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The Indonesian Throughflow (ITF) connects the tropical Pacific and Indian Oceans

and is critical to the regional and global climate systems. Previous research

indicates that the Indo-Pacific pressure gradient is a major driver of the ITF,

implying the possibility of forecasting ITF transport by the sea surface height

(SSH) of the Indo-Pacific Ocean. Here we used a deep-learning approach with the

convolutional neural network (CNN) model to reproduce ITF transport. The CNN

model was trained with a random selection of the Coupled Model Intercomparison

Project Phase 6 (CMIP6) simulations and verified with residual components of the

CMIP6 simulations. A test of the training results showed that the CNN model with

SSH is able to reproduce approximately 90% of the total variance of ITF transport.

The CNN model with CMIP6 was then transformed to the Simple Ocean Data

Assimilation (SODA) dataset and this transformed model reproduced

approximately 80% of the total variance of ITF transport in the SODA. A time

series of ITF transport, verified by Monitoring the ITF (MITF) and International

Nusantara Stratification and Transport (INSTANT) measurements of ITF, was then

produced by the model using satellite observations from 1993 to 2021. We

discovered that the CNN model can make a valid prediction with a lead time of

7 months, implying that the ITF transport can be predicted using the deep-learning

approach with SSH data.

KEYWORDS

Indonesian Throughflow, sea surface height, neural network, deep learning, CNN
1 Introduction

The Indonesian seas have active exchanges with neighboring oceans through multiple

channels and the Indonesian Throughflow (ITF) passing by these channels (Wyrtki, 1961;

Gordon, 1986; Sprintall et al., 2019). As the unique oceanic passage between tropics, the ITF

links the Pacific low-latitude western boundary current and the Indian Ocean circulation
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system and hence plays an important role in the Indo-Pacific Ocean

circulation system (Wyrtki, 1987; Hu et al., 2015; Sprintall et al., 2019;

Phillips et al., 2021). Under the context of global warming, ocean

circulations, including the ITF, are expected to change significantly

(e.g., Sen Gupta et al., 2016; Hu et al., 2020; Ma et al., 2020; Hu et al.,

2021; Santoso et al., 2022; Shilimkar et al., 2022). Changes in the ITF

may cause fluctuations in the Indo-Pacific exchange rate and have an

impact on regional and global climates (Gordon, 1986; Sprintall et al.,

2014; Feng et al., 2015; Lee et al., 2015; Liu et al., 2016; Hu and

Sprintall, 2017; Feng et al., 2018; Li et al., 2018; Hu et al., 2019).

The Indonesian seas have complex topographies and ocean

dynamic processes (e.g., Wijffels and Meyers, 2004; Gordon, 2005;

Hu and Sprintall, 2016; Wei et al., 2019; Sun and Thompson, 2020; Xu

et al., 2021). Several notable observational experiments have been

conducted in this region, such as the Indonesian-US Arlindo program

(Gordon et al., 1999), the International Nusantara Stratification and

Transport (INSTANT) program (Sprintall et al., 2004; Sprintall et al.,

2009; van Aken et al., 2009; Gordon et al., 2010), Monitoring the ITF

(MITF; Susanto et al., 2012; Gordon et al., 2019), and the expendable

bathythermograph (XBT) deployments along the IX1 section (Meyers

et al., 1995), as well as the Northwestern Pacific Ocean Circulation

and Climate Experiment (NPOCE; Hu et al., 2011). These

observations are crucial for recovering the characteristics and

underlying dynamics of the ITF. However, the lack of long-term

and continuous ITF time series makes it difficult to gain a deeper

understanding (Sprintall et al., 2019).

Previous studies suggested finding a proxy of ITF transport in

addition to direct observations (e.g., Sprintall and Révelard, 2014;

Susanto and Song, 2015; Hu and Sprintall, 2016). Wyrtki (1961)

proposed that the large-scale pressure gradient between the Pacific

Ocean and the Indian Ocean is the driver of the ITF on an annual to

longer time scale, and the wind field changes in the Pacific and Indian

oceans affect ITF transport. Susanto et al. (2007) suggested an ITF

proxy using SSH anomalies from T/P altimeters and thermocline

depth anomalies along the Lombok Strait. Using numerical

simulations, Shinoda et al. (2012) found that sea-level differences

between the eastern Indian Ocean and the western Pacific were highly

correlated with ITF transport. Sprintall and Révelard (2014) used

remotely sensed altimeter data to develop proxy time series of ITF

transport, focusing on the three outflow passages of Lombok, Ombai,

and Timor. Susanto and Song (2015) developed an ITF transport

proxy from satellite altimetry and gravimetry ocean bottom pressure

(OBP) data, which they validated with measurements in the Makassar

Strait. Hu and Sprintall (2016) proposed an ITF transport proxy on

the basis of steric height from hydrologic data to separate the salinity

effect on ITF transport.

Previous research indicates a close connection between ITF

transport and SSH in the Indo-Pacific Ocean. Nevertheless, the

proxy of ITF derived from SSH using conventional methods, such

as linear regression, is typically based on the difference of SSH

between two regions within the Indo-Pacific Ocean and hence

ignores SSH signals of certain regions, resulting in significant

inconsistency between the proxy and observations and a lack of

ability to predict ITF transport. By contrast, approaches based on

machine learning may be more promising for developing a better ITF

proxy and predicting ITF variability. Li et al. (2018) used a
Frontiers in Marine Science 02
backpropagation (BP) neural network to create a multidecadal time

series of 0–300 m Makassar Throughflow.

Deep learning is a more powerful tool for extracting critical

information from large amounts of image data than machine

learning, such as the simple BP neural network. Deep learning is

capable of optimizing a non-linear function from a large amount of

trainable data. Theoretically, deep neural networks can approximate

non-linear mappings of any complexity (Cybenko, 1989; Hornik,

1991), and deep learning has been widely used in oceanography, e.g.,

automatic detection and prediction of mesoscale eddies (Zeng et al.,

2015; Xu et al., 2019), prediction of El Niño–Southern Oscillation,

studies of climate model parameter sensitivity, and parameterization

of unresolved atmospheric processes (Ham et al., 2019; Esteves et al.,

2019; Anderson and Lucas, 2018). Bolton and Zanna (2019)

demonstrated the powerful potential of deep learning for estimating

ocean currents using satellite observations. Deep learning was shown

to accurately predict subsurface ocean currents by George and

Manucharyan (2021) using synthetic data generated from a

simplified ocean turbulence model.

The goal of this study is to create a proxy-ITF transport using

deep learning and SSH data. The remainder of the paper is organized

as follows: the Data and Methods section introduces the

convolutional neural network (CNN) processing methods and

architecture diagram, and the Results section investigates the

performance of the CNN model with different data in estimating

the transport of ITF through SSH. The final section contains a

summary and a discussion.
2 Data and methods

2.1 Data

The data we used for training came from 36 climate models that

took part in the Coupled Model Intercomparison Project Phase 6

(CMIP6; see details in Tables 1 and 2). These models have been used

to simulate the historical climate since 1850, and they are driven by a

variety of observational and time-varying external forces.

The data for transfer learning and testing are a reanalysis dataset

from the University of Maryland’s Simple Ocean Data Assimilation

(SODA 2.2.4; details in Table 1). The SODA dataset assimilates ocean

station data, mooring temperature and salinity time series, various

types of surface temperature and salinity observations, and nighttime

infrared satellite SST data. The physical output quantity is mapped to

a uniform 0.5°×0.5°×40 grid in the form of a monthly average.

The observational data for comparison and verification of the

model results come from the INSTANT program, the MITF program,

Ocean Surface Current Analysis Real-time (OSCAR, Lagerloef et al.,

2002), and the Archiving, Validation, and Interpretation of Satellite

Oceanographic data (AVISO; see details in Table 1). The INSTANT

moorings were deployed simultaneously to measure the ITF from the

Pacific inflow at Makassar Strait and Lifamatola Passage to the Indian

Ocean export channels of Timor, Ombai, and Lombok, from 2004 to

2006 (Sprintall et al., 2004). The mooring array was designed to

measure the ITF’s velocity, temperature, and salinity profiles. In this

study, we used the sum of volume transports at three outflow straits,
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i.e., the Lombok strait, the Timor Passage, and the Ombai Strait, as the

ITF transport.

The MITF moorings were deployed simultaneously to measure

the ITF from the Pacific inflow at Makassar Strait; the mooring data in

the Makassar Strait spans more than 13 years (Susanto et al., 2012;

Gordon et al., 2019). The XBT survey along the IX1 section between

Fremantle, Western Australia and the Sunda Strait, Indonesia has

been operating for more than 30 years. The time series of geostrophic

transport of ITF can be obtained through the IX1 temperature data

(Liu et al., 2015). The OSCAR is an experimental processing system

and data center that provides surface velocity fields in the tropical

Pacific Ocean. Surface currents from the OSCAR were calculated

from satellite altimeters and vector wind data using methods

developed during the TOPEX/Poseidon altimeter research mission

(Bonjean and Lagerloef, 2002). The sea surface height data are a

multisource altimeter sea surface height fusion product provided by

AVISO, with a spatial resolution of 0.25°×0.25° and a temporal

resolution of 1 month. The data were primarily fused with satellite

data from several altimeters, including TOPEX/POSEIDON, Jason. 1,

and ERS/Envisat (AVISO, 2020).

To facilitate deep learning, the SSH data from SODA and CMIP6

were linearly interpolated. Given that the ITF is controlled by a large-

scale gradient over the Indo-Pacific Ocean, we used SSH from a broad

region 30°E–286°E and 44°S–44°N (Figure 1). In SODA and CMIP6

models, ITF transport was defined as the volume of transport across

the section at 113.5°E (8.5°S–22.5°S). The CMIP6 data was divided

into three sets: train set, verification set, and test set. Figure 2 presents

a schematic diagram of the training and operation of the CNN model

with the above datasets.

The train set contains model data from 1850 to 1974, the verification

set contains data from 1974 to 1994, and the test set contains data from

1994 to2014. SODAdata from1871 to1974wasused for transfer learning,
Frontiers in Marine Science 03
whileSODAdata from1980 to2010wasused for testing. ITFtransportwas

standardized before being incorporated into the deep-learning model.

The standardized z-score method is based on the following

equation:

Z =
X − m
s

; (1)

where m is the mean value of the train data, s is the standard

deviation of the train data, X is the transport of ITF, and Z is the

standardized ITF transport. The z-score method can be applied to

numerical data and is not affected by the magnitude of the data,

because its function is to eliminate the inconvenience caused by the

magnitude of the analysis.
2.2 Methods

Figure3 shows theCNNarchitectureused in this study,whichconsists

of four convolutional layers and four pooling layers. The variables of the
TABLE 1 The specifics of the data used for this study.

Data Source Elements Purpose

CMIP6 SSH, U, V For model training and verifying the feasibility of ITF transport’s inversion by SSH

SODA SSH, U, V Testing the performance of CNN in inferring ITF transport, training the transfer learning of CNN, and testing its performance

INSTANT, MITF U, V Testing the performance of CNN in inferring ITF transport, used as a reference for verification

AVISO SSH For inferring ITF transport between 1993–2021

OSCAR U, V Showing annual mean sea surface currents

IX1 ITF transport Geostrophic transport of ITF from IX1 temperature observations, used as a reference for verification
TABLE 2 Details of the CMIP6 models used in this study.

CMIP6 model source Nominal resolution Period

ACCESS-CM2;ACCESS-ESM1-5;BCC-CSM2-MR;CAMS-CSM1-0;CanESM5;CESM2;
CESM2-FV2;CESM2-WACCM;CIESM;CMCC-CM2-SR5;CMCC-ESM2;CNRM-CM6-1
;FGOALS-f3-L;FGOALS-g3;FIO-ESM-2-0;GISS-E2-1-G; HadGEM3-GC31-LL;
INM-CM5-0;KIOST-ESM;MIROC6;NESM3;MPI-ESM1-2-HR;MRI-ESM2-0;
SAM0-UNICON;NorESM2-MM; UKESM1-0-LL;

1°×1° Jan. 1850–Dec. 2014

CMCC-CM2-HR4;GFDL-CM4;HadGEM3-GC31-MM 0.25°×0.25° Jan. 1850–Dec. 2014

CESM1-CAM5-SE-HR;CMCC-CM2-HR4; CMCC-CM2-VHR4;CNRM-CM6-1-HR;
EC-Earth3P-HR;ECMWF-IFS-HR;ECMWF-IFS-MR

0.25°×0.25° Jan. 1950–Dec. 2014
FIGURE 1

Annual mean sea surface currents (vectors, OSCAR) and sea surface
height (color, AVISO) in 2018.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1079286
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xin et al. 10.3389/fmars.2023.1079286
input layer correspond to the SSH from time t−2 months to time t (in

months), between30°E–286°Eand44°S–44°N.Eachconvolution layerwas

convoluted by a 4×4 convolutional filter. To filter the output of previous

layers, a predefined non-linear activation function and batch

normalization were applied. After the four convolutions, the features are

flattened into one-dimensional vectors and transferred to a two-layer fully

connected neural network to predict ITF transport. ReLU (Pedamonti,

2018) was used as a non-linear activation function. The role of the

activation function is to add non-linear properties to the network,

allowing it to learn highly complex mappings.

The convolution layer works by convolving a small convolution

filter (Figure 3) onto the input image and then passing each output

pixel through the activation function, mapping the input (SSH image)

to the output (ITF transport). The CNN’s convolutional filtering

matrices are not present, but the gradient descent algorithm is used to

optimize input and output data until they reach the minimum value

of the target error function (Kingma and Ba, 2014).

The horizontal dimension of the pooling kernel is 4×4. The pooling

kernel continuously reduces the previous layer’s data by selecting themost

significant pixel among the locally selected pixels. The cost of transport

prediction error is calculated by taking the derivative of the network’s

weight value. The weight value of the convolution filter and the entire

connection is then trained using backpropagation to update each weight

value to reduce the loss. The power of CNN lies in the fact that thefilters of

each convolutional layer are learned from data as part of the training

process rather than being prespecified.

Deep learning necessitates the selection of hyperparameters to

optimize the network, specifically: the horizontal dimension of the

convolution matrix is 4×4, the Adam Optimiser algorithm (Kingma and
Frontiers in Marine Science 04
Ba,2014) isused toachievegradientdescent, and thedefault learning rate is

set to 0.001. The dropout probability is set to 30% to reduce overfit and is

implemented between the first and second fully connected layers. The

neural network loss function is defined as the mean square error between

the actual transport of ITF and the predicted transport by CNN. The

network is coded in Python and employs Google’s machine-learning

package TensorFlow (Abadi et al., 2016).

Insufficient training data causes overfitting or skill reduction in any

neural network. High-complexity networks with more trainable

parameters typically achieve better prediction skills, but they require

more training data (George et al., 2021). The number of free parameters

in theCNNin this paperwasO(106), and thiswasupdated iterativelyusing

the randomgradientdescentmethodand trainingdatawithanumberofO

(104). Regularization techniques are used in CNN optimization to detect

and prevent overfitting. This method divides data into independent train

sets, verification sets, test sets, and random dropout of neurons.

We also compared results from various methods, including: (1)

support vector machines (SVM); (2) logistic regression with the penalty

term set to L2 and the regularization coefficient set to 1; (3) random forest,

in which we implemented a random forest with 1,000 tree estimators; (4)

deep fully connectedneural networks (DNN), inwhichweused four layers

ofneural networkswith8,000, 1,250, 256, and64neurons,ReLUactivation

function, mean square error as the loss function, and no dropout; (5) a

residual network (ResNet) with over 17 million parameters; and a (6)

convolutional LSTM network with two convolutional LSTM layers, one

convolutional layer, and two fully connected layers. All of the methods

described above used the same dataset.

To evaluate the performance of CNN and other data-driven

methods, skill S and correlation coefficient R were defined as:
FIGURE 3

CNN Architecture diagram.
FIGURE 2

A schematic diagram displaying the training and operation of a CNN model with various datasets.
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;

(2)

where yp and yt are the predicted transport and the actual

transport and syp and syt are the standard deviations of the actual

and predicted transport of ITF.

The skill and correlation coefficient of perfect prediction is

approaching. However, there are significant differences between these

two indicators. Skill S is themonotone decreasing function ofmean square

error, which is negativewhen the prediction isworse than the data average

(George et al., 2021). Anyway, it is not sensitive to measurement accuracy

in some cases and often needs to be multiplied by a constant.
3 Results

The ITF transport of verification and test data was built using CNN

training of CMIP6 data. CNN’s epochwas set to 100. One epoch indicates

that all data have been sent to the network, completing the forward

computation andbackpropagationprocess. Figure 4demonstrates that the

predictive skill of verification data reached a high level around epoch 30.

The average S showed a peak of 0.69 (Figure 4), corresponding to a high

correlation coefficient of 0.95 thatwas significant at a 99% confidence level

between deep-learning transport and actual transport of CMIP6. This

suggests that the CNN was very efficient at extracting the required

information from the SSH to infer the ITF transport of CMIP6.

Training for too many epochs does not result in better verification and

test data results. The training skillwas expected to improve furtherwith the

development of the CNNmodel. Nonetheless, the skill of verification and
Frontiers in Marine Science 05
test data was approximately 0.69. The skill stabilized in a short epoch,

indicating that excessive training may lead to overfitting.

Figures 5A, B show the distribution of inferred and actual ITF of

CMIP6qualitativelyandquantitatively, and the inferred ITFcorresponded

well with the actual ITF. A comparison of CNN-inferred and actual ITF

transports of CMIP6 revealed that the CNN is capable of producing a

reasonable ITF transport time series (Figure 5C). Despite the fact that the

CNN explained up to 90% of ITF transport variation (Figure 5A), it

appeared that the results inferred by CNN had a systematic bias, which

may be a result of the limitations of using only SSH data. The CNN

consistently underestimated the peak values of ITF transportation

(Figures 5B, C). Even when increasing the number of extreme ITF

transport training examples, testing various optimizers (e.g., stochastic

gradient descent [SGD], Adam), loss functions (mean absolute error and

mean square error), and weight regularization (L1, L2), this

underestimation is unavoidable.

TheCNNshowedexcellentperformance in inferring the ITF transport

andwe then directly substituted the data from SODAandAVISO into the

model trained by theCMIP 6 (ITFwithout transfer, i.e., all the samples for

training, test, and predictionwere fromCMIP 6 simulations). The average

test skill of SODA data acquired by the CNN peaked at 0.54 (Figure 4).

Owing to overfitting, the skill dropped rapidly after the training epoch

reaches approximately70, so the training step size shouldbe set between30

and 70.When compared with the CNNmodel based on CMIP6, SODA’s

test skills were significantly lower, and its inferring ability is less stable.

To compensate for the small sample size of the reanalysis data, we

conducted transfer learning on SODA using the training model with

CMIP6 data. TheR of inferred SODA ITF transport with transfer learning

was 0.91, while the R of inferred SODA ITF transport without transfer

learning was 0.86. The correlation of inferring with transfer learning was

slightly improved when compared to the model without transfer learning

(Figure 6). In inferring extreme transport, transfer learning was slightly

inferior to thatwithout transfer learning, but thedegree offittingwas better

than the model without transfer learning (Figure 6).

Figure 7 shows a comparison of various statisticalmethods.We found

that the CNN explains more than 90% of the variance and shows a better

performance than other statistical methods (logistic regression, random

forest, SVM, or DNN), as expected (Figure 7). We also put different CNN

variants to the test, such as the ResNet and convolutional LSTM. It

is interesting to note that ResNet performed similarly to the CNN,

despite having more parameters (Figure 7). The addition of recurrent

neural networks did not improve the CNN’s capability. Given that the

CNN has an excellent ability to infer ITF transport with the SSH, we used

the same model to further investigate the deep-learning approach of

predicting long-term ITF transport with the CNN. It should be noted

that these various statisticalmethodscontainverydifferentparameters that

may potentially influence the comparison.

We thengeneratedanupdated long-termandcontinuous time series of

ITF transport using the CNN-based deep-learning approach and updated

satellite observations of SSH (Figure 8). The CNNmodel’s inference of ITF

transport was validated by comparing it with observations (Figure 8). It

appeared that the ITF fromdeep learning captures the general variability of

ITF: the correlation coefficient was 0.43 between IX1-observed ITF and 13-

month-running-mean time series of CNN-inferred ITF with satellite

observation, 0.57 between INSTANT-observed ITF and CNN-inferred

ITF with satellite observations, and 0.52 between MITF-observed ITF and

CNN-predicted ITFwith satellite observations, all ofwhichwere significant
FIGURE 4

Evolution of skills with deep learning. The solid lines represent deep-
learning skills with CMIP6, whereas the dotted lines (except black)
represent SODA skills. The solid blue line represents the verification data,
the orange line the test data, and the black dotted line represents the
average of the top 10 skills using CMIP6. The green dotted line
represents verification data, the red dotted line represents test data, and
the pink dotted line denotes the average of the top 10 skills with SODA.
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at the 99% confidence level (Figure 8). The deep-learning ITF differed from

the observations primarily in terms of peaks and valleys, which may be

associated with the ability of CMIP6 models to reproduce the ITF’s

extremes (figure not shown).

Figure 9 compares the predicted ITF transport of SODA with the

actual ITF after transfer learning with different time leads. As shown

in Figure 9, the R decreased overall as the time lead increased, and the

CNNmodel could make a valid prediction (R>0.5) with a lead time of

up to approximately 7 months. It should be noted that a 12-month

moving average is used before calculating the correlation coefficient

between the actual ITF and predicted ITF transports to reduce the

influence of the ITF’s strong seasonality, and it shows that including

of seasonality leads to a higher correlation coefficient between the

actual ITF and predicted ITF transports. Figure 10 compares the

predicted ITF transport from various models with the actual ITF

transport (time series are 12-month smoothed to focus on interannual

variability). The CNN was more effective and produced a longer

forecast than other models (Figures 9 and 10).

4 Discussion and conclusion

In this study, we investigated the deep-learning approach for

inferring and predicting ITF transport with SSH images using model

simulations from CMIP6 and reanalysis data products. We discovered

that the CNN-based deep-learning approach with SSH images can

generate a reasonable time series of ITF transport that captures

approximately 90% of the actual ITF variance. CNN-based deep

learning with reanalysis data sets performed similarly well,

reproducing approximately 80% of the variance of actual ITF

transport. These findings imply that the CNN, which explicitly
FIGURE 7

A comparison of various statistical methods for inferring with CMIP6.
The y-axis represents the inference abilities of various technologies,
such as SVM, logistic regression, random forest, DNN, CNN, ResNet,
and convolutional LSTM network. The R2 of each column represents
the proportion of inferred variance.
B

C

A

FIGURE 5

A comparison of CNN-inferred and actual ITF CMIP6 transports. (A) The x-axis represents the range of CMIP6 actual ITF, while the y-axis represents the
inferred ITF for each actual ITF. The black dotted lines show where the inferred ITF equals the CMIP6-actual ITF. The scatter diagram shows that the
CNN explains more than 90% of the traffic variance (max achieves R2 = 0.90). (B) The histogram demonstrates the bias of underestimated transportation
extremes. The actual ITF transport is shown in black, while the inferred ITF transport is shown in red. (C) Time series of actual transport (black) and
inferred ITF transport (red) when the skill is 0.69.
FIGURE 6

Comparison between CNN-inferred SODA with transfer (red), CNN-
inferred SODA without transfer (blue), and actual ITF transports of
SODA (black).
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relies on two-dimensional pattern analysis, outperforms other

traditional data-driven technologies, such as logistic regression

(R2 =0.56), random forest (R2 =0.74), statistical vector machines

(R2 =0.22), and primary fully connected neural networks (R2 =0.84).

Although the CNN performed admirably in predicting ITF

transport, it appears that the CNN’s prediction has a systematic

bias, and the peak values of ITF transport were consistently

underestimated by the CNN. Even when some methods, such as

increasing the number of extreme ITF transport training examples,

testing various optimizers, loss functions, and weight regularization,

were used, bias and underestimation remained unavoidable. The bias

and underestimation indicate that the skill limitations are due to the
Frontiers in Marine Science 07
inherent incompleteness of the information in SSH, rather than a lack

of training data or weaknesses in the CNN architecture.

It is well known that the network parameters most likely influence

deep-learning performance. Different network parameters were also

tested in this study. We employed various sizes of convolutional filters

(3×3, 4×4, 5×5, and 7×7) and pooling filters (2×2 and 4×4). Larger

convolutional filters produced worse predictions than smaller

convolutional filters. We discovered that a 3×3 convolutional filter

predicts similarly to a 4×4 convolutional filter, but a larger

convolutional filter means fewer parameters. Additionally, we tested

various optimizers (SGD and Adam), loss functions (mean absolute

error and mean square error), and weight regularization (L1 and L2),

and the CNN was found to be the most efficient choice. We attempted

to improve the performance of the CNN by increasing the number of

parameters and the cyclic neural network, which can improve the

performance at month 0. However, as prediction time increased, the

prediction ability of the two remained inferior to that of the CNN.

This means that in some cases, more complex networks do not

produce better results. We also tried increasing the size of the input

from t−9 months to time t (in months), and the performance of

ResNet and convolutional LSTM improved slightly.

The performance of the CNN in the model and reanalysis data

demonstrates that there is enough information in SSH to predict ITF

transport. However, further improvement in predicting ITF transport

using a deep-learning approach is required and is dependent on at

least two factors. On the one hand, the amount of training data

required for the CNN supervised learning is quite large, necessitating

a sampling size of O(104). As a result, advanced deep-learning

techniques that reduce the amount of essential training data by at

least one order of magnitude are required, as is the ability to forecast

in the long term. On the other hand, considering that the ITF is

influenced by baroclinic processes as well, the subsurface information

is also important for inferring and predicting ITF transport. As a

result, a better deep-learning approach should use subsurface
B

A

FIGURE 8

Comparison between CNN-inferred and actual ITF transports of observations. (A) inferred-predicted (black), ITF transports from INSTANT observation
(red), and MITF (blue). (B) Thirteen-month-running-mean CNN-inferred (black) and actual ITF transports of IX1 (red).
FIGURE 9

Comparison of actual ITF and predicted ITF transport of SODA using
various models.
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information in training the model, even though observing the

subsurface ocean is obviously very different from satellite-based sea

surface observation. Furthermore, as the large-scale pressure gradient

between the Pacific Ocean and the Indian Ocean is the driver of ITF

and some key regions seem to determine the ITF (e.g., Susanto et al.,

2007; Tillinger and Gordon, 2009), the deep-learning approach might

be further improved if we additionally consider the SSH in these key

regions. All of this points to a bright future for monitoring and

predicting important large-scale ocean circulations, such as the ITF.
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