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Biological systems respond to environmental perturbations and a large diversity of
compounds through gene interactions, and these genetic factors comprise
complex networks. Experimental information from transcriptomic studies has
allowed the identification of gene networks that contribute to our understanding
ofmicrobial adaptations. In this study, we analyzed the gene co-expression networks
of three Bifidobacterium species in response to different types of human milk
oligosaccharides (HMO) using weighted gene co-expression analysis (WGCNA).
RNA-seq data obtained from Geo Datasets were obtained for Bifidobacterium
longum subsp. Infantis, Bifidobacterium bifidum and Bifidobacterium longum
subsp. Longum. Between 10 and 20 co-expressing modules were obtained for
each dataset. HMO-associated genes appeared in the modules with more genes
for B. infantis and B. bifidum, in contrast with B. longum. Hub genes were identified in
each module, and in general they participated in conserved essential processes.
Certain modules were differentially enriched with LacI-like transcription factors, and
others with certain metabolic pathways such as the biosynthesis of secondary
metabolites. The three Bifidobacterium transcriptomes showed distinct regulation
patterns for HMO utilization. HMO-associated genes in B. infantis co-expressed in
two modules according to their participation in galactose or N-Acetylglucosamine
utilization. Instead, B. bifidum showed a less structured co-expression of genes
participating in HMO utilization. Finally, this category of genes in B. longum clustered
in a small module, indicating a lack of co-expression with main cell processes and
suggesting a recent acquisition. This study highlights distinct co-expression
architectures in these bifidobacterial genomes during HMO consumption, and
contributes to understanding gene regulation and co-expression in these species
of the gut microbiome.
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1 Introduction

The human gut microbiota is a community of anaerobic microorganisms that plays an
important role in the metabolization of complex carbohydrates that are not degradable by
host enzymes (Flint et al., 2012). Their presence directly influences gastrointestinal
physiology. Consumption of fiber and prebiotics has been considered positive for our
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health. These benefits include a reduced load of pathogens (Gibson,
McCartney, and Rastall 2005; Markowiak and Śliżewska 2017),
stimulation of the immune system (Shokryazdan et al., 2017), lower
allergy rates (Brosseau et al., 2019), and production of short-chain
fatty acids as metabolites resulting from their degradation
(Tsukuda et al., 2021). For this reason, a great interest in this
research has arisen, considering the contribution of the intestinal
microbiota to our wellbeing (Couto et al., 2020).

Free human milk oligosaccharides (HMO) are the third most
abundant component in human milk after lactose and lipids. They
are structurally complex glycans composed of different monomer
units that act as prebiotics (Castro et al., 2022). HMO can be
classified into three groups: 1) HMO decorated with fucose or
N-acetylneuraminic acid linked to lactose as a common core,
producing neutral or acidic HMO such as 2′- or 3-fucosyllactose
(FL), and 3′- or 6′-sialyllactose (SL); 2) type 1 HMO, characterized
by lacto-N-biose (Galβ1-3GLcNAc) repeats attached to a lactose
core, rendering molecules such as lacto-N-tetraose (LNT); and 3)
type 2 HMO, composed of N-acetyllactosamine units (LacNAc;
Galβ1-4GlcNAc) attached to a lactose core, forming molecules such
as lacto-N-neotetraose (LNnT) (Thomson, Medina, and Garrido
2018).

The Bifidobacterium genus is the most dominant in the infant
intestinal microbiota, stimulated by HMOs in the first years of life
(Turroni et al., 2022). Most infant bifidobacteria are well known for
their adaptations to the infant gut, displaying several mechanisms
for utilization of HMO (Zhang et al., 2022). These include the
presence in their genomes of several ATP-binding cassette (ABC)
and major facilitator superfamily (MFS) transporters, glycolytic
enzymes targeting different linkages in HMO, and feeder
pathways deriving HMO molecules to central metabolism
(Sakanaka et al., 2020). How bifidobacteria orchestrate molecular
responses to HMO using transcriptional factors has been little
studied.

RNA-sequencing (RNA-seq) is a powerful high-throughput
technology that provides insights into differential gene
expression and allows the identification of co-expressed genes in
a particular condition (Ozsolak and Milos 2011). Using RNA-seq
data provided from multiple samples, network analysis has been
used as an approach to study biological systems. This analysis
models the interaction of real biological networks and can be
intuitively understood by users (DiLeo et al., 2011; Kukurba and
Montgomery 2015; Chung et al., 2021). In the context of this
analysis, a network has a set of nodes represented by genes and
a set of edges, indicating significant co-expression relationships. In
these networks, there are highly connected nodes (hubs) and a large
number of nodes with a small number of connections. Both
maintain the structural properties of real networks, such as
scale-free topology (Stuart et al., 2003; Galán-Vásquez and
Perez-Rueda 2019).

Weighted gene co-expression network analysis (WGCNA) is a
practical methodology for network reconstruction that considers
the co-expression patterns between two genes, and the overlapping
of neighbor genes (Langfelder and Horvath 2008). To do this,
clusters of co-expressed molecules known as modules are
constructed, reflecting different groups (Zhang and Horvath
2005; DiLeo et al., 2011). The data are included in an adjacency
matrix, in which the linkage intensity between genes is defined.

Also, a soft threshold parameter is used, which is essential in
reconstructing the network. Then, a topological overlap measure
(TOM) is implemented as a proximity measure of genes in network
modules that combine the adjacency of two genes and the intensity
of their connections with neighboring genes. Gene co-expression
networks have been used to predict functions of unknown genes,
possible relationships with diseases (Liao et al., 2020; Rezaei et al.,
2022), or how microorganisms behave in response to intra- or
extracellular signals (Duran-Pinedo et al., 2011). Transcriptional
factors (TFs) and metabolic enzymes have been found and
considered as conserved processes between organisms focused
on gene regulation and metabolism (Jha et al., 2020). Due to its
relevance in the genome and microbial adaptations, it is essential to
evaluate how gene regulation patterns are present to explain the
biological activity in each module.

Some studies have demonstrated that the complexity in the
structure of HMOs drives species of the Bifidobacterium genus to
adapt their gene expression for their molecular utilization
(Alessandri, van Sinderen, and Ventura 2021). These changes
allow the production of enzymes necessary for processing these
compounds. For example, B. longum subsp. Infantis (B. infantis)
can internalize intact HMOs through ABC transporters, which are
broken down into monomers for intracellular metabolization (Masi
and Stewart 2022). In contrast, B. bifidum produces extracellular
enzymes that degrade the oligosaccharides and internalize the
monomers (Kitaoka 2012). The subspecies B. longum
subsp. Longum (B. longum) can grow on various HMO
structures, with a greater preference to fucosylated HMO. HMO-
utilization genes are usually contained in discrete clusters,
controlled by predicted TFs, and scattered across the genome
(Duar et al., 2020). B. infantis ATCC 15697 is characterized by
at least four HMO clusters, one devoted to type 1 HMO (LNB/GNB
cluster), another for fucosylated and type 2 HMO consumption
(HMO Cluster I), and two cluster targeting FL (Sela et al., 2008;
Dedon et al., 2020; Zabel et al., 2020). B. longum species are thought
to be adapted to the adult gut microbiota, but some isolates also
contain HMO clusters allowing type 1 and FL consumption
(Sakanaka et al., 2019).

Although molecular strategies for HMO utilization have been
well described recently, it is unknown how transcriptional
responses to these molecules are orchestrated at genome levels.
Furthermore, despite the fact that all these organisms belong to the
Bifidobacterium genus, they have unique HMO utilization patterns,
so the regulation of these responses might differ. Therefore, in this
work, gene co-expression networks based on WGCNA were
constructed and studied for three representative species of the
Bifidobacterium genus during HMO utilization. Also, co-
expressed modules are identified and evaluated with regulatory
proteins and metabolic maps to identify unexplored co-expression
patterns.

2 Materials and methods

2.1 Datasets

The gene expression dataset was obtained from NCBI Geo
DataSets (https://www.ncbi.nlm.nih.gov/gds). The dataset
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includes 18 RNA-seq samples of transcriptome response for B.
infantis ATCC 15697 (GSE58773) and B. longum SC596
(GSE87697), excepting B. bifidum SC555 (GSE59053) with
20 samples (mucin as carbon source included) to pooled and
individual HMO (Garrido et al., 2015; 2016). Among evaluated
individual substrates were LNT, LNnT, 2FL, 3FL, and 6SL. Pooled
HMOs were evaluated at the early (OD600 nm = 0.25), middle
(OD600 nm = 0.5–0.7), and late time (OD600 nm = 0.9–1.1) points
of growth (Supplementary Table S1).

GoodSamplesgenes function on the WGCNA R package was
used to inspect the dataset results for missing values. Genes and
samples classified as “good genes” and “good samples” were
respectively conserved (Langfelder and Horvath 2008). A
schematic representation of all analysis procedures is included
in Figure 1.

2.2 Construction of co-expression networks

Gene co-expression networks were created through
WGCNA in R from normalized samples (Supplementary

Figure S1). This package was useful for clustering samples,
module distribution, and determining topological properties
(Langfelder and Horvath 2008). Power (β) values were
calculated per organism using pickSoftThereshold function
(Table 1). Scale-free topology properties of biological
networks were added for this purpose. Then, an adjacency
matrix was constructed for each bacterial strain using
correlation networks, where negative correlations in genes
were considered unconnected.

After, the adjacency matrix was converted into a TOMmatrix to
minimize noise effects and spurious associations. Higher TOM
values allowed the identification of gene modules. Therefore, signed
correlation networks were used, pairwise biweight midcorrelation
coefficients and β values. Clustered genes were put into modules
with analog expression patterns using the average linkage
hierarchical clustering algorithm (flashClust function). The
cutreeDynamic function cut the dendrogram branches and
generated the gene modules. It used 1-TOM as a distance or
dissimilarity matrix with a minimum module size equal to 20.
Finally, modules with highly correlated eigengenes were merged
based on a minimum height of 0.20 (mergeCloseModules function).
Each module was differentiated by a specific color, where grey was
set for uncorrelated and discarded genes (Horvath 2011). The rest
of the modules were renamed with a number.

Modules were exported using the exportNetworkToCytoscape
function to analyze hubs about modules of interest. The 100 most
highly correlated genes were chosen for each module. The hub
genes were those most highly connected nodes within the module,
therefore, the degree of connectivity for each node (K) was
calculated, which is defined as the number of edges adjacent to
each node (Junker and Schreiber 2008). For smaller modules,
genes were filtered to the top 50% according to the threshold value
of the correlation. KEEG ortholog categories were assigned to
each gene and the legend was created using Legend Creator App
on Cytoscape.A general description of data information of
genomes was included in Table 1 and all scripts in
Supplementary Section.

2.3 Distribution of TFs and enzymes in
modules

Each Bifidobacterium genome gene was associated with its
Enzyme Commission (EC) number from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (Kanehisa and Goto
2000). Each enzyme with an E.C. number was related to its

FIGURE 1
Overview for conducting Weighted Correlation Network Analyses
(WGCNA) of different strains of Bifidobacterium genus using several
HMOs. This schematization represents all steps since acquisition of
sample dataset, WGCNA processing, until analysis of networks and
identification of hub genes.

TABLE 1 Overview of dataset and co-expression modules in this study.

Genome Sample Genes in
WGCNA

Size max/Min
genes per
module

β Genes in
Grey

Module

Coverage # Modules
without grey

# Genes delete in
GoodSampleGenes

B. longum infantis
ATCC 15697

18 2,577 516/27 12 0 2,577 20 0

B. bifidum SC555 20 1894 532/23 12 2 1892 10 0

B. longum
subsp. Longum

SC596

18 2,251 700/66 16 125 2,219 11 7
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respective metabolic map. Similarly, for TFs, we used the
compendium of TFs predicted by (Flores-Bautista et al.,
2020), assigned from the hidden Markov model (HMM) profiles,

and orthologous comparisons. The abundance and distribution of
each dataset were determined by calculating an incidence rate and
heatmap for each genome.

FIGURE 2
Gene clustering, with dissimilarity based on topological overlap (TOM), with the corresponding module colors indicated by the color row (Merged
dynamic). (A) B. longum subsp. Infantis ATCC 15697. (B) B. bifidum SC555, and (C) B. longum subsp. Longum SC596. Each colored row represents a color-
coded module which contains a group of highly connected genes.

Frontiers in Molecular Biosciences frontiersin.org04

González-Morelo et al. 10.3389/fmolb.2023.1040721

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1040721


2.4 Enrichment analysis

Enrichment analysis was necessary to evaluate the functional
relationship between obtained modules, TFs, and enzymes through
a hypergeometric test. Statistical significance at a p-value of <0.05 was
set. The enrichment analysis was performed using in house scripts in
Python language (https://www.python.org/).

3 Results

3.1 Construction of gene co-expression
networks

A diagram of the analyses performed in this study is shown in
Figure 1. All RNA-req samples for each Bifidobacterium strain were
obtained from NCBI Geo Datasets (Garrido et al., 2015; 2016). For
WGCNA analysis, log10 normalized read counts for all samples were
taken from NCBI Geo Datasets (Supplementary Figure S1). RNA-seq
datasets (GSE58773, GSE87697, GSE59053) were evaluated by sample
clustering according to the Euclidean distance between different
samples observed for each bacterium (Figure 2). No outliers were

detected in the clusters; therefore, 56 samples were used to construct a
hierarchical clustering tree (Supplementary Figure S2).

WGCNA identified 20 modules for B. infantis, 10 for B. bifidum
SC555, and 11 for B. longum SC596 (Figure 3). The soft-threshold
power was adjusted to 12, 12, and 16 for B. infantis ATCC 15697, B.
bifidum SC555, and B. longum SC596, respectively. These values were
selected to define the adjacency matrix based on the criterion of
approximate scale-free topology (Supplementary Figure S3), with a
minimum module size of 20, and 0.20 cut height for merging of
modules, which means that the modules whose eigengenes are
correlated above 0.80 must be merged (Supplementary Figure S4).

Dominant modules such as Blue and Greenyellow in B. infantis,
included sugar transport proteins and carbohydrate metabolism genes
(Supplementary Table S2; Supplementary Table S3). For B. bifidum
SC555, the Cyan module was the most extensive module exceeding
500 genes (Figure 3). This module contained diverse categories of
biological functions, such as genes encoding sugar transporter
proteins, transcriptional regulators, ribosomal proteins, MFS
transporters, ATP-binding proteins, and central metabolism genes.
However, this module did not contain any HMO-related gene. All
modules in B. bifidum contained regulatory and metabolic pathway
genes. The Darkturquoise and Purple modules included the highest

FIGURE 3
Bacteria co-expressionmodules in (A) B. infantis ATCC 15697, (B) B. bifidum SC55, and (C) B. longum subsp. longum SC596. On the x-axis are shown the
modules identified with the WGCNA package, identified with a number. The distribution of modules is represented in decreasing order, where the y-axis
represents the number of genes per module. Each module is made up of a set of genes associated with TFs (orange), metabolic maps (blue), and others
unclassified genes (green).

Frontiers in Molecular Biosciences frontiersin.org05

González-Morelo et al. 10.3389/fmolb.2023.1040721

https://www.python.org/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1040721


number of HMO genes, with 13 and 12, respectively (Supplementary
Table S4; Supplementary Table S5). Finally, in B. longum SC596 the
Cyan module was the largest (Figure 3). Darkgreen and Green
modules in this genome contained carbohydrate metabolism genes
specifically for HMOs, not being dominant compared to other
modules (Supplementary Table S6; Supplementary Table S7).

3.2 Identification of hub genes

Later, the top 100 most highly correlated genes were chosen for each
module in order to identify hub genes. These are determined considering
themost highly connected node within themodule, calculating the degree
of connectivity for each node. For smaller modules, genes were filtered to
the top 50% according to the correlation threshold value. Hub genes are
shown in Supplementary Tables S8–S10. They contained diverse
functions, from a hypothetical protein with a transmembrane domain,

ABC permeases not related toHMOutilization, metabolic enzymes, and a
transposase in B. infantis (Supplementary Table S8). Hub genes in B.
bifidum modules appeared to be related to protein synthesis
(Supplementary Table S9) and in B. longum were more varied
and included proteases, cell division and transport proteins
(Supplementary Table S10). These highly connected genes could be
important for bifidobacterial physiology or HMO metabolism, and
their actual role in these processes could be validated using directed
mutagenesis.

3.3 Enrichment analysis for TFs and metabolic
pathways

Gene regulation and metabolism are among the most conserved
processes among microorganisms. They are characterized by DNA-
binding regulatory proteins and enzymes involved in metabolic

FIGURE 4
Enrichment of TFs and metabolic maps for Bifidobacterium strains. (A) B. longum subsp. Infantis ATCC 15697, B bifidum SC555, (C) B. longum
subsp. Longum SC596. Modules with a −log10 (p-value) > 1.5 (corresponding to a p-value <0.05) were selected as enriched and are indicated by an arrow on
the bar. The red bars represent modules enriched with TF families, and the orange bars represent modules enriched with metabolic map.
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processes (Downs 2003; Schmid 2018). The distributions between
modules were mapped to determine similar co-expression patterns
between metabolism and gene regulation processes. Consequently,
TFs from Hidden Markov model (HMM) profiles and enzymes from
the KEGG database were associated with the genes of each
Bifidobacterium strain.

For all three bifidobacterial genomes, enzymes involved in
metabolic processes and TFs were found in almost all co-
expression network modules (Figure 3). However, some modules
contained a significant enrichment (-log10 (p-value) > 1.5) in TFs
or metabolic pathways across the three genomes (Figure 4).
Enriched modules with HMO-associated genes differed from

those enriched with TFs (Figure 4). The most enriched modules
with TFs contained on average 15.48% of the predicted genes
with this function in B. infantis modules, an 8.08% average for
B. bifidum SC555, and 10.65% average for B. longum SC596.
Meanwhile, the modules enriched with metabolic enzymes
contained on average 27.47% genes predicted to be related to
metabolism in B. infantis, 29.57% for B. bifidum SC555, and
26.20% for B. longum SC596. Analyzing the enriched functions
identified, there was at least one module with a high percentage of
TFs and enzymes in each bacterium. This case led us to evaluate
whether the richer modules prefer a particular TF family or
metabolic maps.

FIGURE 5
Heat map of TFs abundance for Bifidobacterium species. (A) B. longum subsp. Infantis ATCC 15697, (B) B. longum subsp. Longum SC596. Each row
represents the PFAM, and each column represents the most enriched module for that bacterial species.
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3.4 TFs and bifidobacterial metabolism

Each TF family of the enriched modules in Figure 4 was
classified using the Pfam database and the z-score of frequencies
of the clustered families (Sun et al., 2017). This clustering was
performed by determining the Euclidean distance measure and
Ward’s method for linkage analysis (Dvorak et al., 2017). Overall,
the TF with the highest frequency was the LacI family (PF00356) in
each enriched module (Figure 5). This family is usually associated
with regulation of carbohydrate metabolism. Other TFs were
identified among evaluated Bifidobacterium genomes, such as
TetR family (PF00440). TetR was present in the Lightyellow
module in B. infantis, Cyan module in B. bifidum SC555
(Table 2), and Turquoise module in B. longum SC596. GntR
family (PF00392) was also identified in both B. infantis and B.
bifidum SC555, but not in B. longum SC596.

Similarly, metabolic enzymes were classified according to the
KEGG pathway database (Kanehisa et al., 2019). z-scores of the
frequency of each metabolic map were clustered together, similar
to those performed for transcriptional factors (Figure 6). Modules
significantly enriched were characterized by an overabundance of
general metabolic pathways, followed by biosynthesis of amino
acids, cofactors, and secondary metabolites. This trend was
common for the three transcriptomes studied. Biosynthesis of
secondary metabolites was the only category differentially enriched
among modules (Figure 6).

3.5 Metabolism and regulation for HMOs
consumption

Later, modules were manually analyzed, and those containing
HMO-metabolizing genes were used to create co-expression
networks (Figures 7–9). This analysis considered the
neighboring genes of each node with the highest correlation.
Selected modules were Greenyellow and Blue in B. infantis,
Darkturquoise and Purple in B. bifidum, and Green and
Darkgreen in B. longum (Figures 7–9).

The Greenyellow module network included 22 HMO-related
genes (Figure 7A; Supplementary Table S2). These genes include
transporters and enzymes for FL metabolism (Blon_0247, Blon_
0248, Blon_0341 - Blon_0343, Blon_2202 - Blon_2204), which
showed an important degree of co-expression. The Greenyellow
network also included the GNB/LNB and type 1 HMO processing
cluster (Blon_2172-Blon_2177), and galactose metabolism enzymes
(Blon_2062-Blon_2063, Blon_2184) (Supplementary Table S1).
Therefore, this module appears to orchestrate metabolic
responses to HMO-derived galactose and fucose. Interestingly, a
few genes of the complete HMO cluster I (Sela et al., 2008) appeared
in this module (Blon_2331, permease; Blon_2334, β-galactosidase;
Blon_2354, SBP; Blon_2355, hexosaminidase). This suggests that
the HMO cluster I does not behave as one single
transcriptional unit.

The Blue module for B. infantis contained 19 genes related to
HMO, being the second with the highest number of genes of this
category (Figure 7B; Supplementary Table S3). This module showed a
higher degree of connectivity between nodes compared to the
Greenyellow. The remaining genes of the HMO cluster I were
included in this module, containing functions such as ABC
transporters, fucose metabolism and HMO-glycolytic enzymes.
These genes displayed a high co-expression (Figure 7B). Outside
this cluster, the module also contained a β-N-acetylhexosaminidase
(Blon_0732), TFs and enzymes for GlcNAc metabolism (Blon_0879,
Blon_0881), and a β-galactosidase (Blon_2016). Blon_0732 showed
high co-expression with two ribosomal proteins and an MFS porter.
Other single HMO-utilization genes were scattered in several modules
(Supplementary Table S3).

For B. bifidum, the highest number of genes related to HMO
consumption was included in the Darkturquoise module, with
13 genes (Figure 8A). Modules in B. bifidum showed a less
structured organization compared to B. infantis. The
Darkturquoise module contained glycolytic enzymes, TFs for
GlcNAc metabolism, and LNB processing enzymes (Figure 8A;
Supplementary Table S4). The Purple module in B. bifidum
contained 12 HMO-utilization genes related to galactose
metabolism, transport, GlcNAc metabolism and an α-L-
fucosidase (BBIF_01261). These genes showed a high degree of
connectivity (Figure 8B; Supplementary Table S5). The Turquoise
module contained five genes for galactose metabolism (BBIF_
00368, BBIF_00550, BBIF_00871). Other HMO-utilization genes
were found dispersed in other modules. Within the network, a total
of nine genes unrelated to HMO utilization such as hypothetical
proteins, a cell wall biosynthesis protein, and a transcriptional
regulator, among others, were identified.

The Green module contained the highest number of genes in B.
longum, with 12 HMO-related genes (Figure 9A; Supplementary
Table S6). This module was only the seventh with the higher

TABLE 2 TF families found in Cyan as an Enriched module in B. bifidum.

Name Pfam
family

Frequency

MerR family regulatory protein PF00376 1.0

Bacterial regulatory proteins, tetR family PF00440 2.0

MerR HTH family regulatory protein PF131411 2.0

GntR-like bacterial transcription factors PF00392 2.0

MarR family PF01047 1.0

Transcription factor WhiB PF02467 1.0

Bacterial regulatory proteins, lacI family PF00356 5.0

RelB antitoxin PF04221 3.0

Transcriptional regulatory protein, C terminal PF00486 3.0

LuxR-type DNA-binding HTH domain PF00196 3.0

PspC domain PF04024 1.0

Cold-shock domain PF00313 1.0

Repressor lexA PF01726 1.0

Helix-turn-helix PF09339 1.0

PF01381 2.0

PF13936 2.0

PucR C-terminal helix-turn-helix domain PF01402 1.0

Ribbon-helix-helix protein, copG family PF13412 1.0

Winged helix-turn-helix DNA-binding PF01418 1.0
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number of genes in B. longum (Figure 2C), suggesting HMO
responses are rather modular in this species and do not co-
express with other conserved processes. The Green module
contained HMO transport (BLNG_00161, BLNG_00162, BLNG_

00933-BLNG_00936, BLNG_01345) and galactose metabolism
genes (BLNG_0163-BLNG_00165, BLNG_00459, BLNG_00460).
The Darkgreen was only the sixth module with the most genes in B.
longum (Figure 3) and contained nine genes participating in FL

FIGURE 6
Metabolic map abundance in Bifidobacterium species. (A) B. infantis ATCC 15697, (B) B. bifidum SC555, (C) B. longum subsp. longum SC596. Each row
represents a metabolic map (KEGG), and each column represents the most enriched module.
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transport (BLNG_01255, BLNG_01256), fucose metabolism
(BLNG_01258-BLNG_01262), and α-L-fucosidases (BLNG_
01263, BLNG_01264) (Figure 9B; Supplementary Table S7). This

modularity and lack of association with other cellular processes
suggests a recent acquisition of this gene cluster. Finally, other
genes in B. longum appeared as pairs or single in other modules.

FIGURE 7
HMO-related co-expression networks in B. infantis. (A) Greenyellow and (B) Blue module in for B. infantis. All Network construction consisted of
modules weremanually analyzed, and those containing HMO-metabolizing genes were used to create a co-expression network. This analysis considered the
neighboring genes of each node with the highest correlation.
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4 Discussion

Bifidobacteria are important members of the gut microbiota in
both infants and adults. HMOs are considered the primary
substrates for the abundance of these species in the infant gut
(Walsh et al., 2020). Considering the predicted transcriptional
responses to Bifidobacterium species mediated by the structural
complexity of HMOs, likewise in order to have a more
comprehensive and global understanding of the gene

associations involved, gene co-expression networks were
constructed for three representative species such as B. infantis,
B. bifidum, and B. longum.

Co-expression networks provide a simpler way to analyze genes
that are correlated between biological processes that could be
candidates, e.g., for the study of diseases (van Dam et al., 2017).
WGCNA analysis has been successfully used as a system biology
method for describing expression correlation patterns among genes
across RNA samples corresponding to pooled and individual types

FIGURE 8
HMO-related co-expression networks inB. bifidum. (A)Darkturquoise and (B) Purplemodule for B. bifidum SC555. All Network construction consisted of
modules weremanually analyzed, and those containing HMO-metabolizing genes were used to create a co-expression network. This analysis considered the
neighboring genes of each node with the highest correlation.
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of HMOs generating modules. By clustering the expression data, B.
infantis possessed a higher number of modules compared to B.
bifidum and B. longum (Figure 3). The number of modules in a co-
expression network can be explained by multiple reasons, including
physiological aspects such as adaptations to environmental
circumstances and resource management between species

(Duran-Pinedo et al., 2011). The variety of modules in B.
infantis could indicate a more complex or diverse expression
response compared to B. bifidum and B. longum (Horvath 2011;
Duar et al., 2020; Zabel et al., 2020). Interestingly, some modules
have been identified that group the majority of genes focused on
metabolizing HMOs.

FIGURE 9
HMO-related co-expression networks in B. longum. (A) Green and (B) Darkgreen modules for B. longum SC596. All Network construction consisted of
modules weremanually analyzed, and those containing HMO-metabolizing genes were used to create a co-expression network. This analysis considered the
neighboring genes of each node with the highest correlation.
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WGCNA modules may represent independent units responsible
for certain biological functions (Jia, Zhao, and Jia 2020). This
observation was similar to detecting biomarkers linked to gut
microbiota (Vernocchi et al., 2020), and biofilm formation genes
from the bacterial community (Liu et al., 2021a; Chen and Ma
2021). HMO metabolization could also be a multifactorial process
that includes other genes concerned with other biological functions, as
observed a co-expression study for B. longum FGSZY16M3 (Liu et al.,
2021b). More experiments are needed to confirm the function of some
unknown function genes and the relevance of identified hub genes in
these networks.

Among TF regulatory processes found in enriched modules,
LacI family (PF00356) was with a high frequency in each genome.
LacI family transcriptional regulators are a group of allosteric
DNA-binding regulators with conserved amino acid sequences
(Lewis, 2005; Ravcheev et al., 2014). Most of the characterized
LacI family transcriptional regulators sense sugar effectors and
regulate carbohydrate utilization genes (Tsevelkhoroloo et al.,
2021). Likewise, TetR family (PF00440) is known to be involved
in multidrug resistance, and presumably controls the glucoside and
galactoside utilization pathways (Ramos et al., 2005; De Bruyn
et al., 2013). In the Bifidobacterium genus, TetR family has within
its regulators the BgrT genes are co-localized with genes encoding
various β-glucoside or β-galactoside hydrolases (e.g., bglB, bgaB,
bglX, bglY), and β-glucoside or β-galactoside transporters of the
MFS and ABC families. Specifically, BgrT1 regulon has been
identified with the β-glucosidase gene bglX in B. infantis. For B.
longum NCC2705, β-glucosidase genes bglX2 and bglX3 also have
been identified with the BgrT2 regulon (Khoroshkin et al., 2016). In
the case of B. bifidum, no regulator genes or regulons have yet been
identified.

Concerning to HMO utilization, B. infantis is a dominant strain
of the infant gut microbiota that can efficiently consume several
classes of structures(Lawson et al., 2020; Ojima et al., 2022). HMO-
related genes appeared to be sorted by functionality and activity of
HMO clusters in the key modules. In the case of B. bifidum SC555,
the organization of HMO-related genes can be explained by
considering the consumption mechanism. B. bifidum prefers
short HMOs, using enzymes to release fucose and sialic acid
decorations on the oligos, which it ultimately does not use. This
preference may also be directed to other carbon sources (Garrido
et al., 2015). It should be highlighted that the HMO cluster I is
found specifically in B. infantis, while fucose clusters are found in
some B. longum, B. breve and B. bifidum strains. The LNT
utilization cluster (Blon_2171—Blon_2177) is present in most
infant-associated bifidobacteria (Zúñiga, Monedero, and
Yebra 2018), and in B. infantis clustered with 2FL and galactose
pathways.

A few B. longum strains can utilize certain HMOs, especially LNT
and 2FL (Díaz et al., 2021). However, this subspecies is adapted to the
adult gut microbiome (Díaz et al., 2021). B. longum SC596 is a strain
isolated from an infant. B. longum key modules appeared to be closer
to the HMO utilization genes, considering that Green module
contained HMO transport and galactose metabolism genes
(Figure 9A), and Darkgreen module was addressed to genes of FL
metabolism and transport, including additionally fucosidases
(Figure 9B). Previous transcriptomic analyses have revealed the
affinity of B. longum to consume fucosylated HMOs allowing the
strain to be more selective to HMO consumption compared to B.

infantis, being an evolved strain (Garrido et al., 2016). This
observation points at the Darkgreen as a single fucose metabolism
module.

Regarding hub genes among three evaluated genomes
(Supplementary Tables S8–S10), hypothetical, transport, and
ribosomal proteins were identified as the most connected genes
among modules. Hypothetical proteins could take a role as glycosyl
hydrolase in the utilization of HMOs. However, future analysis will
allow us to determine their particular functional role (Galán-
Vásquez and Perez-Rueda 2019). Likewise, inside smaller
modules, some hub genes with 3, 4, 5, 6, and 7 degrees of
connections were identified, considered the most important in
the co-expression network. This study illustrates how HMO
genetic responses in Bifidobacterium are coordinated according
to the constituent monosaccharide: galactose, GlcNAc, and fucose
responses usually appear in distinct modules and clusters. This
correlates with monosaccharides potential role in activating or
repressing TFs and triggering the expression of cognate clusters.
This organization in the modules has also been previously observed,
in the transcriptional response in denitrifying bacteria on carbon
nanotubes, whereby WGCNA they have obtained specific modules
corresponding to the activity of various types of carbon nanotube
structures (Zheng et al., 2018).

Despite the extensive analysis of this study, there are still some
limitations, such as low reports of WGCNA studies in
bifidobacteria and the deficiency in gene annotation of novel
isolates bacteria. More datasets from Bifidobacterium species
under different conditions are required to refine their regulatory
networks. In some cases, themost important hub and non-HMO-related
genes encodes for hypothetical proteins, allowing future analysis to
determine their functional role. Also, experimental validation of co-
expression networks and incorporation of different species in utilizing
HMOs could further provide a widely understanding. These experiments
could be combinedwithmutational analysis of hub or essential genes. The
results obtained by WGCNA in the Bifidobacterium strains tested with
different HMOs provide evidence of expression patterns identified with
genes unrelated to HMO metabolism.

5 Conclusion

In this work, we identified and analyzed modules considered
metabolically and regulatory relevant in a set of infant bifidobacteria,
using a weighted gene co-expression analysis method (WGCNA) in the
context of HMO utilization. From this analysis, we identified some
modules enriched with TFs and metabolic enzymes. In the case of
regulation, we identified TFs from the LacI, TetR, RelB, and HTH_3,
GntR families, which are related to sugar utilization and biological
processes, such as biosynthetic processes, and cellular metabolic
processes. Our approach also identified genes involved in similar
metabolic or regulatory functions. Among modules for Bifidobacterium
strains, ABC and superfamily MFS transport proteins, transcriptional
regulators such as TetR were identified as hubs genes because of their
high correlation with other genes. The networks generated allowed us to
identify co-expressed genes involved in responses to HMO consumption.
Substantial differences were found in the structure of modules and
regulation across these three Bifidobacterium species. In summary, this
analysis allowed us to determine that, despite the diversity of
experimental information available for each organism, these
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mechanisms are similar in all organisms, which will allow us to
address new experimental results, such as the use of gene
expression data in metagenomic studies.
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