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Respiratory infections rank fourth in the global economic burden of disease. Lower

respiratory tract infections are the leading cause of death in low-income countries.

The rapid identification of pathogens causing lower respiratory tract infections to help

guide the use of antibiotics can reduce the mortality of patients with lower respiratory

tract infections. Single-cell Raman spectroscopy is a “whole biological fingerprint”

technique that can be used to identify microbial samples. It has the advantages of

no marking and fast and non-destructive testing. In this study, single-cell Raman

spectroscopy was used to collect spectral data of six respiratory tract pathogen

isolates. The T-distributed stochastic neighbor embedding (t-SNE) isolation analysis

algorithm was used to compare the di�erences between the six respiratory tract

pathogens. The eXtremeGradient Boosting (XGBoost) algorithmwas used to establish

a Raman phenotype database model. The classification accuracy of the isolated

samples was 93–100%, and the classification accuracy of the clinical samples was

more than 80%. Combined with heavy water labeling technology, the drug resistance

of respiratory tract pathogens was determined. The study showed that single-cell

Raman spectroscopy–D2O (SCRS–D2O) labeling could rapidly identify the drug

resistance of respiratory tract pathogens within 2 h.
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Introduction

Antibiotic resistance to bacterial pathogens has been found in every country across the
globe, and everyone can take action against it (Hernando-Amado et al., 2020). Meanwhile, the
administration of broad-spectrum antibiotics in patients leads to the emergence of multidrug-
resistant bacteria, posing a considerable risk to human health and life (Hay et al., 2018).
To date, many assays used to identify respiratory viral and atypical bacterial methods have
been developed such as the FilmArray Blood Culture Identification (BCID) panel (BioFire
Diagnostics, LLC.), the Verigene Gram-positive blood culture (BC-GP), and Gram-negative
blood culture (BC-GN). They are commercially available (Ramanan et al., 2018), while there
are limited methods used for typical respiratory bacteria testing, especially combined with
antibiotic-sensitive assays. Respiratory infections have been identified as a leading cause of
morbidity and mortality worldwide (Prats et al., 2002), and there is an urgent need to develop
rapid bacterial tests and diagnostic methods for antibiotic-resistant strains to address this global
challenge. Therefore, timely treatment with appropriate antibiotic therapy can lead to better
clinical outcomes and can decrease the generation of resistant strains (Prats et al., 2002).
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The mechanisms of antibiotic resistance in strains mainly include
enzyme production, which can destroy antibiotics, antibiotic target
modulation, avoidance of existence through the cell membrane,
and the initiative efflux system to the antibiotics (Blair et al.,
2015; Peterson and Kaur, 2018). These mechanisms use several
methods in sensitivity assays, such as broth microdilution, the
microdilution test, the agar diffusion test, and the automated
susceptibility testing systems (Verma et al., 2021). These conventional
methods are time-consuming, while clinicians choose drugs based
on experience that may lead to more drug-resistant bacteria. The
commercial method for the rapid antibiotic resistance test usually
depends on the PCR-based amplification reaction to identify the
abnormally existing bases. At the same time, it cannot provide
information about antibiotic susceptibilities (Burnham et al., 2017).
Thus, developing a rapid testing system is essential to integrate
confirmation of the antibiotic-resistant strains and information on
sensitive antibiotics.

Raman spectroscopy can quickly and non-destructively detect
microbial cell chemical components (Kanno et al., 2021). Raman
spectra of individual cells contain information on nucleic acids,
proteins, carbohydrates, lipids, and pigments, which can characterize
the genotype, phenotype, and physiological state of microorganisms.
Single-cell Raman spectroscopy (SCRS) is a “whole biological
fingerprint” technique that can be used to identify microbial samples
(Wang et al., 2021). It can be used for in situ, non-invasive, and
non-labeled detection of samples, and has a great application value
for qualitative analysis, quantitative analysis, and molecular structure

determination (Bergholt et al., 2017). Deuterium (D) in heavy
water can label cellular biomolecules through non-enzyme-catalyzed
H/D exchange and enzyme-catalyzed integration equilibrium. The
deuterium in the water was transferred into the substance by the
reduction process of coenzyme I and coenzyme II in the bacteria
cultured in heavy water, which shifted the C–H peak (2,800–
3,000 cm−1) in the Raman spectrum of bacteria, and the C–D
peak (2,000–2,300 cm−1) appeared, which became a biomarker of
bacterial metabolic activity at the single-cell level (Song et al., 2017).
This method is widely used in the detection of bacterial colony
metabolic activity (Berry et al., 2015; Tao et al., 2017; Taubert
et al., 2018; Olaniyi et al., 2019). The combination of D2O isotope
labeling technology and single cell Raman spectroscopy can identify
the Raman shift caused by the difference of metabolic activity
between cells, which can be used as a semi-quantitative method
to identify the metabolic activity of cells. Therefore, due to the
pressure of antibiotics, differences in their metabolic activities lead
to the displacement of C–D bonds between susceptible and resistant
strains. The combination of the Raman and heavy water labeling
techniques at the single-cell level can overcome the requirement of
long-term culture in clinical pathogen experiments, making rapid
drug screening possible.

In this study, we designed a single-cell Raman spectroscopy
technique combined with a heavy water labeling as a rapid
and accurate method for detecting antibiotic-resistant bacteria in
respiratory bacteria. We established a Raman phenotype database
of six common respiratory pathogens to provide a new method for
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rapidly identifying respiratory pathogens in clinical practice. We
also explored different antibiotic-heavy water labeling conditions
to achieve drug resistance identification of respiratory pathogens
within 2 h. This study provides a rapid and sensitive method
for identifying respiratory tract infection bacteria and their
drug susceptibility.

Methods

Bacterial strains and culture conditions

We selected each clinical specimen, such as sputum and
throat swabs, in the laboratory in our hospital from March 2020
to June 2020 to isolate P. ae and MC. The French VITEK2
COMPACT automatic bacteria analyzer and the M-H bacteria
separation medium were used. The specimens were inoculated on
the configured basic medium, placed in an ordinary incubator at
a temperature of 35 ◦C and in an 8% CO2 incubator for 18–
24 h, and then removed for bacterial identification. Approximately
0.9% normal saline was used to make pure colonies in the bacterial
suspension 0.5 McDonnell unit, and the French VITEK2 COMPACT
automatic bacterial analyzer was used to identify the bacterial
species. Then, the results of Gram stain, colony morphology,
and oxidase were carefully considered and combined to identify
Acinetobacter baumannii, Staphylococcus aureus, Pseudomonas

aeruginosa ATCC27853, and Escherichia Coli ATCC25922 as quality
control strains.

Antibiotic sensitivity assays

Bacterial pre-inoculums of the different strains were normalized
to ∼ 109 CFU/mL, and 10 µL of strains (∼107 CFU/mL) was
added with M-H basic medium. According to the Clinical and
Laboratory Standards Institute (CLSI) guidelines, disk diffusion
method was used to place different susceptibility disks on
the medium containing amikacin, ceftazidime, ciprofloxacin,
polymyxin E, ampicillin-sulbactam, cefepime, gentamicin,
imimeropenem, piperacillin-ticarcillin, ticarcillin-clavulinic
acid, tobramycin, welfare, piperacillin-tazobactam. The disks
were incubated at 35 ◦C for 18–24 h, and the diameter of
each inhibition zone was measured. The drug susceptibility
results were judged according to the CLSI regulations, and the
drug resistance was interpreted as susceptible (S), intermediate
susceptible (IS), and resistant (R), following CLSI 2016 and
EUCAST 6.0 (2016) guidelines and were compared (Weinstein,
2020).

Heavy water labeling

The LB medium was mixed with heavy water concentrations of
10, 20, 30, 40, and 50%. Antibiotics were added into the culture
at 0, 1, 2, 3, 6, and 12 h. The respiratory tract-resistant bacteria
Pseudomonas aeruginosa and the sensitive bacteria Escherichia Coli

were cultivated separately.

Sample preparation and Raman spectral
acquisitions

The bacterial pellet was washed two times with sterile water
at 6,000 g for 5min and resuspended to 1mL. Approximately 3–
5 µL of the sample was drop-cast onto a Raman chip and air-
dried for 5–10 mins. Raman spectra were acquired from the dried
bacterial drop using a Raman Microscope (HOOKE P300, HOOKE
Instruments Ltd., China) equipped with a 532 nm laser. The data
acquisition conditions were 600 gratings, the power on the samples
was 5 mW, and the acquisition time was 5 s. Data from different
amounts of individual cell Raman spectra were collected; 200 spectra
for pathogenmodeling data, 100 spectra for heavy water labeling, and
10 spectra for the clinical predicting model.

Raman spectral data processing and analysis

Data preprocessing
Raman spectral data preprocessing is the premise of Raman

qualitative analysis and quantitative analysis. It mainly applies
Raman spectral smoothing based on the Savitzky–Golay filter, and
Raman spectral baseline correction based on airPLS in HOOKE
intP (HOOKE Instruments Ltd., China) software. The width of the
Savitzky–Golay filtering window was set to 5 pixels, and third-order
polynomial fitting was applied. The airPLS algorithm Lambda was
100, and the maximum number of iterations using itermaxAirPls was
15. All the resistant bacteria Raman data were batch processed with
the same hyper-parameters.

Heat map analysis
Protein was represented by the 720, 785, 1,320, and 1,575 wave

number peaks, nucleic acid by 1,004 cm−1 and 1,665 cm−1 peaks, and
lipid by the 1,452 cm−1 peak in the distribution of E. coli, K. pn,MC,

and the other six drug-resistant bacteria. The heat map was generated
based on the linear backgroundmethod which calculates the net peak
area of 10 pixels around the wave number peak. The net peak area
is shown in pseudocolor, where yellow is the weakest and red is the
strongest signal.

Cluster analysis
The dimension of the Raman spectral data collected is 1,340

dimensions (CCD (charge-coupled device) camera pixel 1,340∗100).
Many of the 1,340 dimension features are noise or redundant
information. In this study, the t-distributed stochastic neighbor
embedding (t-SNE) algorithm was applied to dimensionality reduce
the Raman data. t-SNE used t-distribution in low-dimensional space,
which realized closer aggregation of points in the same cluster and
further distance between points in different clusters. It effectively
solved the problem of data point congestion in low-dimensional
space, improving the visualization effect, and maintaining the
data structure to a greater extent to achieve the expression of
high-dimensional data in low-dimensional space. t-SNE was used
for dimensionality reduction of the Raman data of six drug-
resistant bacteria, and two-dimensional visualization analysis was
carried out with t-SNE1 and t-SNE2, two maximum contribution
dimensions. The results showed that the six drug-resistant bacteria
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were highly non-linear and showed non-homogeneity within clusters
and dispersion between clusters.

Algorithm
A boosting integration strategy is adopted by the XGBoost

algorithm, which is a boosting algorithm based on the decision
tree. The gradient lifting algorithm is used to continuously reduce
the loss of the previously generated decision tree and generate
a new tree formation model, ensuring the reliability of the final
decision. XGBoost performs second-order Taylor expansion on the
loss function in the optimization process of gradient lifting decision
tree (GBDT) and introduces second-order derivative information to
make the model converge faster in the training process. In addition,
XGBoost also adds regular terms to the loss function to control the
model complexity and to prevent over-fitting.

In this study, the XGBoost algorithm was applied to the
recognition of “respiratory-resistant bacteria,” and the study was
carried out from sample data preprocessing, feature extraction, and
modeling analysis. The six kinds of spectral data were input into the
XGBoost detection model, and a new decision tree was determined
by iteratively learning the residual between the predicted value and
the true value. The cumulative result of the tree gradually approaches
the true value to complete the training, and then, the predicted
probability of the classifier (A, B, C, D, E, and F; six substances)
was used as the basis for discrimination. XGBoost was applied to
identify them. First, the original spectral data were preprocessed to
obtain the feature vector for model training; then, the model was
optimized by grid search and 3-fold cross-validation; finally, the
recognition model of “respiratory-resistant bacteria” was obtained.
The importance score is a measure to evaluate the importance of each
feature in the feature set to which it belongs. To improve the efficiency
of generating new trees during the training process, XGBoost gives
the importance score of each feature according to the gain value
in each iteration, providing a basis for establishing a new tree with
gradient direction in the next iteration. In this study, the importance
score was used as the basis for quantifying the importance of each
feature to select features and to extract the important features of the
“respiratory pathogen” Raman spectrum.

Cytotoxicity test

The medium containing 10, 20, 30, 40, and 50% heavy water
was inoculated with Pseudomonas aeruginosa at a concentration
of 2%. The culture was shaken at 200 rpm at 37 ◦C for 12 h.
The pure culture medium was used to remove the background,
and OD600 of the cultivated culture was detected using an
ultraviolet spectrophotometer.

Statistics

Comparisons between multiple groups were made by using a
one-way analysis of variance and an appropriate posttest or a non-
parametric equivalent, where appropriate. Analyses were performed
using GraphPad Prism Software (San Diego, CA). All data are
representative, and measurements were repeated at least three times.
No data have been pooled.

Study approval

All procedures were performed with approval from the ethics
committees of the First Hospital of Jilin University.

Results

Single-cell Raman spectroscopy of
respiratory tract pathogens

Single-cell Raman spectroscopy is used to obtain microbial
Raman spectra at the single-cell level, which can reflect the
characteristic “fingerprint” of pathogens. Therefore, SCRS can
analyze respiratory tract pathogens at the single-cell level. To
analyze the physiological characteristics of common respiratory tract
pathogens, we isolated, purified, and cultured six respiratory tract
pathogens from clinical samples. The identification information of
six respiratory pathogens is Escherichia Coli (E. coli), Klebsiella

Pneumonia (K. pn), Staphylococcus aureus (S. au), Moraxella

Catarrhalis (MC), Ps. Melophilia (P. ma), and P. Aeruginosa

(P. ae). To establish a comprehensive and reliable training
data set, 200 representative Raman spectra of the six strains
were collected, and the characteristic spectra of each pathogen,
obtained by computational analysis, are shown in Figure 1. The
Raman spectrum fingerprint area (400–1,800 cm−1) represents
the biochemical information of bacterial cells, including nucleic
acids, proteins, and lipids. The Raman spectra of each bacterial
species contain essential information for studying the complex
structure of cells. Table 1 shows the significant differences in the
peak positions of these six pathogens, mainly due to protein
(1,004 and 1,665 cm−1), nucleic acid components (720, 785, 1320
cm−1), and lipid (1,452 cm−1) composition (Cardinali et al.,
2019). The performance of the characteristic band of the Raman
spectra of six kinds of microorganisms was analyzed to show
the differences between these six kinds of microorganisms and
nucleic acids, proteins, lipids, and other substances, as shown in

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1065173
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2023.1065173

FIGURE 1

Average Raman spectra of six respiratory pathogens detected at an excitation wavelength of 532nm. The solid line represents the spectral mean and the

shadow represents the intra-group variance. The spectral band characteristics of each pathogen were displayed.

Figure 2, according to the statistical analysis of the line chart and
heat map.

Single-cell Raman spectroscopy of E. coli shows the most
prominent Raman band at 1,004 cm−1, which is due to the in-
plane rocking mode of –CH3 groups attached to the polyene chain
(Fendrihan et al., 2009). The intensity of the 1,665 cm−1 band of P.
ae is the strongest, and Amide I contributes to it (Lau et al., 2003).
The intensity of the 1,452 cm−1 band of K. pn is the strongest, and
the prominent band at 1,452 cm−1 is due to the –CH2 deformation
mode of lipids (Fendrihan et al., 2009); the intensity of the 1,320 cm−1

band of P. ma is the strongest, the intensities of the 720 and 785
cm−1 bands of S. au are the strongest, and the 720, 785, and 1,320
cm−1 bands are due to nucleic acids (James et al., 2008; Liu et al.,
2008). The spectra’s peak positions and intensities are the pathogen’s
characteristic fingerprints (De Plano et al., 2019). The changes in
these peak bands can be used to establish the Raman data model
of pathogens.

Our study shows that Raman spectroscopy has excellent potential
to analyze physiological characteristics and can deeply analyze
the vibration information of different molecules. The unique and
distinguishable Raman bands, with multiple biomarkers in SCRS,
allow the profiling of respiratory pathogens at the single-cell level.

Di�erential di�erentiation and classification
prediction model of respiratory pathogens

Based on the Raman spectra of these macromolecules and
combined with data analysis, structural information of biological
macromolecules can be obtained. At present, Raman spectroscopy
can be used to identify strains of species that have been confirmed
(Maquelin et al., 2003). t-SNE is a machine learning method for

TABLE 1 Raman bands in the spectra of childhood respiratory pathogens

and their tentative assignments.

Wavenumber/cm−1 Assignment Reference

720 Nucleic acids (Cardinali et al.,
2019)

785 Uracil (James et al., 2008)

1,004 Phenylalanine (Fendrihan et al.,
2009)

1,320 Guanine (Liu et al., 2008)

1,452 Lipids (Lau et al., 2003)

1,575 Guanine (Liu et al., 2008)

1,665 AmideI (Lau et al., 2003)

dimensionality reduction, which can help us identify associated
patterns (Pezzotti et al., 2017). The main advantage of t-SNE is the
ability to maintain local structure. This means that points with close
distances in a high-dimensional data space are projected to be close
in a low-dimensional data space. This method can make points in
the same cluster gather more closely, and points in different clusters
move farther apart, effectively solving the problem of crowded data
points in low-dimensional space (Zhou and Jin, 2020). First, 1200
spectral datasets from six pathogens were analyzed by the t-SNE
algorithm. The differences among the six pathogenic bacteria can
be obtained from the results of Raman spectra in the early stage,
and the t-SNE results could further demonstrate the differences
among the six pathogenic bacteria. Each bacterium was completely
clustered into the same cluster species, and different bacteria were
clustered into different clusters, which are divided into six clusters.
Therefore, the spectral differences between the six bacteria were
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significant, which can realize the characteristic differences between
species, as shown in Figure 3A. The first two feature dimensions of
t-SNE were reconstructed after dimensionality reduction, as shown

FIGURE 2

A heat map shows the intensity information of the characteristic peak

bands of six respiratory pathogens, which can reflect the relative

quantification of nucleic acids, proteins, and lipids corresponding to

each pathogen. (A) Nucleic acid correlation peak, (B) protein

correlation peak, and (C) lipid correlation peak.

in Figures 3B, C, which show Raman wavenumber loading plots
against the contributions of relevant Raman bands to t-SNE1 and t-
SNE2 of the t-SNE. XGBoost is a classical integrated lifting algorithm
framework with high training efficiency, good prediction effect,
controllable parameters, ease of use, and other characteristics; it is
a sharp tool in the field of extensive data analysis and is widely used
in biomedicine, environmental detection, and other fields, achieving
excellent results. XGBoost is used to reveal complex information
in Raman spectra and to identify and classify bacteria in biological
studies. In this study, we trained the classification model, modeled
six respiratory pathogens, and evaluated the predictive ability of
the XGBoost model using the entanglement validation method. The
results shown in Figure 4A show that XGBoost has a very accurate
prediction effect on the six respiratory pathogens, with an overall
prediction accuracy of 93–100%. The lowest prediction sample is E.
coli, with an accuracy of 93%, and MC, P. ae, P. ma, and S. au all
reach 100%. The ROC curve was applied to evaluate the sensitivity
and specificity of the model, as shown in Figure 4B. The ROC of the
label dimension and sample dimension rapidly approached the upper
left corner, and the sum of the sensitivity (TPR) and specificity (FPR),
expressed by the calculated AUC value, was close to 1, indicating that
the model was adequate and had a good performance.

In our study, six respiratory pathogens have apparent differences
from the results of the two clustering and classification algorithms.
According to t-SNE1 and t-SNE2, six clusters are clustered, and
the classification accuracy of the machine learning model is more
than 93%, which provides a prediction model for diagnosing clinical
respiratory pathogens.

Raman combined with heavy water labeling
to detect the drug resistance of
Pseudomonas aeruginosa

Metabolically active microorganisms metabolize deuterium into
the cell through the NADH/NADHP-oxidized respiratory chain, and

FIGURE 3

Classification analysis of six respiratory pathogens. (A) t-SNE visualization analysis and (B, C) Raman wavenumber loading plots against the contributions

of relevant Raman bands to t-SNE1 and t-SNE2 of the t-SNE.
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FIGURE 4

(A) XGB modeling and prediction results. (B) XGB analysis of ROC curve.

heavy water is added to the newly synthesized protein, lipid, andDNA
(Hekmatara et al., 2021). Deuterium forms a chemical bond with
carbon, causing the C–H peak to shift, and a new C–D peak appears.
The shift speed can reflect the synthesis speed of cell macromolecules,
and the changes in their metabolic activity can be characterized
for the same kind of cells. The drug resistance of respiratory
pathogens was evaluated according to the C–D (2,040–2,300 cm−1)
and C–H bands (2,800–3,100 cm−1) by Raman spectroscopy and

the metabolic activity of the cell was also evaluated by calculating
the ratio of the peak area in the C–D/(C–D + C–H) spectrum (Yi
et al., 2021). As the drug resistance detection sample, we selected a
representative strain of drug-resistant Pseudomonas aeruginosa from
six respiratory pathogens. We selected a standard strain of non-
resistant Escherichia Coli as the control group. Cefazolin, amoxicillin,
ofloxacin, and tetracycline were selected for the experiment. As
shown in Figure 5A, the results of the bacteriostatic zone experiment
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FIGURE 5

Resistance of Pseudomonas aeruginosa to di�erent antibiotics. (A) Representative images of Pseudomonas aeruginosa and E. coli in di�erent antibiotics.

(B) Spectra of Pseudomonas aeruginosa in di�erent antibiotics. (C) C–D ratio analyzed by heavy water labeling. The C–D peak was located at

2,040–2,300 cm−1 and the C–H peak at 2,800–3,100 cm−1. According to C–D/(C–D + C–H), the activity of drug-resistant bacteria was determined. The

antibiotics used were cefazolin, amoxicillin, tetracycline, and ofloxacin.

showed that Pseudomonas aeruginosa was resistant to all four
antibiotics. In comparison, non-resistant Escherichia Coli was not
resistant to all four antibiotics. Table 2 shows the diameter of the
bacteriostatic circle. Then, Pseudomonas aeruginosa was labeled with
heavy water and 30% heavy water and corresponding antibiotics
were added to the medium without heavy water culture as the
set control group. After culturing for 12 h, the samples were
collected for Raman analysis. The results showed that the C–D
peak was detected in all antibiotic treatment groups, indicating
that Pseudomonas aeruginosa had different degrees of resistance to

the four antibiotics, as shown in Figure 5B. Furthermore, the C–

D rate in the various culture treatments is shown in Figure 5C.
Therefore, we conclude that the drug resistance of respiratory

pathogens can be detected by heavy water labeling combined with

Raman technology.

Rapid detection of resistance of
Pseudomonas aeruginosa to Amoxicillin

The clinical detection cycle of drug-resistant bacteria is normally
2–3 days. To save time and to provide advice to clinicians for
the infected bacteria and sensitive antibiotics, we found that the
combination of Raman technology and heavy water marking can
realize the detection of drug-resistant bacteria. Therefore, we
set different concentrations of heavy water (10, 20, 30, 40, and 50%)
to label Pseudomonas aeruginosa. As shown in Figure 6, a 20% heavy
water concentration can achieve the labeling. The abundance of the
labeling becomes higher as the concentration increases (Figures 6A,
B). Then, we selected the 30% heavy water concentration to evaluate
the time that could be marked (0, 1, 2, 3, 6, and 12 h). The results
in Figures 6C, D show that 2 h could be marked, but 3 h was better.
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Therefore, it is recommended that the marking time should be 3 h.
This can significantly shorten the identification and detection time of
the drug resistance of clinical pathogens.

Our study determined conditions for labeling Pseudomonas

aeruginosa with heavy water. The combined application of Raman
and heavy water labeling technologies can realize the rapid
resistance of respiratory tract pathogens within 2 h, which provides
a new feasible scheme for the rapid detection of respiratory
tract pathogens.

TABLE 2 Diameter of the bacteriostatic circle in di�erent antibiotics.

Class of antibiotics Inhibitory Zone Diameter (IZD)

E.coli P.ae

Chloramphenicol 30± 2mm 10± 3 mm

Amoxicillin 27± 4mm 10± 1.5 mm

Ofloxacin 25± 1mm 10± 2 mm

Tetracycline 22± 2mm 12± 1 mm

Evaluation of the e�ect of heavy water on
cell activity

The results of previous experiments showed that using heavy
water combined with Raman can rapidly detect pathogen resistance
within 2 h. Testing whether the heavy water is toxic to the
cells is also necessary. Therefore, this evaluation was carried
out by culturing different concentrations of heavy water for
12 h. The results showed that heavy water was not toxic to
the bacteria during the culture process and did not affect cell
activity. It is a non-toxic and rapid-labeling reagent, as shown in
Figure 7.

Identification of samples from patients with
clinical respiratory tract infection

To verify the rapid Raman detection in new clinical samples, we
collected six samples from clinically infected patients and isolated
them, which were clinically identified as two strains of E. coli,

FIGURE 6

Heavy water can quickly mark the activity of bacteria, and, combined with Raman spectroscopy, we can quickly detect the drug resistance (#p > 0.05; *p

< 0.05; **p < 0.01; and ***p < 0.001). (A) C–D peak location map of Pseudomonas aeruginosa labeled with di�erent heavy water concentrations. (B)

Statistics of the relative peak intensity map of C–D labeled with di�erent heavy water concentrations. (C) C–D peak location map of Pseudomonas

aeruginosa labeled with di�erent heavy water labeling time and (D) statistics of the relative peak intensity of C–D labeled with di�erent heavy water

labeling time.
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FIGURE 7

E�ect of heavy water on cell viability. Experiments showed that it did not a�ect the proliferation and viability of bacteria.

FIGURE 8

XGB model established to predict the pathogen in clinical samples.

two strains of P. ae, and two strains of S. au. A total of 10
single cells were randomly selected from each sample for Raman
spectroscopy analysis. The XGB model established above was used
to predict clinically separated samples. The prediction results of E.
coli showed that there were three data discriminated as P. ae, one
data discriminated as K. pn, and the prediction accuracy rate was
80%. The P. ae forecast result showed that one of the data was
discriminated as P. ma and the other as K. pn, and the statistical
prediction accuracy was 90%. S. au prediction error was 0, and
the prediction accuracy rate was 100%. The result is shown in
Figure 8. Infectious diseases are common clinical diseases. Rapid
and accurate diagnosis is key to infection control (Domenech et al.,
2018). The identification method of clinical pathogens relies on the

traditional bacterial culture, isolation, purification, and identification,
which is cumbersome, has a long detection cycle, and cannot
timely and effectively guide the application and treatment of clinical
antibiotics (Leski et al., 2011). Our experimental results showed that
it is possible to collect only 10 Raman spectra of microorganisms
per patient for prediction and discrimination, and then reduce
the culture of pathogens. The clinical testing time is considerably
shortened. At the same time, the discriminant error between E.

coli and P. ae shows that the training model has the potential for
continuous improvement.

The prediction accuracy of the XGB respiratory pathogen model
was 80% for Escherichia coli, 90% for Pseudomonas aeruginosa, and
100% for Staphylococcus aureus.
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Discussion

This study aimed to explore a rapid and accurate method
of identifying various susceptible or antibiotic-resistant bacterial
strains from patients with respiratory infections. Early recognition
of antibiotic-resistant strains would effectively guide the choice
of antibiotics in the clinic and would avoid the problem of
antibiotic resistance. Respiratory tract infections, particularly lower
respiratory tract infections (LRTI), are the leading global causes
of morbidity and mortality (Roth et al., 2018). Our study on
antibiotic susceptibility respiratory bacteria testing would greatly
help in prescribing antibiotics.

Through our assays, it is critical to determine the remarkable bio-
molecular profiling of the bacteria at the excitation wavelength of
532 nm, which is suitable for cytological samples on glass substrates
(Kerr et al., 2015). Nucleic acids, uracil, phenylalanine, CH2 bending
mode of lipids, and amide I were separately observed in the Raman
spectra at 720, 785, 1,004, 1,452, 1,575, and 1,665 cm−1, consistent
with previous literature. Furthermore, guanine presented at both
1,320 and 1,575 cm−1. Through the Raman intensity of nucleic
acids, proteins, and lipids in each respiratory pathogen, we could
identify E. coli, K. pn, S. au, MC, P. ma, and P. ae, listed in the heat
map in Figure 2.

To improve the accuracy of the identification of each pathogen,
we used several calculation methods. We found that the combination
of t-SNE cluster analysis and the XGB algorithm was the best choice
for data processing and analysis. According to our algorithm, the
Raman spectra of each respiratory pathogen were gathered into
six clusters. These representative data were used to distinguish the
six kinds of pathogens with an accuracy of 100% in four kinds of
pathogenic bacteria. Furthermore, the lowest accuracy of the other
pathogenic bacteria was 93%. The peak positions of each respiratory
pathogen could be used as the marker of the common bacteria. At the
same time, the data should be completed to represent the majority of
the respiratory pathogens.

To resolve the problems with identifying bacteria, we aimed
to provide the drug resistance of each bacteria to acquire more
information about the pathogens. By deuterium attaching to the
metabolically active microorganisms, the C–D bond reflected the
metabolic activity of the bacteria. The exposure to antibiotics
inhibited the proliferation of sensitive bacteria and resulted in
common spectral changes such as the C–D drift in the Raman
intensity. Pseudomonas aeruginosa was treated with cefazolin and
amoxicillin, in heavy water and mixed medium, respectively, and the
C–D bond ratio was detected. As cefazolin and amoxicillin belong to
beta-lactam antibiotics and this cell wall–targeting antibiotic causes
DNA damage (Maiques et al., 2006), the Raman spectral changes
are likely to be similar for both classes. Tetracycline antibiotics
bind to the 30S subunit of ribosome at the mean, while those of
ofloxacin antibiotics inhibit the activity of bacterial DNA helicase.
The Raman spectral changes with different antibiotics are diverse.
However, the C–D bond ratio was significant in comparing and
contrasting the spectral changes with or without antibiotics. The
C–D peak was located at 2,040–2,300 cm−1 and the C–H peak at
2,800–3,100 cm−1.

As a hypothesis, Pseudomonas aeruginosa, a naturally resistant
strain to the first and second-generation cephalosporins and
amoxicillin, had different degrees of resistance to cefazolin and
amoxicillin. Pseudomonas aeruginosa exposed to tetracycline

antibiotics showed a similar C–D ratio to the ofloxacin antibiotics.
It was believed that tetracycline antibiotics were less susceptible to
Pseudomonas aeruginosa (Grossman, 2016). Further studies with
different mechanisms of antibiotics and bacterial species should
be performed to confirm the true potential of the C–D ratio in
assessing the antibiotic susceptibilities of bacteria resistance. It was
also significant to confirm the exposure duration of bacteria to the
antibiotics and the concentrations of heavy water. The shortest time
for confirming Pseudomonas aeruginosa drug susceptibility, during
which Raman spectroscopy detected the C–D drift, was 3 h. In
comparison, the current clinical protocol for isolating bacteria takes
24 h to 5 days before AST.

In summary, our study demonstrates the potential of 20%
D2O labeling Raman spectroscopy in confirming the resistance
of different antibiotics to respiratory bacteria within 3 h, without
time-consuming, complex, or tedious processing. Understanding
how antibiotics influence bacterial metabolism may result in the
development of better therapeutic strategies and may help to avoid
the production of resistant bacteria. In the future, it is also necessary
to correlate the Raman spectral data to the AST results and to track
the capacity of bacteria converted to resistant phenotypes after the
use of antibiotics in the clinic.

Conclusion

In this study, SCRS and t-SNE analysis algorithms were used
to visualize the significant differences among six respiratory tract
pathogens, which could be significantly isolated. Based on the
heat map analysis, each bacterium has a characteristics in peak
intensity, which may be used as the basis for classification and
differential analysis. The XGBoost machine learning classification
model was used to classify six respiratory tract pathogens with an
accuracy of 93–100%. The classification accuracy of patients with
clinical respiratory tract infections was more than 80%. Therefore,
it is expected that the SCRS technology can be used to rapidly
identify respiratory pathogens in non-culture conditions. The Raman
technique combined with heavy water labeling technology detected
the drug resistance of respiratory pathogens. It was determined that
the drug resistance could be identified within 2 h. Heavy water did
not affect microbial activity. Therefore, our study provides a new
feasible scheme for the identification and drug resistance detection
of respiratory pathogens using SCRS–D2O.
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