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Tuberculosis (TB) is an infectious disease that poses a major health threat and is

one of the leading causes of death worldwide. Following exposure to

Mycobacterium tuberculosis (M.tb) bacilli, hosts who fail to clear M.tb end up in

a state of latent tuberculosis infection (LTBI), in which the bacteria are contained

but not eliminated. Type 2 diabetes mellitus (DM) is a noncommunicable disease

that can weaken host immunity and lead to increased susceptibility to various

infectious diseases. Despite numerous studies on the relationship between DM and

active TB, data on the association between DM and LTBI remains limited.

Immunological data suggest that LTBI in the presence of DM leads to an

impaired production of protective cytokines and poly-functional T cell

responses, accounting for a potential immunological mechanism that could

leads to an increased risk of active TB. This review highlights the salient features

of the immunological underpinnings influencing the interaction between TB and

DM in humans.
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Introduction

Type 2 diabetes mellitus (DM) is a key risk factor for tuberculosis (TB) and augments the

chances of developing active TB disease (1). Around 15% of global TB cases can be attributed

to DM comorbidity. Clinically, DM amplifies TB severity and worsens TB treatment (2),

while reciprocally TB impedes glycemic control in DM (3). Latent tuberculosis infection

(LTBI) is considered to be a state where the individual is infected with Mycobacterium

tuberculosis (M.tb), without any signs or symptoms of active TB (4). It was projected that

globally, nearly 1.7 billion people were latently infected withM.tb in the year 2014 (5). More

recently, a meta-analysis reported that based on the interferon-g release assays (IGRAs) and
tuberculin skin test (TST), the current prevalence rate of LTBI was 24.8% and 21.2%,

respectively which accounts for one-fourth of the world’s population (6). Although the total

reactivation rate of LTBI is around 10% (7, 8), the risk of reactivation is several fold greater in

immunosuppressed patients and also patients with DM (9, 10). However, the exact
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mechanism of the progress of LTBI to active TB in the presence of

DM is still unclear. The generally accepted theory is that DM presents

with a weakened immune system.

DM is a gradually rising global epidemic, with 382 million global

sufferers in 2014 and an anticipated 592 million estimated by the year

2035 (11, 12). In a meta-analysis, it was reported that DM increases

the risk of active TB by three-fold, and the majority (95%) of TB

patients were from low-and middle-income countries (1). Rising

prevalence of DM is also anticipated, which may markedly amplify

the public health impact of this double disease burden (13, 14). Thus,

both TB and DM are presently amidst the main global public health

priorities. The association of DM with increased TB severity is well

described (15). It has been reported that DM is associated with an

augmented likelihood of positive sputum smear results, cavitation,

delayed sputum conversion, and recurrent TB (1, 16). In addition, it

has also been reported that increased susceptibility to TB occurs in

patients with DM and this has been ascribed to various factors,

including direct effects related to hyperglycemia and insulin resistance

and indirect effects related to macrophage and lymphocyte function

(17). Although many published studies have reported the association

between active TB and DM, very little is known about the association

of LTBI with DM. In a meta-analysis published in 2017, DM was

associated with a small but significant risk for LTBI (9). Another more

recent meta-analysis concluded that DM increased the risk for LTBI

by 60% (18). Finally, more recent comprehensive longitudinal data

indicate that LTBI is associated with increased diabetes incidence

(hazard ratio of 1.4) in US Veterans (19). Several studies have shown

enhanced susceptibility to TB in animal models of TB-DM co-

morbidity (20). Murine studies have also shown increased

inflammation and susceptibility to TB in diabetic mice and

enhanced production of several T-cell associated cytokines (21). To

study TB susceptibility, Martens et al. (22) used streptozotocin-

treated C57BL/6 mice that were hyperglycaemic for < 4 weeks

(acute) or > 12 weeks (chronic) before low-dose aerosol challenge

with M. tuberculosis Erdman. Chronic diabetic mice displayed >1 log

higher bacterial burden and more inflammation in the lung compared

with euglycemic mice indicating a delayed adaptive immune response

to TB during chronic DM (22).
Host immunity to LTBI

The success of M.tb is predominantly due to its ability to stay

within the host in an asymptomatic state in the form of latency and

reactivate after months, years or even decades in only a minority of

individuals. An individual’s lifetime risk of reactivation TB from LTBI

depends on their age when infected and the occurrence of any other

health condition associated with TB progression (23). Since one

fourth of the global population is projected to have LTBI, this

provides a huge population base from which TB can appear to fuel

its global pandemic (1, 13). Elucidating the immunological responses

that result in LTBI resistance or continued control or possibly

clearance of M.tb or protective immunity are very important in

determining correlates of risk for TB (13). Published studies have

reported that T cells are very important for effective control ofM.tb by

macrophages in granulomas and various T cell subsets act against a

broad array of M.tb antigens (24). These T cells subsets can be
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classified as classical MHC-restricted T cells and donor-unrestricted

T cells (DURTs) (25). M.tb stimulated human CD4+ T cells secrete

cytokines and chemokines with the help of macrophages (23, 26). In

addition to this, CD4+ T cell subsets also deliver key helper functions

for immune cells involved in LTBI, which involves CD8+ T cell and

DURT expansion, and antibody production by B cells (27, 28). CD4+

T cells and CD8+ T cells from individuals with LTBI exhibit broad

responsiveness toM. tb peptides (29, 30). Innate immune cells, which

includes both lymphoid and myeloid, also have a fundamental role in

the host response to M.tb (31–33). Recent publications have

highlighted the role of a set of innate cells such as the myeloid-

derived polymorphonuclear cells (PMNs) and innate lymphoid cells

and DURTs, which are involved in the immune responses to M.tb

(34). The function of other innate cells in LTBI is less clear.
Host immunity in type 2
diabetes mellitus

DM is a common chronic non-communicable disease, and is

prevalent in a huge proportion of adults. DM can be associated with

compromised host immunity that consequently increases the rate of

various infections including TB (35). Published studies have revealed

that various changes occur in glucose and lipid metabolism which in

turn lead to alterations from an anti-inflammatory to pro-

inflammatory milieu which makes the DM host more susceptible to

bacterial infections (36). It has been reported that during DM, insulin

resistance due to insulin signaling inhibition results in a series of

immune responses that worsen the inflammatory state, which leads to

hyperglycemia (37). During DM, there is an impaired innate immune

response due to dysfunction of neutrophils and macrophages (38, 39)

and also dysfunction in the adaptive immune response (including T

cells) (40–42). DM can also affect cellular immunity which in turn

worsens insulin resistance and hyperglycemia (42). Several published

reports have demonstrated the diabetes-related mechanisms that

impair host defence against pathogens and these mechanisms

include suppression of cytokine production, defects in phagocytosis,

dysfunction of immune cells, and failure to kill microbial agents (35).

Findings from these reports demonstrate that the immune system is

altered in DM, which involves altered levels of specific cytokines and

chemokines, changes in the number and activation state of various

immune cell subsets, and increased apoptosis and tissue fibrosis (43).

Together, these changes suggest that inflammation participates in the

pathogenesis of type 2 diabetes, but how these changes affect the

immune response to bystander antigens or newly acquired infections

remains unclear. Currently, a better understanding of the

mechanisms by which hyperglycemia impairs host defense against

pathogens is essential for the development of novel strategies to treat

infections in diabetic patients.

Innate immune responses of LTBI
individuals with DM

To elucidate the phenotypic profile of innate immune subsets at

homeostasis, Kumar et al. (44) examined the ex-vivo phenotypic

profile of dendritic cells (DC) and monocyte subsets in the whole
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blood of individuals with LTBI with or without DM. LTBI with DM

individuals demonstrated significantly diminished frequencies of both

myeloid DC and plasmacytoid DC compared with LTBI without DM

individuals Hence, the potential to activate the adaptive immune

response by initiating antigen presentation in the periphery could

potentially be affected in TB-DM co-morbidity. The functional

consequences of this altered phenotypic distribution of DC subsets

was not reported (44). In addition, in the same study LTBI with DM

individuals exhibited significantly diminished frequencies of classical

and intermediate monocytes and significantly elevated frequencies of

non-classical monocytes in comparison to LTBI without DM

individuals (44). The importance of monocyte subsets in M.tb

infection suggests that functional modifications in these cells in DM

patients will contribute to their enhanced susceptibility to TB.

Therefore, TB-DM co-morbidity is also characterized by an altered

proportion of monocyte subsets, with the potential to influence innate

and adaptive immunity to TB (44). Another recent study (45) has

characterized innate lymphoid cells (ILCs) using flow cytometry and

findings from that study reported that individuals with LTBI and DM

had decreased frequencies of ILC2 and ILC3 in comparison to LTBI

or DM alone individuals. In the same study, authors have also

reported that ILC producing IFNg was increased whereas IL-13

expression was diminished in LTBI and DM groups, indicating the

fact that LTBI and DM are associated with alteration in the ILC

compartment (45). A recent study has reported that LTBI individuals

with DM showed TB antigen specific diminished frequencies of gd T

cells expressing Type 1 (IFNg, TNFa) and Type 17 (IL-17F, IL-22)

cytokines, cytotoxic markers (Perforin, granzyme B, granulysin), and

immune activation (CD69 and PDL-1) markers compared to LTBI

group (46). Another recent study from Kathamuthu GR et al., (47)

has shown that TB purified protein derivative (PPD) and whole cell

lysate (WCL) specific NK and iNKT cells expressing Type 1 (IFNg,
TNFa, and IL-2), Type 17 [(IL-17A, IL-17F and IL-22) cytokines, and
cytotoxic markers (perforin and granzyme B) were significantly

reduced in LTBI DM individuals compared to LTBI individuals

(47). These findings reveal that the innate immune cell

compartment, including gd T cells, NK cells and iNKT cells are

compromised in their ability to respond to M.tb antigens in DM

individuals. In contrast, another study from Kathamuthu GR et al.,

(48) on Mucosal-associated invariant T (MAIT) demonstrated that

the percentage of MAIT cells expressing Type 1 and Type 17

cytokines and cytotoxic markers were significantly higher in LTBI-

DM individuals in comparison to the LTBI individuals, indicating

that not all the innate immune cell subsets are impaired in their ability

to mount TB-antigen specific or non-specific immune responses (48).

Altogether, the published data reveals that DM comorbidity is

associated with altered innate immune markers and possibly related

to poor correlates of immune protection and elevated mycobacterial

pathogenesis in LTBI individuals.
Adaptive immune responses of LTBI
individuals with DM

Published studies have described that immunity to TB is mainly

dependent on CD4+ T cells and more specifically that CD4+ Th1 and
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Th17 cells play an important role in protective immunity, in both

human and animal models (49). Kumar et al. (50) have reported that

LTBI with DM individuals exhibited diminished frequencies of

mono and dual functional Th1 (IFNg, IL-2 and TNFa), Th2 (IL-4,

IL-5 and IL-13) and Th17 (IL-17A, IL-17F and IFNg) CD4+ T cells

at baseline and following TB antigen stimulation in comparison to

LTBI without DM individuals, indicating that coincident DM alters

the function of CD4+ T cells. Further in this article, the authors have

also demonstrated that this altered frequency of multifunctional T

cells is mainly dependent on IL-10 and TGFb, since neutralization
of either cytokine resulted in significantly augmented frequencies of

Th1 and Th2 cells in LTBI with DM individuals (50). Subsequently,

the same group (51) also reported that CD8+ T cells play an

important role in the immunity to LTBI with DM individuals.

They reported that LTBI with DM individuals showed diminished

frequencies of CD8+ T cells producing Tc1 (IFNg, IL-2 and TNFa),
Tc2 (IL-4, IL-5 and IL-13) and Tc17 (IL-17A, IL-17F and IFNg)
cytokines at baseline and upon TB antigen stimulation in

comparison to only LTBI individuals. In contrast, CD8+ T cells

expressing the Granzyme B and perforin were significantly elevated

in LTBI with DM group upon TB antigen stimulation, indicating

that coincident DM modulate the cytotoxic T cell function in LTBI

individuals (51).

Few other published studies (44) have characterized the

phenotypic profile of T and B cell subsets, such as memory T cells

and memory B cells at homeostasis. Kumar et al. have reported that

LTBI with DM individuals demonstrated significantly diminished

frequencies of CD4+ effector memory T cells in comparison the LTBI

individuals (44) Moreover, LTBI with DM individuals showed

significantly elevated frequencies of activated memory B cells and

atypical B cells and lower frequencies of naïve B cells compared to

LTBI, indicating that TB-DM profoundly modulates cells of the

adaptive immune system (44). Thus, DM in LTBI appears to be

associated with major impairment in T cell activation and function.

Thus, functional and phenotypic alterations in the adaptive immune

cell compartment in LTBI offer important insights into the potential

mechanism by which DM could influence the progression from LTBI

to active tuberculosis.
Immune biomarkers to LTBI individuals
with DM

Cytokines play an important role in the host immune response

against M.tb (52). IFN-g and TNF-a are critically important for

protective immunity in both human infections and animal models

(49, 52). Other cytokines such as IL-17A, the prototypical type 17

cytokine, are known to play an essential role in mediating memory

immune responses to M.tb in mice (53). Another proinflammatory

cytokine, IL-22 has been to shown to contribute to the human

antimycobacterial response (54). IL-1 family of cytokines, mainly

IL-1a and IL-1b, are essential for resistance to tuberculosis (55, 56).
In addition, IL-18 (57) and IL-12 (58, 59) are both recognized to be

vital in immunity to M.tb and finally, IL-6 has also been shown to

facilitate inhibition of disease progression (60). A study published

by Kumar et al. (61) has described that LTBI with DM individuals
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displayed diminished circulating levels of type 1 (IFNg, IL-2 and

TNFa), and type 17 (IL-17A, IL-17F and IL-22) cytokines and also

other pro-inflammatory cytokines such as IL-1b and IL-18 in

comparison to non-DM group. In addition, diminished levels of

Type 1 and Type 17 cytokines were seen upon TB antigen

stimulation, indicating that presence of DM, is characterized by

lower production of protective cytokines, allowing for a probable

immunological mechanism that could account for the augmented

risk of active tuberculosis in latently infected individuals with

DM (61).

Subsequently by Kumar at al., (62) in another study reported that

IL-20 subfamily of cytokines are associated with LTBI-DM

comorbidity. They studied the association of IL-20 subfamily of

cytokines in LTBI-DM co-morbidity because the IL-20 subfamily of

cytokines plays an essential role in both host defense mechanisms and

glucose metabolism. Findings from this study revealed that

individuals with LTBI with DM exhibited diminished systemic

plasma levels of IL-10, IL-19, IL-20 and IL-24 but increased levels

of IL-22 in comparison to the LTBI group, signifying that the

diminished production of cytokines may affect immunity against

TB infection (62). In another study, the authors illustrate the effect

of coexistent DM on adipocytokine levels in LTBI individuals (63).

Findings from this study revealed that LTBI with DM individuals

displayed diminished plasma levels of adiponectin and adipsin and

heightened plasma levels of leptin, visfatin and PAI-1. Moreover,

adiponectin and adipsin revealed a significant negative association,

whereas leptin, visfatin and PAI-1 and displayed a significant positive

association with HbA1C levels. These findings clearly reveal that due

to metabolic dysfunction, an imbalance in the appearance of pro- and

anti- inflammatory adipocytokines arises in TB-DM, which is an

important feature that could influence the development of TB

pathogenesis (63). There was a study by Aravindhan V et al., who

have shown that inflammatory markers such as IL-1b, IFNg and

adiponectin were significantly elevated in LTBI individuals with

newly diagnosed DM (NDM) in comparison to LTBI negative

individuals with NDM (64). Subsequently from the same group,

another study demonstrated that there was elevated IL-27 and IL-

10 levels in the LTBI NDM, compared to LTBI group (65). Finally,

they also reported that IL-38 was significantly reduced in LTBI

infected DM in comparison to LTBI negative DM, thus implying

that these cytokines play a role in the LTBI-DM nexus (66).

There is a rising body of evidence that indicates that

immunocompromise is an important part of DM and that this

compromise could have severe consequences in the face of

intracellular pathogens like M.tb (61). Thus, DM appears to

profoundly alter a variety of host immune biomarkers important in

the immune response to M.tb in LTBI individuals.

Effect of pre-diabetes in
LTBI individuals

Pre-diabetes (PDM) or intermediate hyperglycemia is an

abnormal risk state for DM that is diagnosed if the glucose levels

are above the normal thresholds but below the levels of overt diabetes

(67). There is an increase in the incidence of PDM globally, and it is
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projected that over 470 million people will have PDM by 2030 (68).

The two core functional defects in PDM are insulin resistance and

pancreatic beta-cell dysfunction, and these changes manifest before

the occurrence of glucose level abnormalities (67, 69). A relationship

of PDM with TB risk is not completely well characterized (70). To

characterize the impact of PDM in LTBI, Kumar et al. (71) examined

the CD4+ and CD8+ T cell expression of cytokines in LTBI with

coincident PDM. The study findings demonstrated that LTBI-PDM

individuals are associated with diminished multifunctional

frequencies of CD4+ Th1 cells expressing IFNg, IL-2 and TNFa and

Th17 cells expressing IL-17A, IL-17F and IFNg at baseline and upon

TB antigen stimulation in comparison to LTBI only individuals. In

addition, the study findings also revealed that LTBI-PDM is also

characterized by diminished frequencies of mono-functional CD8+

Tc1 (IFNg, IL-2 and TNFa) and Tc17 (IL-17A, IL-17F and INFg) cells
at baseline and upon TB antigen stimulation, indicating that PDM is

correlated with alterations of the immune response in LTBI with

compromised CD4+ and CD8+ T cell function. These study results

also imply that diminished T cell cytokine production is an important

feature of LTBI-PDM and could possibly contribute to the increased

risk posed by PDM in the pathogenesis of active TB (71). Finally, one

other study examining the circulating plasma levels of a broader panel

of pro and anti-inflammatory cytokines in LTBI-PDM individuals has

revealed that systemic levels of IFNg, IL-2, TNFa, and IL-17F were

diminished in comparison to LTBI only individuals, indicating that

an imbalance in the pro- and anti-inflammatory cytokine milieu is an

important feature of LTBI-PDM comorbidity. Researchers have

reported that LTBI individuals with PDM presented with a

decreased TB antigen specific frequency of gd T cells expressing

Type 1, Type 17 cytokines, cytotoxic markers, and immune activation

(CD69 and PDL-1) markers compared to LTBI individuals without

PDM (46). Subsequently, another study from Kathamuthu GR et al.,

(47) has shown that TB purified protein derivative (PPD) and whole

cell lysate (WCL) specific NK and iNKT cells expressing IFNg, TNFa,
and IL-2, IL-17A, IL-17F and IL-22 and cytotoxic markers (perforin

and granzyme B) were significantly reduced in LTBI-PDM

individuals compared to LTBI individuals (47). Finally, there was

also another recent finding from the same group on MAIT cells

demonstrating that the percentage of MAIT cells expressing Type 1

and Type 17 cytokines and cytotoxic markers were significantly

higher in LTBI-PDM individuals in comparison to the LTBI

individuals (48). These findings clearly indicate that LTBI-PDM is

associated with major perturbations in innate immune cell activation

and function and this could potentially have profound effects on the

immunity to TB.
Conclusions

In conclusion, the mechanisms that are associated with the

pathogenesis of TB in the presence of DM are not completely

clear. But it is apparent that various immune parameters are

altered in the LTBI infected host due to DM, in whom both

innate and adaptive immunity is affected (Figure 1). Further

research is needed for better understanding the biological
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mechanisms involved, enhance timing of DM testing and clinical

care for diabetic or hyperglycemic TB patients. In addition, it would

be important to evaluate the potential impact of targeted LTBI

screening among the DM individuals.
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