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Introduction: The early diagnosis of major depressive disorder (MDD) is very

important for patients that suffer from severe and irreversible consequences of

depression. It has been indicated that functional connectivity (FC) analysis based on

functional magnetic resonance imaging (fMRI) data can provide valuable biomarkers

for clinical diagnosis. However, previous studies mainly focus on brain disease

classification in small sample sizes, which may lead to dramatic divergences in

classification accuracy.

Methods: This paper attempts to address this limitation by applying the deep graph

convolutional neural network (DGCNN) method on a large multi-site MDD dataset.

The resting-state fMRI data are acquired from 830 MDD patients and 771 normal

controls (NC) shared by the REST-meta-MDD consortium.

Results: The DGCNN model trained with the binary network after thresholding,

identified MDD patients from normal controls and achieved an accuracy of 72.1%

with 10-fold cross-validation, which is 12.4%, 9.8%, and 7.6% higher than SVM, RF,

and GCN, respectively. Moreover, the process of dataset reading and model training

is faster. Therefore, it demonstrates the advantages of the DGCNN model with low

time complexity and sound classification performance.

Discussion: Based on a large, multi-site dataset from MDD patients, the results

expressed that DGCNN is not an extremely accurate method for MDD diagnosis.

However, there is an improvement over previous methods with our goal of better

understanding brain function and ultimately providing a biomarker or diagnostic

capability for MDD diagnosis.

KEYWORDS

deep graph convolutional neural network, major depressive disorder, brain disease
classification, functional connectivity, multi-site

Introduction

Major Depressive Disorder is the second cause of disability, with point prevalence exceeding
4% (Ferrari et al., 2013). Currently, the primary diagnosis of MDD is mainly based on the
Diagnostic and Statistical Manual of Mental Disorders (Cooper, 2018) or Hamilton Depression
Rating Scale (Sharp, 2015). However, the results largely depend on the physicians’ experiences
and may sometimes lead to misdiagnoses.

In this context, establishing objective and quantitative biomarkers for identifying MDD may
not only provide insights into illness pathophysiology but also promote the development of
biologically informed tests for clinical diagnosis and treatment planning. With the development
of medical imaging technology, fMRI can be used to reveal the abnormalities of brain functional
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connectivity of MDD patients. By treating the human brain as a
comprehensive network of functionally interacting brain regions and
associating it with human behavior, we can make an understanding
of how brain tissue changes in psychiatric disorders, which may
effectively contribute to MDD diagnosis approaches (He et al., 2017).

In recent years, massive studies have discussed the pathological
mechanism of psychosis and tried to search for its biomarkers.
Most of them confirm the biological pathology of brain diseases is
mostly related to the abnormality of brain FC. Cattarinussi et al.
(2022) collected the resting-state fMRI of Bipolar Disorder to study
the alteration of the brain functional network between cortical-
limbic structures. Park et al. (2022) demonstrated that the severity
of clinical symptoms in patients with Generalized Anxiety Disorder
had a strong correlation with the strength of FC in brain regions
under negative emotional conditions. Hirshfeld-Becker et al. (2019)
conducted a pilot study of MDD prediction in Adolescence by
intrinsic brain FC. Long et al. (2020) constructed the resting-state
brain functional networks with large samples of resting-state fMRI
data, indicating that the basis of the neuropathology of MDD is
probably related to the abnormal brain FC. Shen et al. (2016) applied
resting-state fMRI data to the objective diagnosis of depression
patients with or without anxiety by graph theory features and
illustrated the importance of resting-state fMRI data for MDD
diagnostic research. The brain network FC data constructed from
resting-state fMRI data is also a reliable data source for the diagnosis
of MDD. As early as 2011, Brier et al. (2011) systematically studied
Alzheimer’s disease through the blood oxygen level-dependent
resting-state functional connectivity network. Then, Shi et al. (2021)
used a progressive three-step machine learning analysis with resting-
state FC data to investigate the classification performance of the
Machine Learning model in the multi-center large sample dataset. In
addition, they applied the Extreme Gradient Boosting model based on
resting-state FC data to classify MDD patients and normal controls
and evaluated the clinical application value of the data in MDD.

The brain network classification studies are mainly in two
streams: traditional machine learning and deep learning. As yet,
the most widely used machine learning in the field is the Support
Vector Machine (SVM) (Rathore et al., 2017). As early as 2009,
Craddock et al. (2009) classified the region of interest (ROI) wise
FC of 20 subjects using linear SVM. Currently, the studies in this
field increasingly appears. Ichikawa et al. (2020) classified the whole
brain FC of 65 patients by logistic regression. Zhu et al. (2021)
achieved the classification of 31 subjects by linear SVM. Yan et al.
(2021) used SVM to classify the 32 patients’ regional homogeneity.
However, there is a dramatic divergence in classification accuracies
because of the demographic and clinical heterogeneity across MDD
studies. Qin et al. (2022) noted that while there has been an
increasing number of publications, the results are inconsistent with
their reported classification accuracies varied from 61.7 to 98.4%.
In addition, the optimization of machine learning models typically
requires adequate training data to mount generalizability across
different samples. A large sample size is critical to ensure population-
representative model performance and provide reliable information
on the biological underpinnings. Substantial previous machine
learning studies were performed using single-site datasets with small
sample sizes, which leads to huge variability and poor generability
in model performance. To eliminate this problem brought by small
datasets to the model performance, we choose the large and multi-site
dataset for the following studies.

In recent years, the graph convolution network (GCN) is
commonly used in classifying psychosis and other fields, such as
the optimization of model parameters in the classification of solder
paste defects (Sezer and Altan, 2021). It serves as a deep learning
model, which is capable of modeling graph data structures like
networks and thus fitting the classification of brain networks. Song
et al. (2022) achieved the early diagnosis of Alzheimer’s disease
on dual-modality fused brain networks by multi-center and multi-
channel pooling GCN. They tested on three datasets with sample
sizes of 90, 200, and 169, respectively. The results indicate that the
method is effective in the early diagnosis of Alzheimer’s disease.
However, there is a main drawback for GCN. Zhang et al. (2018)
referred that the regular neural networks’ connection structure is
based on layers and processing objects are generally tensors combined
in a certain way. For disordered images or intricate structures, the
GCN has difficulties to identify all features. They proposed a novel
neural network architecture–Deep Graph Convolutional Neural
Network to extract useful features characterizing the rich information
encoded in a graph for classification purposes by a localized graph
convolution model. Then, a novel SortPooling layer that sorts graph
vertices in a consistent order is designed to train the traditional
neural networks on the graphs. The results on benchmark graph
classification datasets demonstrated that the proposed architecture
achieves highly competitive performance compared to state-of-
the-art graph kernels and other graph neural network methods.
Moreover, the architecture allows end-to-end gradient-based training
with original graphs without the need to firstly transform graphs into
vectors. The advantages of DGCNN make it more suitable for dealing
with brain networks.

In this study, we complete the classification of the multi-site
and large-scale MDD brain resting-state FC networks based on
DGCNN. It not only solves the limitation of small samples and
the heterogeneousness of the datasets but also discovers a relatively
effective classification algorithm for MDD brain networks.

Materials and methods

Dataset acquisition

Our study is performed based on 25 datasets from 17 hospitals in
the REST-meta-MDD consortium comprising 1,300 MDD patients
and 1,128 NCs. They agreed to share the final resting-state fMRI
indices of MDD patients and matched NCs from studies approved
by local Institutional Review Boards. Consortium members provide
basic information, including diagnosis, disease duration, gender, age,
education, HAMD-17, and HAMA. All patients are treated under
the Diagnostic and Statistical Manual of Mental Disorders IV or
the International Classification of Diseases-10. According to these,
patients with HAMA score higher than 14 are rated as anxious, and
patients with HAMD score higher than 17 are defined as depressed
(Yan et al., 2019; Chen et al., 2022). In this study, we excluded
data with poor quality following standard quality control procedures
in the REST-meta-MDD consortium (Supplementary material and
Supplementary Figure 1). Finally, 1,601 participants (830 MDD
patients vs. 771 NCs) were included in our analysis. Table 1 details
the sample information and disease course in the dataset.

In this paper, the dataset is the FC correlation results
calculated by the predefined seed points after global regression

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1094592
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1094592 January 21, 2023 Time: 15:20 # 3

Zhu et al. 10.3389/fnhum.2023.1094592

and preprocessed by DPARSF, a MATLAB-and SPM-based resting-
state fMRI preprocessing pipeline for the images (Yan and Zang,
2010). The preprocessing operations of Neuroimaging Informatics
Technology Initiative files obtained from fMRI including Slice
Timing, Realign, Covariates Removed with global signal regression,
Spatial Normalization, and Filtering. See Supplementary material
for further details.

The construction of the brain network

The present paper uses Dosenbach’s 160 functional ROIs as
a medical template to define the brain network nodes. We then
construct functional brain networks using resting-state fMRI data
with equal time series between each node. Functional connectivity is
calculated by measuring the Pearson correlation coefficient between
each of the 160 regions in MDD brain networks (Pearson, 1900).

For each subject, let xi(t), yj(t) ∈ RM separately represent the
average resting-state fMRI signals for the brain regions i and j at the
point t (t = 1, 2, · · · , T). M and T denote the total number of brain
regions and time points, respectively. Then, between the i-th and the
j-th ROIs, the correlation γij can be defined as (1):

γij =

∑n
i,j = 1 (xi−x)(yj−y)√∑n

i = 1 (xi−x)2
√∑n

j = 1 (yj−y)2
(1)

where x and y, respectively denote the means of the regional resting-
state fMRI signals in regions i and j. By computing the Pearson
correlation between the average time series for each pair of ROIs,
a correlation-based FC network is generated (Furman and Zitikis,
2017; Liang and Xu, 2022) and the symmetric correlation coefficient
matrix of 160×160 is shown in Supplementary Figure 2.

To minimize the edge dataset of the brain network, a certain
threshold is set to sparse the networks. Then, they are transformed
into 0–1 binary adjacency matrices as shown in Figure 1.

After that, we use the Warshall algorithm (Warshall, 1962) to
calculate the network connectivity. The n-th order Boolean matrix

R(k) (0≤k≤n) expresses whether any pair of nodes in the directed
graph contain path information. The quantitative ratio curves of the
brain network connectivity of subjects are shown in Figure 2. The
Boolean matrix R(k) (0≤k≤n) can be defined as follows:

Rk−1
[i, j]+Rk−1

[i, k] × Rk−1
[k, j] → Rk

[i, j] (2)

To study the influence of brain network connectivity on the
accuracy of MDD final classification prediction, thresholds of 0.2, 0.3,
and 0.4 are selected to process the brain network. Connectivity data
are then inputted into a deep learning framework. Eventually, we use
the DGCNN on connectivity data to identify the full brain network
of each subject.

DGCNN model training

After the brain networks are constructed, a supervised graph
classification model is trained by applying the DGCNN algorithm.
We aim to extract graph structures of MDD and NC brain networks
and available information on nodes. Then, training the model with
the presence or absence of disease as the classification label to classify
all subjects. The pipeline of the DGCNN model is shown in Figure 3.
The model’s input is the graph represented by its adjacency and node
features matrices. Individual whole-brain functional connectivity
matrices are first represented as graph structures. Nodes are defined
as the 160 atlas-based brain regions, and node features reflect the
vector of nodal functional connectivity. We get the edges from the
binary matrices after setting the different thresholds.

The first four layers are graph convolutional layers. The core
process is the spectral graph convolution filter, which can implement
the convolution operation on irregular graph data instead of
typical data in tensor forms (Kipf and Welling, 2016). The graph
convolutional layers with the hyperbolic tangent function activations
to improve the convergence speed. The graph’s unordered vertex
features from the layers are the input of the next layer, SortPooling,
which is a bridge between graph convolution and traditional neural

TABLE 1 Clinical information table on subjects.

Type Number Age Gender (Male/Female) Illness (First/Again) Medical (Yes/No)

MDD 830 34.1± 12.4 308/522 522/308 378/452

NC 771 33.1± 12.5 318/453 – –

FIGURE 1

Adjacency matrix with a different threshold on major depressive disorders (MDDs) and normal controls (NCs). (A) Threshold = 0.4 MDD adjacency matrix;
(B) threshold = 0.2 MDD adjacency matrix; (C) threshold = 0.4 NC adjacency matrix; (D) threshold = 0.2 NC adjacency matrix. The black area indicates
no interconnected edges between the two functional brain networks, while the white area indicates connected edges.
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FIGURE 2

The quantitative ratio curve of brain network connectivity of subjects.
The connectivity ratio is the ratio of the number of connected brain
networks to the number of unconnected ones for major depressive
disorders (MDD) or normal control (NC). With the increase in the
threshold, the number of connected graphs dwindled.

network layers. The SortPooling layer can back-propagate loss
gradients, integrating graph representation and learning into one
end-to-end architecture. Instead of summing up these vertex features,
it arranges them in a consistent order and outputs a sorted graph
representation with a fixed size so that traditional convolutional
neural networks can read vertices in a consistent order and be trained
on this representation.

After SortPooling, a tensor with each row representing a vertex
and each column representing a feature channel is generated. To
train graph convolutional layers on them, a 1-D convolutional layer
is added. Then, Max Pooling layers and 1-D convolutional layers are
added to learn local patterns on the node sequence. Two Dense layers
are used for binary classification. The convolutional and dense layers
use rectified linear unit activation function to introduce non-linearity
activation. Finally, the fully connected output layer is activated by
a Softmax function to encode output scalars into the predictive
probability of each class.

For the parameters of DGCNN, we adopt the default parameters
set in the study named “An End-to-End Deep Learning Architecture
for Graph Classification” (Zhang et al., 2018). In order to reduce the
overfitting, a dropout layer with a ratio of 0.5 is applied between the
two dense layers, at which rate dropout generated the most random
network structure. The key idea is to drop units randomly (along

with their connections) from the neural network during training,
which prevents units from co-adapting too much. During the
training, dropout layers take samples from the exponential number
of different “thin” networks. During the test time, it would be easier
to approximate the effect of averaging the predictions of all these
thinned networks by simply using a single unthinned network with
smaller weights. It significantly reduces overfitting and gives major
improvements over other regularization methods. Dropout improves
the performance of neural networks on supervised learning tasks
(Srivastava et al., 2014). Besides, model training is conducted based
on a batch of 50 samples for 100 epochs. The only hyperparameter
we need to optimize is the learning rate.

Description of evaluation indexes for
classification performance

To assess the results of each binary classification, we use the
following metrics: accuracy (ACC), sensitivity (SEN), specificity
(SPE), precision (PRE), F1 score (F1), the receiver operating
characteristic curve (ROC), and the area under the ROC curve (AUC)
of cross-validation experiment (Bishop and Nasrabadi, 2006). The
ROC curve is the plot of the True Positive Rate against the False
Positive Rate for different cut-offs of the diagnostic test. It is a
measure of the trade-off between sensitivity and specificity. As our
analysis has balanced classes (i.e., an equal number of examples for
each cognitive state), the ROC-AUC is considered the most important
metric (Davis and Goadrich, 2006). The calculation methods are as
follows:

Accuracy (ACC) =
TP+ TN

TP+ TN+ FP+ FN
× 100% (3)

Sensitivity (SEN) =
TP

TP+ FN
× 100% (4)

Specificity (SPE) =
TN

TN+ FP
× 100% (5)

Precision (PRE) =
TP

TP+ FP
× 100% (6)

F1−score =
2 × PRE × SEN

PRE+ SEN
× 100% =

2TP
2TP+ FP+ FN

(7)
where TP, TN, FP, and FN represent true positives, true negatives,
false positives and false negatives of the prediction data.

FIGURE 3

The overall pipeline of deep graph convolutional neural network (DGCNN) classifier distinguishing between individuals with major depressive disorders
(MDD) and normal control (NC).
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FIGURE 4

The fitting curve of accuracy and loss of the training and test dataset. The above figure is the training history curve of accuracy, and below is the loss
curve. Moreover, the orange is validation, and blue is the training value.

DGCNN model function setting

After the dataset with the threshold value of 0.3 is inputted
into the model, the loss value and accurate value are calculated. In
this paper, the binary cross-entropy loss function is applied. It is
commonly used for the two-class classification. The formula is shown
in (8):

Loss = −
1

output

output∑
i = 1

yi · logŷi+(1−yi) · log (1−ŷi) (8)

where i ∈ [1, output_size], and each i is independent and non-
interfering. For this reason, it is suitable for the multi-label
classification task. The Adaptive Moment Estimation (Adam) is
used as an optimization function, which updates all weights with
a constant learning rate alpha during the process. Therefore, dual
improvements in quality and speed can be achieved during model
optimization (Razak et al., 2021).

Results

DGCNN training and prediction results

The dataset is split to training and test sets, where 90% of the data
is used for training and the remaining 10% for testing. The history
of the loss and accuracy of training and testing data are drawn to
calculate the performance of the training model based on testing data.
The curve is depicted below (Figure 4).

We further make comparisons between DGCNN and other
commonly used classifiers, including SVM, Random Forest, and
Graph Convolutional Network. For the training of the GCN model,
we use the same loss function and optimizer as the DGCNN model to
quantify the loss and update the model parameters, respectively. The
initial learning rate for the Adam optimizer is set as 0.001. As for the
other two classifiers, SVM and RF, a widely used feature reduction
strategy, principal component analysis, is adopted before training
to avoid over-fitting. SVM and RF are implemented in the Scikit-
Learn library with the default setting. Moreover, the parameters of

Frontiers in Human Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1094592
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1094592 January 21, 2023 Time: 15:20 # 6

Zhu et al. 10.3389/fnhum.2023.1094592

TABLE 2 The optimal parameters of each method.

Method Parameters* Value

GCN Dropout rate 0.5

Batch_size 50

Epoch 100

Learning rate 0.001

SVM C 100.0

Kernel rbf

Degree 3

Gamma 0.01

RF Max_features 2

Max_depth 100

Min_samples_split 200

Min_samples_leaf 50

*Batch size, the number of data samples captured in a training session; Epoch, the process of
training all training samples once; C, penalty term, constraint degree of Lagrange multiplier
in SVM; kernel, the parameter for selecting the kernel function in SVM; degree, the degree
of the kernel; gamma, the coefficient of kernel function; max_features, the maximum number
of features to consider when dividing trees; max_depth, the maximum depth of decision tree;
min_samples_split, the minimum number of samples required for internal node partitioning;
min_samples_leaf, the minimum sample number of leaf nodes.

TABLE 3 Comparison of classification performance indexes of different
classification methods in MDD dataset.

Method ACC*
(%)

SPE*
(%)

SEN* (%) PRE* (%) F1-score
(%)

AUC*

SVM
(Hearst
et al., 1998)

59.7 58.2 61.1 61.2 61.2 0.622

RF
(Breiman,
2001)

62.3 60.7 63.7 63.3 63.5 0.647

GCN (Kipf
and
Welling,
2016)

67.4 66.0 68.7 68.2 68.4 0.701

DGCNN 72.1 67.1 79.2 62.5 69.9 0.788

*ACC, accuracy; SEN, sensitivity; SPE, specificity; PRE, precision; ROC, receiver operating
characteristic curve; AUC, area under ROC curve.

TABLE 4 The time cost of dataset loading and training under various
thresholds for deep graph convolutional neural network (DGCNN).

Method Thresholds Loading
time

Training time
(epochs = 100)

DGCNN 0.2 214 s 202 s

0.3 103 s 195 s

0.4 50 s 191 s

GCN 0.2 724 s 332 s

0.3 426 s 243 s

0.4 299 s 220 s

SVM and RF all 9 h+ 8 h+

these are optimized using grid search. We use 10-fold cross-validation
to examine their performance. The best parameter values set by all
methods are shown in Table 2.

TABLE 5 Comparison of brain network sizes with different thresholds.

Thresholds Nodes Connectivity
ratio

Edge

MDD NC

0.2 1.7461 4,200 4,055

0.3 160 0.2038 2,196 2,020

0.4 0.0037 1,027 917

Undoubtedly, the larger the thresholds, the lower the connectivity index (the number of
connected graphs divided by the unconnected graphs) and the smaller the number of connected
edges of the brain network.

The classification results of different methods on this dataset are
summarized in Table 3.

It can be seen that our study has superior results. Unsurprisingly,
our results are higher than those of traditional machine learning
methods. In addition, ours are also higher than the widely used
GCN, which demonstrates the effectiveness of the model used
in this experiment. Moreover, the fast running speed is also the
model’s advantage. Table 4 shows the time required for data
loading and classification training at the different thresholds. It
indicates that both SVM and RF have a long time running with
the worse results than deep learning. The running time of the
GCN model is also longer than that of DGCNN, which reflects
the superiority of DGCNN on the processing speed of large
datasets.

Model influencing factors

The influence of threshold setting and learning
rates on the model

As the number of connected edges and dataset size increase
with connectivity ratio, the influence of different thresholds on
performance should be discussed. In order to study the relationship
between brain network connectivity and classification accuracy,
brain networks with thresholds of 0.2, 0.3, and 0.4 are selected
for the classification task. Different network connectivity has
an impact on classification accuracy. Therefore, we observe the
relationship between the classification accuracy and the number
of connected edges of the brain network (the connectivity of the
brain network) by adjusting the threshold to find the optimal
parameter settings and their impact on the optimal prediction result.
The size of brain networks with different thresholds is shown in
Table 5.

The comparison of the loss and accuracy values for different
thresholds and adjusted learning rate operations is shown in Table 6.
It can be seen that the optimal ACC is obtained when the threshold
value is 0.3 and the learning rate is 0.001.

The above two tables show that the relationship between the
accuracy and brain network connectivity or learning rate is non-
linear. It means the results will not be significantly affected by extreme
connectivity or learning rates and are most optimal under these
parameter settings.

The impact of site effect
As the experimental data are obtained from 25 research groups by

17 hospitals in China, the test accuracy is heterogeneous in different
research groups and regions. Therefore, the integration of the data
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TABLE 6 Loss and accurate value under different thresholds
and learning rates.

Thresholds Learning rate Loss ACC

0.2 0.001 0.5105 0.6852

0.0001 0.5466 0.6964

0.3 0.001 0.5292 0.7208

0.0001 0.5367 0.6502

0.4 0.001 0.5419 0.6334

0.0001 0.5429 0.6384

The above two tables show that the relationship between the accuracy and brain network
connectivity or learning rate is non-linear. It means the results will not be significantly affected
by extreme connectivity or learning rates and are most optimal under these parameter settings.

TABLE 7 Leave-one-site-out 10-fold cross-validation
classification performance.

Site ACC (%) SPE (%) SEN (%) PRE (%)

S1 67.4 68.4 66.6 74.3

S2 64.1 63.6 64.5 68.3

S7 75.4 78.8 73.0 83.3

S8 72.9 73.0 72.8 76.1

S9 75.1 79.7 72.1 84.7

S10 75.2 74.5 75.9 76.5

S11 84.2 84.4 84.0 86.0

S13 71.1 67.3 75.9 64.9

S14 79.7 73.3 89.1 69.3

S15 61.3 59.9 62.7 62.8

S17 56.9 55.0 58.9 55.9

S19 67.7 64.2 72.1 61.6

S20 70.7 69.9 71.5 72.4

S21 80.8 74.2 90.8 70.1

S22 70.5 71.3 69.9 75.7

S23 69.1 69.4 68.9 73.7

into brain network classification for MDD would lead to a large
impact on the final result due to data heterogeneity. To eliminate the
site effect and the systematic differences around different sites, we
conducted leave-one-site-out 10-fold cross-validation experiments
on the 16 sites after selection. The classification performance results
are summarized in Table 7.

These results demonstrate the reliable classification performance
of the model in inter-site cross-validation and applicability of the
DGCNN selected in this paper to novel sites. The results combined
with cross-validation experiments indicate the advantages of the
model on the large-scale multi-site dataset and potential clinical
application promotion.

Given the imbalanced single-site performance and sample
size across all sites, the current classification performance may
be biased by the sites with the best single-site performance
and the site with the largest sample size. Besides, it is
found that classification accuracy in every single site varied
from 56.9 to 84.2%, which confirming the variability of
classification tasks with small sample sizes and the importance
of using large datasets.

Discussion

In this paper, artificial intelligence technology is applied to the
diagnosis of brain diseases. We use the DGCNN to classify the brain
networks of subjects. Systematic experiments are performed on a
multi-site and large-scale fMRI dataset collected from the REST-
meta-MDD project. Furthermore, we find that when the DGCNN
is used as an input feature to the classifier it can provide the
best accuracy while classifying subjects into patients and normal
controls. It is evident from the experimental results in the previous
section, DGCNN has achieved an accuracy of 72.1% on the MDD
dataset after ten cross-validations, which is 12.4% higher than SVM,
9.8% higher than RF, and 7.6% higher than GCN. It should be
noted that DGCNN also achieves the best AUC and performances
in other aspects, which demonstrates the competitiveness of the
DGCNN model in this study. Moreover, it requires less time to
process large-scale datasets and model training than other models.
The rapid classification of 1,601 brain networks can be completed
in less than 5 min, which reflects the excellent performance of the
DGCNN model in classification speed. Given the high collection
cost and small sample size of fMRI data, it is difficult to extract
high-dimensional features when training the deep learning model
(Khosla et al., 2019). However, generating a large-scale aggregate
dataset is expected to solve the problem of repeatability and statistical
ability (Borghi and Van Gulick, 2018; Dadi et al., 2019). Therefore,
establishing and validating classification models on a large-scale
aggregated dataset may promote the development of clinically useful
diagnostic methods. In this paper, the results with a large-scale fMRI
dataset verify that DGCNN is not very accurate in MDD diagnosis.
However, it is improved relatively compared with other machine
learning and graph convolution neural networks.

The limitations and future works of this study are as follows.
The first problem is that deep learning models may indeed get
better results than traditional prediction models, but it is not feasible
to identify the important features for prediction. It is a common
limitation of the deep learning model. Moreover, only the static FC
is used in the classification model, while the potential time-dynamic
characteristics are neglected. Further dynamic FC analysis may
provide additional useful information for diagnosing brain diseases.
Therefore, robust models will be further developed in future research
to classify dynamic FC patterns, and related dynamic biomarkers will
be explored to diagnose brain disease. On the other hand, this paper
uses the Dosenbach template to extract the ROIs in the brain. By
comparing with the detailed study of the voxel-level of brain network
nodes, it is not sophisticated. Therefore, in future related research, the
voxel-level networks will be focal point. Besides the improvement of
network construction, it is also worth studying how to enhance model
accuracy and further reduce over-fitting. In addition, the impact of
issues such as illness duration or the medical status of the prediction
results need to be explored as well.

Conclusion

In this study, we have completed the task of classifying
large-scale MDD brain networks based on DGCNN. The overall
experimental process is mainly two-fold: brain network construction
and classification. During the construction process, the pre-processed
dataset of depression fMRI data from the REST-meta-MDD site is
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used, and the Pearson correlation coefficient matrix is calculated
by 160 brain network nodes obtained after the Dosenbach template
registration. The obtained correlation coefficient matrix is set to
certain thresholds to obtain the 0–1 binary adjacency matrix. The
connectivity of the matrix is calculated using the Warshell algorithm.
It is concluded that the larger the set threshold, the poorer the
connectivity of the brain network. The adjacency matrix is then
converted as the input of the DGCNN model. In the classification
process, the graph is firstly inputted, and then carry out local
extraction. The vertex sorting is executed using the graph convolution
layer on the structural characteristics. Then, according to a predefined
order by using the SortPooling layer, the model sorts to unify the
size of the input graph. Finally, the sorted graph is read with one-
dimensional convolution and a dense layer to make the prediction.
The model is trained by the specific loss functions and optimization
algorithm. Ultimately, DGCNN achieved an accuracy of 72.1% on
the large and multi-site MDD dataset after ten cross-validations.
It is 12.4% higher than SVM, 9.8% higher than RF, and 7.6%
higher than GCN. Moreover, it also has a low time complexity
and space complexity. Based on the experimental results, it can be
concluded that the DGCNN model has robust performance and
fast data processing speed on large-scale datasets. It indicates the
model’s effectiveness in brain disease classification and thus provides
a promising solution for classification based on fMRI. It further
illustrates the potential of deep learning methods in computer-
aided medicine.
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