of the CYP302A1 gene in S. frugiperda

further advocate that CYP302A1 might be involved to adapt host

plants. We revealed the enhanced P450 activity in the midguts of S.

frugiperda larvae after exposure to rice plants as compared to corn

plants and an artificial diet. These results concluded that the inducible

enzyme system and related genes, however, could provide herbivores

with an ecological opportunity to adapt diverse host plants by

utilizing phytotoxins present in their host plants. We reported that

the dsCYP302A1 caused mortality and had harmful effects on the

growth and development of S. frugiperda larvae before exposure to

dsRNA followed by the feeding on host pants. The harmful effects

would be magnified if RNAi targeted multiple genes involved in the
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P450 complex system. Further studies are needed to explore more

P450 genes using RNAi-based approaches against insect pests for

crop protection based on a recently developed genetic tool.
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