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Genome-wide association and
genomic prediction for resistance
to southern corn rust in DH and
testcross populations
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Yuwen Wang1, Yu Zhong1, Xiaolong Qi1, Zongkai Liu1,
Dong Wang1, Yuandong Wang2, Wenxin Liu1, Chenxu Liu1*

and Shaojiang Chen1*

1National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization
Ministry of Education (MOE), China Agricultural University, Beijing, China, 2Maize Research Institute,
Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
Southern corn rust (SCR), caused by Puccinia polysora Underw, is a destructive

disease that can severely reduce grain yield in maize (Zea mays L.). Owing to P.

polysora being multi-racial, it is very important to explore more resistance genes

and develop more efficient selection approaches in maize breeding programs.

Here, four Doubled Haploid (DH) populations with 384 accessions originated from

selected parents and their 903 testcross hybrids were used to perform genome-

wide association (GWAS). Three GWAS processes included the additive model in

the DH panel, additive and dominant models in the hybrid panel. As a result, five

loci were detected on chromosomes 1, 7, 8, 8, and 10, with P-values ranging from

4.83×10-7 to 2.46×10-41. In all association analyses, a highly significant locus on

chromosome 10 was detected, which was tight chained with the known SCR

resistance gene RPPC and RPPK. Genomic prediction (GP), has been proven to be

effective in plant breeding. In our study, several models were performed to explore

predictive ability in hybrid populations for SCR resistance, including extended

GBLUP with different genetic matrices, maker based prediction models, and mixed

models with QTL as fixed factors. For GBLUP models, the prediction accuracies

ranged from 0.56-0.60. Compared with traditional prediction only with additive

effect, prediction ability was significantly improved by adding additive-by-additive

effect (P-value< 0.05). For maker based models, the accuracy of BayesA and

BayesB was 0.65, 8% higher than other models (i.e., RRBLUP, BRR, BL, BayesC).

Finally, by adding QTL into the mixed linear prediction model, the accuracy can be

further improved to 0.67, especially for the G_A model, the prediction

performance can be increased by 11.67%. The prediction accuracy of the BayesB

model can be further improved significantly by adding QTL information (P-value<

0.05). This study will provide important valuable information for understanding the

genetic architecture and the application of GP for SCR in maize breeding.
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1 Introduction

Southern corn rust (SCR) caused by Puccinia polysora Underw, is

one of the most devastating maize diseases, widely distributed in Asia,

America, Africa and other major corn production areas (Sun et al.,

2021). SCR was first reported by Underwood in 1897 in the USA

(Underwood, 1897) and observed in most tropical and temperate

maize-growing areas of the world in subsequent decades (Orian, 1954;

Duan and He, 1984). The invasiveness of leaves and stems of maize

resulted in yield losses of up to 50% (Rhind et al., 1952; Liu andWang,

1999). The wide distribution, long-distance migration, multiple

physiological races and fast evolution made SCR difficult to be

controlled, causing great grain yield losses (Sun et al., 2021). With

climate change, SCR tends to further increase and expand to higher

latitudes regions (Ramirez-Cabral et al., 2017).

The breeding of SCR resistant varieties is very important for

disease management, which poses challenges for breeders. In China,

several main cultivated corn varieties, such as Zhengdan958,

Xundan20 and Xianyu335, have been identified to be susceptible to

SCR (Yuan et al., 2010). Indeed, Wang et al. (Wang et al., 2006)

investigated the resistance of 178 corn varieties to SCR, and reported

that only 14% of varieties were highly resistant to SCR. On the other

hand, Zhou et al. (Zhou et al., 2017) identified several highly resistant

germplasms, such as DH02, Zheng39, T2 and JH3372. In addition,

some inbred lines such as AFR024 (Storey and Howland, 1957),

Qi319 (Chen et al., 2004), CML470 (Yao et al., 2013), J2416K (Wang

et al., 2020) were also found to be resistant germplasm. The discovery

of these germplasms not only improved the variety resistance by

breeding, but also provided the basis for gene detection.

Based on geographic distribution, more than 10 physiological

races of P. polysora have been identified, including EA.1, EA.2, EA.3,

and PP.3-PP.9 (Ryland and Storey, 1955; Storey and Howland, 1957;

Robert, 1962; Ullstrup, 1965). Owing to the rapid development of

genetics, so far, several unique, major, race-specific SCR-resistance

genes have been reported. Rpp1, a fully dominant gene, was identified

as a resistance gene to P. polysora races EA.1 and EA.3; Rpp2, a

partially dominant gene closely linked with Rpp1, was resistant to

races EA.1, EA.2, and EA.3; Rpp9, a single dominant gene on 10.01

bin, was resistant to race PP.9 (Storey and Howland, 1959; Storey and

Howland, 1967). It is noteworthy that Rpp9 is closely linked, with a

genetic distance of 1.5 cM, to a common rust resistance gene rp1, but

its genomic location had not been confirmed (Ullstrup, 1965). In

recent years, more resistance loci on chromosome 10 have been

detected, including RppP25 (Liu et al., 2003), RppQ (Chen et al.,

2004), RppD (Zhang et al., 2009), RppC (Yao et al., 2013), Rpp12

(Zhang, 2013), RppS (Wu et al., 2015), RppM (Wang et al., 2020),

qSCR6.01 (Lu et al., 2020), RppCML496 (Lv et al., 2021), RppK (Chen

et al., 2022).

Genome-wide association study (GWAS), which is based on

genetic linkage disequilibrium (LD) in a panel including a large

number of genotypes representing broadly natural variations, has

been used as an alternative approach for exploring the molecular basis

and identifying SNPs of complex quantitative traits (Yu and Buckler,

2006). In maize, GWAS has been successfully utilized to identify

numerous candidate loci/genes controlling disease resistance, such as
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head smut (Wang et al., 2012) common rust (Kibe et al., 2020; Ren

et al., 2021), rough dwarf (Zhao et al., 2021), ear rot (Guo et al., 2020),

gray leaf spot (Mammadov et al., 2015), etc. For SCR, eight SNPs were

identified as significant loci using GWAS with a panel of 164 maize

inbred lines in previous studies (Souza Camacho et al., 2019). The

results of these studies provide valuable information on

understanding the mechanism of disease resistance and breeding

superior varieties.

Genomic prediction (GP), also known as genomic selection (GS),

is a technology to predict the performance of plants without

phenotyping, and has been proven to be effective in plant breeding

(Meuwissen et al., 2001; Cerrudo et al., 2018). Gowda et al. (Gowda

et al., 2015) successfully modeled the resistance of lethal necrosis

disease in tropical maize germplasm with ridge regression best linear

unbiased prediction (RRBLUP). For common rust, GP accuracies

observed in the GWAS panel and Doubled Haploid (DH) population

were 0.61 and 0.51 (Ren et al., 2021). For goss’s wilt, the GP model

was trained with an accuracy of 0.69 (Cooper et al., 2019). However,

in maize hybrids, there are few cases of genomic prediction for

disease resistance.

In this study, four DH populations with 384 accessions and their

testcross hybrids with 903 accessions were used to perform GWAS

and GP analyses for SCR resistance. The objectives of the current

study were to (1) detect the significantly associated SNPs, and major

QTL conferring SCR resistance; (2) predict SCR resistance trait with

different GBLUP models; (3) test the predictive power of different

marker-based models for resistance trait; and (4) estimate the GP

accuracies using models with QTL information.
2 Materials and methods

2.1 Plant materials

A total of 384 DH lines belonging to four DH populations were

developed from four elite inbred lines (Table 1) in BeiJing (N40°08’

E116°10’) in 2017. The founders of the four DH populations were

C783 × C229, C783 × UH306, C783 × EH, C229 × UH306,

respectively, and we named them as POP1-4. The quantities of DH

lines in POP1-4 are 66, 107, 127, and 77, respectively. Then, we

testcross each population with three testers, yielding a total of 903

hybrids (Table 1). Thus, the hybrid population is divided into 12

subgroups with quantities ranging from 40 to 119.

To test the SCR infection levels of the accessions, we planted the

DH lines and hybrids in Huang-Huai-Hai summer corn planting

region in China for phenotypic identification. This region is the main

area where SCR occurs in China due to high temperature and rainy

summer. The DHs were planted in Jinan (N37°42’ E117°27’) in 2021,

Xinxiang (N35°9’ E113°47’) in 2018 and 2021; the hybrids were

planted in Jinan in 2021, Jining (N35°6’ E116°31’) in 2020 and

2021, Xinxiang in 2020. We used the augmented experimental

design, setting every 20 accessions as a block. Each block consisted

of 19 rows and standard accessions were planted in random order. For

the DHs, the standard accession was a susceptible inbred line C116A.

For the hybrids, the standard accession was a susceptible commercial
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hybrids ZhengDan958. In the field, each accession was planted in a

one-row plot for DHs and a two-row plot for hybrids at a spacing with

0.6 x 0.25 m spacing (66,000 plants per hectare).
2.2 Southern corn rust resistance score
(SCRRS) collection

SCRRS for each accession was visually collected from the leaf area

covered by lesions at 4 weeks after flowering (Figure 1A). A rating

scale of 1 corresponds to severe infection covering > 75% of the leaf

surface, 3 corresponds to moderate-to-severe infection covering 50–

75% of the leaf surface, 5 corresponds to moderate infection covering

25–50% of the leaf surface, 7 corresponds to weak to moderate

infection covering 10–25% of the leaf surface, and 9 corresponds to

high resistance covering 0–10% of the leaf surface (Ren et al., 2021).
2.3 Phenotypic data analysis

The raw phenotypic data were analyzed using the linear mixed

model with an R add-on package “lme4” (Bates et al., 2014). Best

linear unbiased predictors (BLUPs) were calculated for DHs and

hybrids. In the model,

yij = m + gi + lj + gi � lj + ϵ

where, yij is the mean phenotypic value of the ith DH or hybrid in the

jth environment;
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m is the overall mean of the trait; gi is the random effect of the ith

accession; lj is the random effect of the jth environment; gi×lj is the

random interaction effect between the ith accession and the jth

environment; and ϵ is the random error.

Heritability was calculated using variance components estimated

from the above model. The following equation was used to estimate

heritability on an individual plot basis,

H2 =
Vg

Vg +
Ve
l

Where Vg is the genotypic variance component, Ve is the error

variance, and l is the number of environments.
2.4 Genotyping and genotypic data analysis

Young leaves of all the DHs and the tester lines were sampled for

DNA extraction using the CTAB method (Porebski et al., 1997).

Then, genotyping was conducted using the Maize-6H-60K SNP chip

(Tian et al., 2021). SNPs with minor allele frequency (MAF) > 0.05

and per locus missing rate< 0.1 were filtered out using plink 1.90

(http://www.cog-genomics.org/plink2/). The genotypes of hybrids

were obtained with the cleaned SNPs (N=34,037) of DHs and

testers using TASSEL V5.2 software (Bradbury et al., 2007).

Pairwise measures of linkage disequilibrium (LD) were performed

to analyze the squared allele‐frequency correlation coefficient (r2)

between two loci using plink software. Only SNPs with a MAF > 0.05

and less than 0.1 missing data were used to estimate LD. Principal
FIGURE 1

Southern Corn Rust Resistance Score (SCRRS) and its distribution. (A) The manifestation of susceptible leaves, the SCRRS of leaves were 9, 7, 5, 3, 1 from
left to right. (B) the SCRRSs in DH founders and testers. (C) The distribution of SCRRS in DH (top) and hybrid (bottom) populations.
TABLE 1 Summary of extended GBLUP models with different relationship matrices.

Model Additive Dominance Epistasis

G_A Ga

G_D Gd

G_A_D Ga Gd

G_A_AA Ga Ga#Ga

G_A_AD Ga Ga#Gd

G_A_DD Ga Gd#Gd

G_A_D_E Ga Gd Ga#Ga, Ga#Gd, Gd#Gd
#, Hadamard products to compute the epistatic matrices terms.
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component analysis (PCA) was used to assess the level of genetic

structure using TASSEL software.
2.5 Genome wide association study

Genome wide association analysis was performed with the BLUPs

obtained from the combined analysis for the DHs and hybrids. A

Fixed and Random Model Circulating Probability Unification

(FarmCPU) method, as proposed by Liu et al. (Liu et al., 2016) was

applied in GAPIT V3 software (Wang and Zhang, 2021). Two genetic

models, additive and dominant, are used for the hybrids panel, and

only the additive model was used for the DH panel. Under the

additive model, homozygous genotypes with recessive allele

combinations were coded as 0, homozygous genotypes with

dominant allele combinations are coded as 2, and heterozygous

genotypes were coded as 1. Under the dominant model, both types

of homozygous genotypes are coded as 0 and heterozygous genotypes

were coded as 1. The Bonferroni testing was used to determine the

genome-wide significance thresholds (0.05/34,034 = 1.47 × 10−6),

where 34,037 is the total number of SNP markers (Holm, 1979).

Markers whose P-values passed the threshold were identified as

candidate loci. Unlike natural material populations, such as the

artificial DH population or testcross hybrid population, which had

a high LD level, our candidate intervals were selected according to LD

decay and LD block. Makers with a physical distance of<20 Mb and in

high LD (r2 ≥ 0.8) were considered to mark the same genomic region

(Mayer et al., 2020). The corresponding candidate region was

described by the positions of the first and last maker, respectively.
2.6 Genomic prediction

The Genomic prediction was performed for the hybrid panel with

three conditions, including 1) extended GBLUP models, 2) maker

based prediction methods, and 3) prediction models with QTL

calculated by GWAS as fixed effects.

For extended GBLUP models, which comprised additive (Ga),

dominant (Gd) and epistatic relationship matrices. Ga and Gd

matrices were calculated using the “sommer” package in R

(Covarrubias-Pazaran, 2016). The epistatic matrices terms were

computed using Hadamard products (i.e., cell-by-cell product

denoted as “#”) of the following form: (i) additive-by-additive

interactions (Ga#Ga); (ii) dominance-by-dominance interactions

(Gd#Gd); and (iii) additive-by-dominance interactions (Ga#Gd),

respectively (Muñoz et al., 2014). In total, six GBLUP models were

used in this study (Table 1). The programs were implemented in the

“BGLR” package in R (Pérez and De Los Campos, 2014). The

extended GBLUP models can be described as
Fron
Model(G_A): y=1nm+Gaua+ϵ
Model(G_D): y=1nm+Gdud+ϵ
Model(G_A_D): y=1nm+Gaua+Gdud+ϵ
Model(G_A_AA): y=1nm+Gaua+Gaauaa+ϵ
Model(G_A_AD): y=1nm+Gaua+Gaduad+ϵ
Model(G_A_DD): y=1nm+Gaua+Gddudd+ϵ
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Model(G_A_D_E): y=1nm+Gaua+Gdud+Gaauaa+Gaduad

+Gddudd+ϵ
where y is the vector of phenotypic data; 1n is the n-dimensional

vector of ones; m is the overall mean; ua, ud, uaa, uad, udd are the

vectors of random effects for additive, dominant, additive-by-additive,

additive-by-dominance and dominance-by-dominance effects

assumed to obey the normal distributions N(0, Gas 2
a ), N(0, Gds 2

d ),

N(0, Gaas 2
aa), N(0, Gads 2

ad) and N(0, Gdds 2
dd), respectively; Ga, Gd,

Gaa, Gad and Gdd are the genomic relationship matrices

corresponding to additive, dominance, additive-by-additive,

additive-by-dominance and dominance-by-dominance genotypic

values, respectively.

We also performed maker based prediction models including

RRBLUP (Whittaker et al., 2000), BRR (Pérez and De Los Campos,

2014), BL (Park and Casella, 2008), BayesA-C (Meuwissen et al.,

2001b). The RRBLUP method is based on a restricted maximum

likelihood (REML) approach to ridge regression, we performed it by R

package “rrBLUP” (Endelman, 2011). Meanwhile, we also used Bayes-

based methods to fit models, containing different prior densities, i.e.,

Gaussian (BRR), Double exponential (BL), Scaled-t (BayesA), Scaled-t

mixture (BayesB), Gaussian mixture (BayesC) in BGLR package

(Pérez and De Los Campos, 2014). The basic model is,

y = 1nm + Za + ϵ

where y is the vector of phenotypes; 1n is the n-dimensional vector of

ones; m is the overall mean,; a is a vector of random regression

coefficients of all the marker effects; Z is an genotypic matrix for

markers; and ϵ is a vector of residuals. The alternative methods

discussed here differ primarily in their specific prior used for a. For
RRBLUP, a~N(0, Is 2

a ) and s 2
a has a scaled inverse chi-square

distribution. For BayesA, the unconditional distributions of the

marker effects follow identical and independent univariate t

distributions, each with mean zero. BayesB employs a mixture

distribution that includes a point of mass at zero and a univariate

scaled t distribution. The assumption of BayesC is that each marker

effect is zero with probability p and follows a univariate normal

distribution with probability (1 − p) having mean zero and variance

s 2
j , which has a scaled inverse chi-square distribution.

To further improve the prediction ability, we added QTL into the

mixed linear model as fixed factors. Two representative models were

selected, namely G_A and BayesB. We added additive localization

maker and dominant localization maker obtained by GWAS into the

model separately or together, including G_A_qa (G_A with additive

GWAS SNPs), G_A_qd (G_A with dominant GWAS SNPs),

G_A_qad (G_A with additive and dominant GWAS SNPs),

BayesB_qa (BayesB with additive GWAS SNPs), BayesB_qd

(BayesB with dominant GWAS SNPs), BayesB_qad (BayesB with

additive and dominant GWAS SNPs). When the prediction was

performed with additive QTL, homozygous genotypes with

recessive allele combinations were coded as 0, homozygous

genotypes with dominant allele combinations were coded as 2, and

heterozygous genotypes were coded as 1. When the prediction was

performed with dominant QTL, both types of homozygous genotypes

were coded as 0 and heterozygous genotypes were coded as 1. The

models can be described as,
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Fron
Model(G_A_qa): y=XQTLaba+Gaua+ϵ
Model(G_A_qd): y=XQTLdbd+Gaua+ϵ
Model(G_A_qad): y=XQTLadbad+Gaua+ϵ
Model(BayesB_qa): y=XQTLaba+Zaa+ϵ
Model(BayesB_qd): y=XQTLdbd+Zad+ϵ
Model(BayesB_qad): y=XQTLadbad+Zaad+ϵ
where y is the vector of phenotypes; XQTLa, XQTLd, XQTLad are

incidence matrices of additive localization makers, dominant

localization makers and both, respectively; ba, bdand bad are

vectors of fixed effects for XQTLa, XQTLd and XQTLad, respectively;

Ga is the genomic relationship matrix corresponding to additive

genotypic values; Z is a genotypic matrix for all markers; a is a

vector of random regression coefficients of all the marker effects; and ϵ

is a vector of residuals.

In this study, we used a five-fold cross validation approach to assess

the ability of the tested GP models. Prediction accuracy was quantified

using two methods, 1) the Pearson correlation between the input trait

values and the genomic estimated breeding values (GEBVs) predicted

from a given GSmodel evaluated in the test set, 2) the number of top 20%

accessions intersections selected by GEBVs and true values derived by the

total number of accessions in the test set. The process was repeated 100

times to eliminate the prediction error.
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2.7 Statistical analysis

Data analysis was carried out with R software (Version 3.6.2).

Microsoft Excel for Mac (Version 16.50) was used for collation of

phenotypic data. Tukey’s test and Students’ t-test were performed to

assess the significance of differences between values, and P < 0.05 was

considered to be statistically significant.
3 Results

3.1 Phenotypic variations and heritability

We evaluated the SCRRS in 384 DH lines and 903 hybrids under

three and four environments, respectively. The results indicated that

there were abundant phenotypic variations within each panel

(Figures 1B, C). The descriptive statistics for each population are

presented in Table 2. For DH founders, C229 and UH306 showed the

highest and lowest SCRRSs, which were 5.90 and 4.89 respectively. In

the DH panel, the SCRRS ranged from 4.10–7.06, and POP1 showed

significantly high resistance to SCR (Tukey-test, P<0.05), with the

mean SCRRS was 6.02. In the hybrid panel, the scores ranged from

3.65 to 6.08, with a mean of 4.97. The most resistant subgroup was

POP2/C229, with the mean SCRRS was 5.39. In particular, the DHs
TABLE 2 Descriptive statistics, variance components, and broad-sense heritability (H2) of southern corn rust resistance.

Subgroup DH Founder Tester NO. Min Max Mean SD Tukey-test
Variance components

H2

s2
g s2

ge s2
e

POP1 C783, C229 66 4.73 7.06 6.04 0.49 c

0.98 0.16 1.62 0.64
POP2 C783, UH306 107 4.73 6.75 5.59 0.44 b

POP3 C783, EH 127 4.1 6.13 5.28 0.46 a

POP4 C229, UH306 77 4.1 6.56 5.17 0.57 a

DH Mean 94 4.42 6.63 5.52 0.49

POP1/C116A C783, C229 C116A 51 4.11 5.89 5.09 0.58 cd

0.64 1.14 2.16 0.54

POP1/EH C783, C229 EH 40 3.89 5.61 4.83 0.41 bc

POP1/J2416 C783, C229 J2416 52 3.89 6.08 5.01 0.56 c

POP2/C116A C783, UH306 C116A 87 3.89 5.58 4.7 0.37 ab

POP2/C229 C783, UH306 C229 80 4.14 5.85 5.39 0.31 e

POP2/Z58 C783, UH306 Z58 90 4.11 5.86 5.00 0.38 c

POP3/C116A C783, EH C116A 111 3.67 5.86 4.67 0.45 ab

POP3/C229 C783, EH C229 102 4.21 5.85 5.31 0.34 de

POP3/Z58 C783, EH Z58 119 3.65 5.86 4.93 0.44 c

POP4/C116A C229, UH306 C116A 51 4.17 5.64 4.95 0.45 c

POP4/C783 C229, UH306 C783 59 4.77 5.62 5.33 0.26 de

POP4/J2416 C229, UH306 J2416 61 3.68 5.4 4.48 0.41 a

Hybrid Mean 75 4.02 5.76 4.97 0.41
frontiers
NO., the accession number of each subgroup.
SD, standard deviation.

Tukey-test, significant at P< 0.05. s 2
g , genotypic variance. s 2

ge, genotype × environment interaction variance. s 2
e , error variance.

H2, broad-sense heritability.
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and hybrids were planted at different locations, so we didn’t make a

comparison between the two panels. The broad-sense heritability (H2)

analysis revealed that the H2 in the DH panel and the hybrid panel

were 0.64 and 0.54, respectively, suggesting that the phenotypic

variation in the two panels was genetically controlled.
3.2 Genotype and population
structure analysis

After marker quality control (see Materials and Methods), 34,037

SNP markers for 384 DH genotypes were available for further

analysis. The 903 hybrid genotypes were imputed by their parents.

The molecular diversities among the DH lines and hybrids were

examined by applying principal coordinate analysis (Figures 2A, B).

There were 4 subgroups in the DH population, among which POP2

and POP3 were relatively close, possibly because they share a

common parent C783 and another parent EH were closely related

to UH306. In the hybrid panel, three subgroups were observed,

including hybrids using C116A as the tester, Z58 as the tester, DH

founders or J2416 as the testers. The LD was estimated for the two

panels using SNPs. The LD rapidly decreased with increasing the

physical distance between SNPs (Figure 2C), but the decay rate varied

among the two panels. At r2 = 0.2, the mean LD decay was about 20

Mb and 5 Mb for the DH panel and the hybrid panel.
3.3 Genome wide association study

Three GWAS processes were performed using the FarmCPU

method, including additive GWAS in the DH panel, additive

GWAS in the hybrid panel and dominant GWAS in the hybrid

panel. The quantile–quantile (q–q) plot implied that the population

structure and family relatedness were well controlled in the three

GWAS jobs (Figures 3B, D, F). One SNP (AX-107958879) on

chromosome 10 significantly associated with the SCRRC trait was

identified at P< 1.47 × 10−6 in the DH panel, with effect value was

-0.25 (Figure 3A and Table 3). LD analysis suggested candidate region

was 1,150,363–3,990,150 bp, which overlapped the previously

reported gene RPPC or RPPK (Supplementary Figure 1). For the

additive GWAS in hybrids, three significant SNPs (AX-90698604,

AX-108029030, AX-108089672) were detected, with -log10 (P)
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ranging from 6.30 to 40.61. These SNPs were distributed on

chromosomes 1, 8 and 10, with the candidate regions Chr1:

181,330,348-188,255,567, Chr8: 13,140,413-18,429,572, Chr10:

2,656,837-4,990,741, respectively (Figure 3C and Table 3). The

effects of them were 0.24, 0.22 and -0.54. For dominant GWAS in

the hybrid panel, three SNPs (AX-107981937, AX-108109448, AX-

108089672) on chromosomes 7, 8 and 10 significantly associated, with

-log10 (P) were ranged 7.17-37.12, the effects were -0.16, 0.14 and -0.5

(Figure 3E and Table 3). Their candidate regions were suggested as

Chr7: 13,581,102-23,774,017, Chr8: 167,766,262-168,856,337, Chr10:

2,656,837-4,990,741. The QTL on chromosome 10 obtained by the

three GWAS processes were identified as the same region using LD

analysis (Supplementary Figure 1).
3.4 Genomic prediction with the different
marker density, and training population size

The effect of marker density and training population size on the GP

accuracy is shown in Figure 4. For marker density, the prediction

accuracy increased as the number of markers increased. The prediction

accuracy increased rapidly when the number of markers increased from

10 to 5,000. Then, the prediction accuracy increased slightly when the

number of markers kept increasing. For training population size,

prediction accuracy increased as the size increased, and no slowdown

in the growth rate was observed.
3.5 Genomic prediction with extended
GBLUP models

To meet the breeding needs of SCR-resistant hybrid selection,

different GP methods were implemented to improve the prediction

accuracy. Firstly, six extended GBLUP models with combinations of

additive, dominant, epistatic matrices were tested (Figure 5 and

Supplementary Table 1). For test set correlation, the G_A model which

only used the additive matrix was found significantly better than the G_D

model which used the dominant matrix, with accuracy were 0.60 and

0.57, respectively. Another less accurate model than G_A, but not

significant, was the G_A_D_E model, which had a mean accuracy of

0.59. The accuracy of the G_A_AA model was higher than that of the

G_Amodel, suggesting that the epistatic effect was beneficial to GP in this
B CA

FIGURE 2

Analysis of genetic structure in the DH and hybrid panels. (A) the principal component analysis for the DH panel. (B) the principal component analysis for
the hybrid panel. (C) Linkage disequilibrium decay in the two populations.
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TABLE 3 The results of the genome-wide association (GWAS) analysis.

Type SNP Allele Chromosome Position
Candidate Intervals

P-value MAF Effect
Left Rright

Additive GWAS in DHs AX-107958879 C/A 10 2,770,918 1,150,363 3,990,150 4.18×10-13 0.19 -0.25

Additive GWAS in hybrids

AX-90698604 G/T 1 187,217,509 181,330,348 188,255,567 1.79×10-8 0.17 0.24

AX-108029030 T/C 8 17,058,853 13,140,413 18,429,572 4.83×10-7 0.16 0.22

AX-108089672 C/T 10 3,276,832 2,656,837 4,990,741 2.46×10-41 0.18 -0.54

Dominant GWAS in hybrids

AX-107981937 G/A 7 21,288,994 13,581,102 23,774,017 6.74×10-8 0.34 -0.16

AX-108109448 G/A 8 167,766,262 167,766,262 168,856,337 9.46×10-9 0.27 0.14

AX-108089672 C/T 10 3,276,832 2,656,837 4,990,741 7.63×10-38 0.18 -0.50
F
rontiers in Plant Science
 07
 fronti
Allele, Letters to the left and right of the “/” refer to major allele and minor allele, respectively.
MAF, minor allele frequency.
B

C D

E F

A

FIGURE 3

Genome-wide association study Manhattan and quantile–quantile (q–q) plots for Southern Corn Rust (SCR) resistance. (A, C, E) Manhattan plots for SCR
resistance in additive GWAS in DH panel, additive and dominant GWAS in hybrid panel, respectively. the dashed line corresponds to the threshold level
defined at P = 1.47 × 10−6 by a false discovery rate correction method. (B, D, F) q–q plot for SCR resistance in additive GWAS in DH panel, additive and
dominant GWAS in hybrid panel, respectively.
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study. Other models (G_A_D, G_A_AD, G_A_DD) performed as well

or slightly better than G_A, with the accuracy of 0.60, 0.61 and 0.60,

respectively. For top selection accuracy, the overall accuracy was lower

than that of the test set correlation. The correlation test shows a

significant correlation between the two accuracy evaluation methods,

with R=0.77 (P value<0.05). Interestingly, G_A is better than other

models for top selection, which is different from previous reports (Muñoz

et al., 2014). The accuracy of the six models ranged from 0.45 to 0.48,

indicating that further improvement is needed.
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3.6 Genomic prediction with maker effect
based models

Then, given that our hybrid panel had several significant

resistance QTL, six maker based prediction models were performed

(Figure 6 and Supplementary Table 1). The results showed that

RRBLUP, BRR, BL and BayesC were at the same level with an

accuracy of 0.60 for test set correlation. BayesA and BayesB were
FIGURE 5

Genomic prediction study in hybrid panel with extend GBLUP models for Southern Corn Rust (SCR) resistance. The left is prediction accuracy for test set
and the right is accuracy for top selection.
BA

FIGURE 4

Genomic prediction study in hybrid panel with different SNP numbers (A) and training population size (B) for Southern Corn Rust (SCR) resistance.
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significantly better than other models with an accuracy of 0.65. The

top selection accuracy showed the same trend, the accuracy of BayesA

and BayesB were 0.53 and 0.52, respectively, which were significantly

higher than other models. Meanwhile, a more significant correlation

than extend GBLUP models was detected between the two accuracy

evaluation methods (R = 0.98).
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3.7 Genomic prediction with QTL results

Two representative methods (G_A, BayesB) were selected to test

the effect of adding QTL as fixation factors (Figure 7 and

Supplementary Table 1). For the two models, the GP results

showed that the test set correlations were significantly improved
FIGURE 7

Genomic prediction study in hybrid panel with adding QTL as fixed factor into G_A and BayesB models for Southern Corn Rust (SCR) resistance. The left
is prediction accuracy for test set and the right is accuracy for top selection.
FIGURE 6

Genomic prediction study in hybrid panel with maker based models for Southern Corn Rust (SCR) resistance. The left is prediction accuracy for test set
and the right is accuracy for top selection.
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whether additive GWAS QTL, dominant GWAS QTL or both were

added. The test set correlations for G_A, G_A_qa, G_A_qd,

G_A_qad, BayesB, BayesB_qa, BayesB_qd, BayesB_qad were 0.60,

0.66, 0.67, 0.67, 0.65, 0.66, 0.67, 0.66. For top selection using G_A

models, the addition of QTL significantly improved the accuracy,

among which the G_A_qa model performed best, with an accuracy of

0.55. In contrast, the BayesB model was not significantly changed the

accuracy after the QTL addition for top selection accuracy, in which

BayesB_qa (0.53) was slightly improved, while BayesB_qd (0.51) and

BayesB_qad (0.51) slightly decreased compared with BayesB (0.52).
4 Discussion

SCR is a major disease widely existing in maize, which can cause

large yield loss and occur in a wider geographical range (Sun et al.,

2021). Therefore, it is important to know the genetic basis of rust

resistance, and develop appropriate breeding selection strategies. DH

technology can shorten time and speed up the breeding process (Ren

et al., 2017), so it is popular in modern maize breeding programs.

Moreover, due to obtaining the homozygous population quickly, it is

also widely used in genetic research (Wang et al., 2012; Shen et al.,

2018). Here, we phenotyped SCR resistance in 384 DH lines and 903

testcross hybrids in multi-environment trials. The widely distribution

of SCRRS in populations revealed that quantitative genes still played a

particularly important role (Figure 1B). Comparing the hybrid panel

consisting of 12 subgroups, we can find that the SCR resistance of

hybrids crossed by C229 was significantly higher than that by Z58 and

J2416 (Table 2), this is because the genetic contribution of the tester is

50% for each hybrid. This result indicated the importance of the tester

in DH-based hybrid breeding, that is, an excellent tester can

significantly alter the phenotypic outcome. The heritabilities of DH

and hybrid populations were moderate (Table 2), suggesting that the

SCR resistance was affected by the environment, so the selection of

resistant varieties may need to consider regional adaptability.

Unlike the natural line based GWAS analysis, we used the

population derived from four bi-parent DH and their testcross

hybrid populations. In previous studies, the background of the

GWAS homozygous population formed by multiple artificial

populations is more controllable, which has been confirmed in the

NAM population (Tian et al., 2011; Wu et al., 2016). This method is

more powerful than linkage mapping analysis, however, it is also

faced with the tight linkage between SNPs, which is not conducive to

mapping accuracy. In our study, obvious population structure could

be observed in PCA analysis of genotypes (Figures 2A, B), but no

overfitting was found in GWAS by controlling genetic background

(Figures 3B, D, F), revealing that these populations can be analyzed by

GWAS. At the same time, we found that the LD decay rate could be

improved in the hybrid panel (Figure 2C), suggesting that for the DH

panel, further genetic combination by test-cross could improve the

accuracy of GWAS.

It was found that although dominant Rp genes mainly functioned

in SCR resistance in previous studies, there was evidence that

quantitative genes also contributed to SCR resistance (Souza

Camacho et al., 2019). Five significant loci were detected in our
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research (Figures 3A, C, E), Table 3). DH population only detected

one candidate interval, and the number is less than the hybrid panel,

which may be due to the larger size or the richer genetic background

with the introduced testers in the hybrid populations. In the hybrid

panel, three candidate loci were detected by association analysis with

additive and dominant coding (Figures 3C, E and Table 3), two of

them were different, which suggested that the dominant effect is also

very important in the breeding of rust-resistant hybrids. In all

association analyses for 2 populations, a highly significant locus was

detected on chromosome 10, which tight chained with the known

SCR resistance gene RppC (Deng et al., 2022) and other reported QTL,

including RppQ (Chen et al., 2004), RppD (Zhang et al., 2009), RppS/

RppK (Wu et al., 2015; Chen et al., 2022), RppM (Wang et al., 2020).

The stability and significant effect of this loci suggested that MAS can

be used to fix this region to the germplasm in the breeding process. In

addition, four minor genes loci were detected in the hybrid

population, and no overlap was found with the known candidate

loci, indicating that further fine mapping and function research is

needed. Our GWAS analysis enriched the genetic analysis of SCR

resistance, demonstrating that many potential SCR resistance genes

exist in different maize germplasm backgrounds.

In recent years, GP is a commonly used method to reduce costs

and workload in plant and animal breeding programs, especially

when combined with DH technology, breeding efficiency can be

further improved (Fu et al., 2022). However, for the SCR resistant

hybrid selection with GP, experience and reference are lacking. We

performed GP analysis on the hybrid panel to explore the prediction

accuracy under different GP models. GBLUP, as a classical model of

GP, is based on the genetic relationship matrix (Crossa et al., 2017). In

hybrid populations, additive, dominant and epistatic effects exist

simultaneously. We performed extended GBLUP models and found

that the additive-by-additive matrices could significantly improve the

prediction performance (Figure 5), suggesting that the epistatic effect

plays a role in maize SCR resistance. The prediction effect of the pure

dominant effect matrix is relatively poor, indicating that the

application value of GBLUP only using the dominant matrix is low.

It is worth noting that when all matrices were put into the model, the

prediction ability is poor, indicating that redundant matrices will

reduce the prediction accuracy.

Since the heredity of plant resistance seems to be controlled by

dominant genes, GP models based on the genetic relationship matrix

may have limited predictive power. We tried maker based GP models

and found that most of them had comparable predictive power to

G_A, including RRBLUP, BRR, BL and BayesC (Figure 6). However,

BayesA and BayesB showed a higher prediction ability of 8% beyond

other models, which may be due to the difference brought by prior

densities of the Bayes model. This difference provided a reference for

the prediction of SCR, indicating different GP models significantly

impact the prediction power.

Based on the results of GWAS and GP, we further added

candidate loci resulting from association analysis into the

prediction model as fixed factors (Figure 7). The prediction

accuracies of the G_A and BayesB models were significantly

improved, indicating that QTL information can significantly

promote prediction accuracy, which is consistent with previous
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studies (Jiao et al., 2020). Especially for the G_A model, the prediction

accuracy improved by 11.67% after all QTL information was added,

which may be due to the G_A_qad model complementing the large

effect of QTL on the phenotypic outcome. In breeding applications,

prediction ability can be improved by adding known QTL loci to GP

models. In addition, implementing GP in hybrids is more complex

than in homozygous populations, and it may be more efficient to

explore a combination of multiple approaches.
5 Conclusion

SCR occurs widely in maize and brings great loss to yield. Here, we

developed the DH panel with 384 lines and the hybrid panel with 903

testcross hybrids. SCRRS of accessions were collected withmulti-year and

multi-location field testing. Using GWAS analytical pipeline, five QTL

loci were detected on chromosomes 1, 7, 8, 8, and 10, with P-values

ranging from 4.83×10-7 to 2.46×10-41. On the other hand, to improve the

selection efficiency of resistant materials in breeding, several GP methods

were performed to explore predictive ability for SCRRS in hybrids,

including extended GBLUP with different genetic matrices, maker

based prediction models, and mixed models with QTL as fixed factors.

We found that adding additive-by-additive effect to GBLUP model,

selecting BayesA or BayesB model, adding QTL into the mixed linear

prediction model will improve the prediction performance. The results

will provide important valuable information for understanding the

genetic architecture and the application of GP for SCR in maize breeding.
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