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Background: Sarcopenia is an aging syndrome that increases the risks of various
adverse outcomes, including falls, fractures, physical disability, and death. Sarcopenia
can be diagnosed through medical images-based body part analysis, which requires
laborious and time-consuming outlining of irregular contours of abdominal body
parts. Therefore, it is critical to develop an efficient computational method for
automatically segmenting body parts and predicting diseases.

Methods: In this study, we designed an Artificial Intelligence Body Part Measure
System (AIBMS) based on deep learning to automate body parts segmentation from
abdominal CT scans and quantification of body part areas and volumes. The system
was developed using three network models, including SEG-NET, U-NET, and
Attention U-NET, and trained on abdominal CT plain scan data.

Results: This segmentation model was evaluated using multi-device developmental
and independent test datasets and demonstrated a high level of accuracy with over
0.9 DSC score in segment body parts. Based on the characteristics of the three
network models, we gave recommendations for the appropriate model selection in
various clinical scenarios.We constructed a sarcopenia classificationmodel based on
cutoff values (Auto SMI model), which demonstrated high accuracy in predicting
sarcopenia with an AUC of 0.874. We used Youden index to optimize the Auto SMI
model and found a better threshold of 40.69.

Conclusion: We developed an AI system to segment body parts in abdominal CT
images and constructed a model based on cutoff value to achieve the prediction of
sarcopenia with high accuracy.
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1 Introduction

Sarcopenia is an aging-associated disorder that is characterized by a decline in muscle mass,
strength and function. The onset of sarcopenia increases the risk of a variety of adverse
outcomes, including falls, fractures, physical disability, and death (Sayer, 2010). In Oceania and
Europe, the prevalence of sarcopenia ranged between 10% and 27% in the most recent meta-
analysis study (Petermann-Rocha et al., 2022). Various biomarkers for sarcopenia and related
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diseases have been explored on the molecular, protein, and imaging
levels. Interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α)
levels may be important factors associated with frailty and sarcopenia,
according to a study (Picca et al., 2022). Muscle quality was also found
to be associated with subclinical coronary atherosclerosis (Lee et al.,
2021). Patients diagnosed with sarcopenia are more likely to develop
cardiovascular disease (CVD) than those without sarcopenia (Gao
et al., 2022). These studies have provided new perspectives for a
thorough comprehension of sarcopenia.

Sarcopenia can be assessed through physical examinations or self-
reported SARC-F scores, but the diagnosis of sarcopenia requires multiple
tests including muscle strength tests and more accurate imaging tests, in
which muscle content is evaluated using either bioelectrical impedance
analysis (BIA) or Dual-energy x-ray (DXA) testing. However, bioelectrical
impedance is affected by the humidity of the body surface environments,
which makes accurate diagnosis challenging (Horber et al., 1986).
Although dual-energy x-ray testing is commonly used to evaluate
sarcopenia (Shu et al., 2022), it is not yet widely available or used;
even in medical institutions with DXA testing capabilities, there is a
high rate of missed diagnoses of sarcopenia due to inconsistency between
instrument brands (Masanés et al., 2017; Buckinx et al., 2018).

Computed tomography (CT) is considered the gold standard
for non-invasive assessment of muscle quantity and quality
(Beaudart et al., 2016; Cruz-Jentoft et al., 2019). Cross-sectional
skeletal muscle area (SMA, cm2) at the level of the third lumbar
vertebra (L3) is highly correlated with total body skeletal muscle
mass. Adjusting SMA for height provides a measure for relative
muscle mass called skeletal muscle index (SMI, cm2/m2), which is
commonly used clinically as an evaluation index to determine
sarcopenia. The SMI differs by gender; a study discovered that
an SMI <52.4 cm2/m2 for men and <38.5 cm2/m2 for women was
defined as sarcopenia (Prado et al., 2008). The calculation of SMI

requires trained personnel, but the shortage of experienced health
professionals hinders the practical deployment of this technology.
Meanwhile, for the diagnosis of musculoskeletal disorders, a
radiologist must mark a detailed outline of the body part,
which, according to some studies, may take 5–6 min in a single
slice of CT image, even when using a professional tool called Slice-
O-Matic (Takahashi et al., 2017). To automate this laborious
process, we developed a computational method that can
accurately and quickly perform body part outlining and obtain
quantitative measurements for clinical practice.

The field of CT-based body part analysis is expanding rapidly and
shows great potential for clinical applications. CT images have been
used to assess muscle tissue, visceral adipose tissue (VAT), and
subcutaneous adipose tissue (SAT) compartments. In particular,
CT measurements of reduced skeletal muscle mass are a hallmark
of decreased survival in many patient populations (Tolonen et al.,
2021). Typically, segmentation and measurement of skeletal muscle
tissue, VAT, and SAT are manually performed by radiologists or semi-
automatically performed at the third lumbar vertebrae (L3). However,
for a wider range of abdomen such as the whole abdomen,
segmentation and measurement of skeletal muscle tissue, VAT, and
SAT are lacking, limiting the clinical applications of CT-based body
part analysis. In this study, we focus on developing a segmentation
model for a wider range of abdomen.

Deep learning applications in healthcare are undergoing rapid
development (Gulshan et al., 2016; Esteva et al., 2017; Smets et al.,
2021). In particular, deep learning-based technologies demonstrated
great potential in medical imaging diagnosis during COVID-19
(Santosh, 2020; Mukherjee et al., 2021; Santosh and Ghosh, 2021;
Santosh et al., 2022a; Santosh et al., 2022b; Mahbub et al., 2022).
Recently, a number of deep learning techniques for body part analysis
using CT images have been developed (Pickhardt et al., 2020; Gao

FIGURE 1
AIBMS for sarcopenia diagnosis. (A)Overview of the AI system. The system consists of threemodules: amodule for body part segmentation, amodule for
body part quantification, and a module for sarcopenia analysis. Sm is the muscle tissue area, H is the height, and T is the threshold of the SMI. (B) U-shape
encoder-decoder structure (left) and experimental datasets (right).

Frontiers in Physiology frontiersin.org02

Gu et al. 10.3389/fphys.2023.1092352

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1092352


et al., 2021). (Weston et al. (2018) conducted a retrospective study of
automated abdominal segmentation for body part analysis using deep
learning in liver cancer patients. Zhou et al. (Zhou et al. (2020)
developed a deep learning pipeline for segmenting vertebral bodies
using quantitative water-fat MRI. Pickhardt et al. (Kalinkovich
and Livshits, 2017) developed an automated CT-based algorithm
with pre-defined metrics for quantifying aortic calcification,
muscle density, and visceral/subcutaneous fat for cancer
screening. (Grainger et al. (2021) developed a deep learning-
based algorithm using the U-NET architecture to measure
abdominal fat on CT images.

Previous studies were often limited to two-dimensional (2D)
analysis of body composition using the L3 levels and did not extend
to the three-dimensional (3D) abdominal volume levels. Compared
with the L3-level 2D information, the 3D abdominal information is
more informative and may be better associated with certain
diseases. Therefore, there is a clinical need for such a
segmentation tool, which is capable of performing both
L3 single-level and even the whole volume of 3D abdominal CT
segmentation. In comparison to previous studies, this paper
focuses exclusively on automatic body part segmentation using
deep learning and exploring the feasibility of predicting
sarcopenia.

2 Materials and methods

2.1 Study populations

2.1.1 Developmental dataset
We retrospectively analyzed patients who underwent

abdominal CT plain scan examinations at the Department of
Diagnostic Radiology, Tsinghua ChangGung Hospital, Beijing,
China, between January 2020 and December 2020. Inclusion
criteria included the following patient information: a) complete
demographic information, including age and gender; b) abdominal
CT plain scan examination with a scan range from the top of the
diaphragm to the inferior border of the pubic symphysis; and c)
absence of major abdominal diseases. Exclusion criteria included
poor-quality abdominal CT scan images and noticeable artifacts
that interfered with the identification of body parts. As a result, we
obtained a “segmentation developmental dataset” consisting of
5,583 slides from 60 cases, 45 males and 15 females with a
mean age of 32.0 ± 6.6 years (20–57 years).

2.1.2 Independent test dataset
We retrospectively selected and analyzed female patients who

underwent abdominal CT plain scan examinations at the Department
of Diagnostic Radiology, Beijing Tsinghua Changgung Hospital,
Beijing, China, between November 2014 and May 2021. In addition
to the aforementioned inclusion and exclusion criteria, female patients
in post-menopause with information on age at menopause, height
(m), and weight (kg) were extracted. Finally, 7 patients with a mean
age of 60.1 ± 8.7 years (48–73 years) were included in the study. This
dataset consists of 745 CT slides and is referred to as the “independent
test dataset,”which will be used to evaluate the body part segmentation
model based on abdominal CT plain scans.

2.1.3 Sarcopenia prediction dataset
We retrospectively selected and analyzed female patients who

underwent DXA examinations at the Department of Diagnostic
Radiology, Beijing Tsinghua Changgung Hospital, Beijing, China,
between November 2014 and May 2021. Inclusion criteria were: a)
patient had complete demographic information, including age, age
at menopause, height (m), and weight (kg); b) patient was
postmenopausal; c) patient’s DXA examination included the L1-
L4 vertebrae and left femoral neck; d) patient received an
abdominal CT plain scan from the top of the diaphragm to the
inferior border of the pubic symphysis; e) patient had no significant
abdominal disease; and f) patient’s abdominal CT scan and DXA
examination were taken within a 12-month interval. Exclusion
criteria included the presence of metallic implants in the scan area
of the DXA examination, poor image quality of abdominal CT scan,
or the presence of visible artifacts that interfered with muscle
identification. As a result, 330 female patients with a mean age
of 68.5 ± 9.7 years (50–96 years) were included in the study and
referred to as the “Sarcopenia prediction dataset,” which will be
used to evaluate the performance of the sarcopenia prediction
model.

2.1.4 Abdominal CT image acquisition
All CT scans in the retrospective study were obtained using either

a GE Discovery 750 HD CT scanner (GE Healthcare, Waukesha,
Wisconsin, United States of America) or an uCT 760 CT scanner
(United-Imaging Healthcare, Shanghai, China). All scans were
acquired in the supine position. The parameters of the CT scan
were as follows: 120 kVp, auto-mAs, slice thickness: 5 mm, Pitch
1.375 mm (GE Discovery 750 HD)/0.9875 mm (uCT 760), and
512 × 512 matrix size.

TABLE 1 Demographic characteristics in this study.

Training group (n = 264) Testing group (n = 66) p-value

Age (year) 68.5 ± 10.0 68.5 ± 8.4 0.98

Weight (kg) 61.6 ± 12.1 60.4 ± 9.7 0.45

Height (cm) 159.1 ± 5.9 159.4 ± 5.0 0.73

BMI (kg/m2) 24.3 ± 4.4 23.8 ± 3.7 0.38

Disease Status n (%)

Sarcopenia 101 (38.3%) 27 (40.9%) 0.69

Non-Sarcopenia 163 (61.7%) 39 (59.1%)
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2.1.5 Sarcopenia diagnosis
Radiologists selected an L3 layer abdominal CT image and used

ITK-SNAP software to outline the muscle region and calculate its area.
Then, Eq. 1 in the following was used to calculate the skeletal muscle
index (SMI). Patients with an SMI value lower than a specific
threshold will be diagnosed with sarcopenia.

SMI cm2/m2( ) � Muscle Tissue Area L3[ ] cm2( )
Square of Height m2( ) (1)

2.1.6 Ethics review
The study was approved by the institutional review board and

ethical committee of Beijing Tsinghua Changgung hospital. The
number approved by the ethics committee is 21427-4-01.

2.2 AI system overview

Figure 1A gives an overview of the Artificial Intelligence Body
Part Measure System (AIBMS) for sarcopenia diagnosis. The
system consists of three modules: a module for body part
segmentation, a module for body part quantification, and a
module for sarcopenia analysis. Using each CT scan as input,
the body part segmentation module identifies areas for muscle
tissue, visceral adipose tissue, and subcutaneous adipose tissue. The
body part quantification module then calculates the areas and
volumes of these body parts. The sarcopenia analysis module
uses the 2D areas or 3D volumes for sarcopenia prediction. The
SMI value at the L3 layer is calculated using the muscle tissue area
(Sm) and the height (H), and sarcopenia is diagnosed if the SMI

TABLE 2 Statistics of agreement between manual and automatic segmentations in the developmental test dataset.

Model U-NET Attention U-NET SEG-NET

Subcutaneous fat DSC 0.978 ± 0.024 0.981 ± 0.022 0.802 ± 0.208

IOU 0.956 ± 0.045 0.962 ± 0.042 0.681 ± 0.260

Precision 0.973 ± 0.025 0.976 ± 0.029 0.693 ± 0.250

Recall 0.983 ± 0.028 0.985 ± 0.021 0.965 ± 0.092

Visceral fat DSC 0.935 ± 0.103 0.942 ± 0.089 0.878 ± 0.223

IOU 0.883 ± 0.156 0.893 ± 0.143 0.797 ± 0.280

Precision 0.946 ± 0.055 0.952 ± 0.055 0.827 ± 0.282

Recall 0.928 ± 0.151 0.935 ± 0.132 0.953 ± 0.072

Muscle DSC 0.957 ± 0.029 0.960 ± 0.030 0.796 ± 0.162

IOU 0.919 ± 0.053 0.924 ± 0.054 0.669 ± 0.216

Precision 0.960 ± 0.038 0.957 ± 0.042 0.686 ± 0.221

Recall 0.956 ± 0.042 0.963 ± 0.037 0.963 ± 0.039

TABLE 3 Statistics of agreement between manual and automatic segmentations in the independent test dataset.

Model U-NET Attention U-NET SEG-NET

Subcutaneous fat DSC 0.972 ± 0.047 0.988 ± 0.021 0.842 ± 0.088

IOU 0.946 ± 0.083 0.977 ± 0.041 0.730 ± 0.131

Precision 0.967 ± 0.042 0.982 ± 0.033 0.788 ± 0.145

Recall 0.977 ± 0.069 0.994 ± 0.021 0.913 ± 0.135

Visceral fat DSC 0.935 ± 0.068 0.971 ± 0.056 0.821 ± 0.213

IOU 0.881 ± 0.115 0.945 ± 0.102 0.709 ± 0.279

Precision 0.933 ± 0.096 0.973 ± 0.072 0.725 ± 0.284

Recall 0.940 ± 0.078 0.970 ± 0.067 0.970 ± 0.037

Muscle DSC 0.908 ± 0.052 0.916 ± 0.049 0.737 ± 0.167

IOU 0.832 ± 0.086 0.845 ± 0.082 0.591 ± 0.206

Precision 0.902 ± 0.071 0.894 ± 0.081 0.622 ± 0.232

Recall 0.915 ± 0.074 0.940 ± 0.058 0.927 ± 0.063
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value is greater than the threshold (T). The details of each module
are described in the following.

2.3 The body part segmentation module

2.3.1 Datasets
For automatic abdominal body part segmentation, CT images

from 60 patients in the developmental dataset were used to develop
a deep learning segmentation model. For each patient, we extracted
the abdomen area by truncating the top 10% and bottom 30% of the

CT scans. We then took the L4 layer images, which is commonly
used in the abdominal disease identification, and randomly selected
10% out of the remaining 60% images, resulting in a set of 429 CT
images. A physician with 8 years of experience in diagnostic
abdominal imaging manually segmented subcutaneous fat,
visceral fat, and muscle tissues. These 429 CT images were
randomly divided into training, validation, and test sets with an
8:1:1 ratio at the patient level. In addition, the body part
segmentation performance of this segmentation model was
evaluated using the independent test dataset comprised of
abdominal CT images from 7 patients.

FIGURE 2
Three examples of CT images showing similar results of manual and automated segmentations. GT: Ground truth manual segmentation; Predicted:
Model predicted segmentation; Overlay: Overlay of GT and Predicted.

FIGURE 3
The bland-altman plot.
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TABLE 4 Accuracy of the subcutaneous fat volume calculation on the independent test set.

Patient ID Ground truth Predicted Difference % Of difference

1 4,461.47 4,522.96 61.49 1.36%

2 5,415.30 5,421.10 5.80 0.11%

4 3,620.08 3,639.34 19.26 0.53%

5 4,264.22 4,198.49 −65.73 −1.57%

6 2,461.13 2,473.48 12.35 0.50%

7 3,353.95 3,334.67 −19.28 −0.58%

8 3,704.44 3,702.73 −1.71 −0.05%

Mean ± sd 3,897.22 ± 933.55 3,898.97 ± 935.62 – –

TABLE 5 Accuracy of the visceral fat volume calculation on the independent test set.

Patient ID Ground truth Predicted Difference % Of difference

1 3,242.54 3,251.60 9.06 0.28%

2 2,611.58 2,597.90 −13.68 −0.53%

4 3,208.96 3,254.98 46.02 1.41%

5 3,041.52 3,019.03 −22.49 −0.74%

6 772.35 789.36 17.01 2.15%

7 2,411.30 2,356.63 −54.67 −2.32%

8 865.74 861.71 −4.03 −0.47%

Mean ± sd 2,307.71 ± 1,061.78 2,304.46 ± 1,062.78 – –

TABLE 6 Accuracy of the muscle volume calculation on the independent test set.

Patient ID Ground truth Predicted Difference % Of difference

1 2,317.96 2,464.54 146.58 5.95%

2 2,521.99 2,522.15 0.16 0.01%

4 1718.25 1841.16 122.91 6.68%

5 2,185.81 2,330.26 144.45 6.20%

6 1,653.20 1720.89 67.69 3.93%

7 2,233.17 2,369.07 135.90 5.74%

8 1733.22 1817.44 84.22 4.63%

Mean ± sd 2051.94 ± 345.06 2,152.22 ± 343.51 – –

TABLE 7 Running time of deep learning models.

GPU (Single card) s) CPU

Single-core(s) Quad-core(s)

SEG-NET 0.071 4.296 1.220

U-NET 0.074 5.861 1.872

Attention U-NET 0.077 6.039 1.886
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2.3.2 Network architecture
The U-shaped encoder-decoder structure (Figure 1B, left) was

used to construct a segmentation model. The encoder network takes a
CT scan as input to extract scan features ranging from low-levels such
as individual pixels, to high levels such as body parts. Then the decoder
network expands high-level features back to low level features to
produce the pixel-level contour and area for each body part, which is
known as “a segmentation map”. There are feature concatenations
between the corresponding layers of the encoder and the decoder. To
train the network, the binary cross entropy loss was used as an
objective function for the pixel-level binary classification task. In
this study, we adopted the following two classic U-shaped encoder-

decoder deep learning models: U-NET (Ronneberger et al., 2015),
Attention U-NET (Oktay et al., 2018). And we also used SEG-NET for
comparison (Badrinarayanan et al., 2015).

For U-NET, the encoder’s contracting path contains four
identical blocks using the standard convolutional network
architecture. Each block comprises of two 3 × 3 convolutions
(unpadded) followed by a rectified linear unit (ReLU) and a 2 ×
2 max pooling operation with stride 2 to reduce the size of the
feature map by half (downsampling). In the decoder’s expansive
path, there are also four blocks, and each is parallel to one block in
the encoder. Each decoder block doubles the size of the feature map
(upsampling) using 2 × 2 up-convolutions and concatenates it with

FIGURE 4
Comparison of productivity and accuracy of three deep learning models.

FIGURE 5
Confusion matrix for the prediction of sarcopenia with SMI = 38.5 as the cutoff value. “Sp” refers to sarcopenia, and “Non-Sp” refers to non-sarcopenia.
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the feature map from the corresponding encoder block. Then it
applies two 3 × 3 convolutions, each followed by a ReLU. At the
final layer, a 1 × 1 convolution is employed to reduce the number of
channels (features) to 3, corresponding to the segmentations of
subcutaneous fat, visceral fat, and muscle tissues, respectively.
Compared to U-NET, SEG-NET does not have feature
concatenations, while it passes pooling indices from the
encoders to the corresponding decoders, whereas Attention
U-NET adds an attention gate link to the upsampling process,
which allows the input features to be reweighted by their computed
attention coefficients.

To train these networks, we minimize the following loss function

L x, y( ) � L � ∑
N

n�1∑
K

k�1lnk, (2)

where x is the predicted mask, y is the ground truth segmentation
mask,N is the batch size, K is the segmentation categories, and lnk
is the loss of the k-th category of the n-th image. lnk consists of two
loss functions: a binary cross entropy loss function, lBCE, and a
soft dice loss function, lDICE, and lnk � lBCE + lDICE. Since we
regard the prediction for each category (whether or not it
belongs to a specific body part) as a binary segmentation task,
the binary cross entropy loss lBCE and dice loss lDICE are shown in
the following.

lBCE � −∑M

i�1 yilogpi + (1 − yi)log (1 − pi))[ ] (3)

lDICE � 1 − 2∑M
i�1yi*pi

∑M
i�1yi +∑M

i�1pi

,

where yi is the ground truth of the i-th pixel belonging to certain body
part, pi is the predicted probability of the i-th pixel xi of the predicted
mask, pi � σ(xi) � 1/(1 + e−xi ), andM is the total number of pixels of
the mask.

2.3.3 Deep learning settings
The segmentation models were developed on the Ubuntu

20.04 operating system. The training was conducted using a
3.80 GHz AMD® R7 5800X CPU with a GeForce GTX 1080Ti

GPU. The implementation and assessment of the neural networks
and statistical analysis were all carried out in the
Python3.8 environment.

The segmentation network was trained, validated, and tested on
the developmental dataset of 429 images from 60 cases, and then
tested again on the independent test dataset. During training, we
used Adam optimizer (Kingma, 2022) with four images per
minibatch and set the learning rate to 1e-3. The model was
trained for 100 epochs.

2.4 The body part quantification module

The body part segmentation performance of this segmentation
model was evaluated using the independent test dataset comprised of
abdominal CT images from 7 patients. The segmentation results were
then used to calculate 1) the 2D abdominal body part area, as defined
by the body part on the CT level passing through the middle of the
L3 vertebra, and 2) the 3D abdominal body part volume, as defined by
the body part on the CT level passing through the middle of the
L3 vertebra, with 20 layers up and 20 layers down, for a total of 41 CT
images.

2.4.1 Calculation of body part volume
After calculating body part areas with the body part

segmentation map, we use the areas to calculate the volume
based on the following assumption. Since the portion of the
body between two adjacent slices is continuous and its thickness
is small, the volume between them can be approximated in the
following,

Vi � S1 + S2( )*H/2 (4)
where S1 and S2 represent the areas calculated for each of the two
adjacent slices, respectively, and H represents the thickness between
them, which is 5 mm in this study.

2.5 A quick classification model for
sarcopenia based on cutoff value (Auto SMI)

In order to achieve a quick classification of sarcopenia, we
segmented the L3 muscle area using the Attention U-NET-based
automatic segmentation system and computed the skeletal muscle
index (SMI). The SMI values with the internationally accepted cutoff
value of SMI = 38.5 for females were applied to 330 patients to quickly
classify sarcopenia. The results were then compared with the gold
standard results by radiologists to calculate the sensitivity and
specificity.

In addition, we evaluated the classification performance of this
quick classification model under various cutoff values and plotted the
results as an ROC curve of the Auto SMI model. We then performed
the Youden Index analysis to determine the optimal threshold that
maximizes the value of TPR − FPR. The coordinate point on the ROC
curve corresponding to the optimal Youden index is calculated by
Eq. 5.

index � argmax TPR − FPR( ) (5)
This index allows us to compute the SMI threshold.

FIGURE 6
The ROC curve for quick classification model for sarcopenia
prediction.
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2.6 Evaluation metrics and running time
analysis

First, we define TP, FP, and FN as the numbers of true positive
pixels that belong to the abdominal body part and are predicted by the
model, false positive pixels that do not belong to the abdominal body
part but are predicted incorrectly by the model, and false negative
pixels that belong to the abdominal body part but are predicted
incorrectly by the model, respectively. Then, we applied four
metrics to evaluate the performance of the segmentation model:
dice score (DSC), intersection over union (IOU), precision P), and
recall R), which are defined as follows:

DSC � 2TP
FP + 2TP + FN

IOU � TP

FP + TP + FN

P � TP

TP + FP

R � TP

TP + FN

Using the independent test set, we counted the computational time
analysis of these models in the target segmentation task of abdominal
body parts. The average time to segment an image using various
settings of computational resources were reported.

3 Results

3.1 Statistics of sarcopenia prediction dataset

We summarized the statistics of the training and testing datasets
used for Sarcopenia prediction. As shown in Table 1, these two

FIGURE 7
Confusion Matrix for sarcopenia prediction with SMI = 40.6 as the cutoff value. “Sp” stands for sarcopenia, and “Non-Sp” stands for non-sarcopenia.

FIGURE 8
Correlation analysis between predicted 3D volumes and 2D areas at the L3 layer for (A) total muscle, (B) subcutaneous fat, and (C) visceral fat. R is the
Pearson correlation coefficient, while R2 is the coefficient of determination.
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datasets are not statistically different in terms of age, weight, height,
BMI, and prevalence of sarcopenia (p-value > 0.05).

3.2 Performance of abdominal body part
segmentation

The segmentation models were evaluated on the developmental
test dataset and independent test dataset, obtaining DSC scores, mean
IoU values, precisions, and recalls, shown in Tables 2, 3, respectively.
The numbers in bold represent the best performance among the three
models.

These results demonstrate that the deep learning segmentation
models perform well across both test datasets, where slides are
randomly extracted either from the developmental dataset or from
the 3D abdominal CT scans of the independent test dataset. Figure 2
shows three examples of the segmentation results, with the original CT
images in the first column, the manual segmentations by radiologists
in the second column, the automatic segmentations by the Attention
U-NET model in the third column, and the overlays between the
second and third columns in the fourth column. In the segmented
images, subcutaneous fat is represented by dark red areas, visceral fat
by bright red areas, and muscles by white areas. In the overlay pictures,
the outline represents the manual segmentations.

Figure 3 shows the Bland-Altman plot of segmented muscle regions
on the test set (n = 333 images) using the Attention U-NET model. Each
dot represents an image. The horizontal axis represents the average of the
manual and automatic segmentations, as measured by the number of
pixels, whereas the vertical axis represents their difference. The solid black
line represents the mean difference between two segmented muscle
regions, while the two dashed lines represent the 95% confidence
interval (mean ±1.96*standard deviation).

3.3 Performance of abdominal body part
volume calculation on the independent
test set

Based on the segmentation results from the Attention U-NET,
we calculated the volume of the abdominal body parts for each
patient in the independent test set, The volumes of the
subcutaneous fat, visceral fat, and muscle are shown in Tables
4–6, respectively.

3.4 Running time of the deep learning models

Table 7 summarizes the time cost for processing a CT image using
SEG-NET, U-NET, and Attention U-NET on a single GPU card, a
single-core CPU, or a Quad-core CPU, respectively.

The results in Table 7 show that using a single-core CPU,
processing a CT image using the Attention U-NET, U-NET, and
SEG-NET took an average of 6.039, 5.861, and 4.296 sec,
respectively. For a patient with 41 CT images, calculating the
volumes of the abdominal body components takes an average of
248, 240, and 176 sec for the Attention U-NET, U-NET, and SEG-
NET, respectively. Figure 4 plots the number of images per minute
on a single-core CPU to better represent the model’s time
utilization efficiency and the IOUs on the independent test set

as a surrogate for accuracy. As can be seen, the automatic
segmentation model based on the Attention U-NET is highly
accurate and comparable in speed to other models. Therefore,
Attention U-NET was chosen as the default model to carry out
the subsequent experiments.

3.5 Performance of quick classification model
for sarcopenia (Auto SMI)

We applied the quick classification model to the Sarcopenia
prediction dataset. The model received input from the SMI value
calculated from the L3 muscle area obtained by Attention U-NET-
based auto-segmentation, and SMI = 38.5 was used as the cutoff value
tomake sarcopenia predictions. The accuracy was 0.815, the sensitivity
was 0.718, and the specificity was 0.876. Figure 5 shows the confusion
matrix for the sarcopenia prediction.

The ROC curve for the Auto SMI model is shown in Figure 6, and
AUC = 0.874. In the figure, the coordinate point at the cutoff = 38.5 is
denoted by a blue dot.

To determine whether there is a better cutoff value for the Auto
SMI, we calculated the optimal cutoff value for the Youden index,
which is defined by Eq. 5. Because the Youden index is commonly
used in laboratory medicine to represent the overall ability of a
screening method to distinguish affected from non-affected
individuals. A larger Youden index indicates better screening
efficacy. Therefore, we calculated the best cutoff value (=40.69)
that maximized the Youden index, indicating that the efficacy of
sarcopenia screening is maximum at this cutoff value. As shown in
Figure 7, the red dot represents the point with the cutoff
value = 40.69.

Using a new cutoff value SMI = 40.6, the accuracy for sarcopenia
prediction was 0.815, the sensitivity was 0.875, and the specificity was
0.778. Figure 7 plots the confusion matrix for the results.

3.6 Analysis of correlation between 2D and 3D
results

We analyzed the correlation between the predicted 3D volume
features and the 2D area features at the L3 layer using the
Sarcopenia prediction dataset. Figure 8 shows a high degree of
correlations between 3D features and 2D features in total muscle
(R = 0.948), subcutaneous fat (R = 0.942), and visceral fat (R =
0.976). These results indicate the significance of the features
calculated from the L3 layer. Meanwhile, the high correlation
demonstrates the high accuracy of our model’s predictions in
various slices.

4 Discussion

4.1 Analysis of the performance and efficiency
of the models

All three models utilize an encoder-decoder structure to generate
high-quality segmentation masks. SEG-NET is the simplest network
with the fastest segmentation but at the cost of accuracy. U-NET uses a
U-shaped structure that has been proven to perform well in medical
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image segmentation. It achieves better accuracy by passing the
corresponding feature maps from the encoder to the decoder and
fusing shallow and deep features. Attention U-NET, in comparison,
adds additional Attention blocks during up-sampling, which can
effectively filter out noise caused by edge polygons in labeling, thus
improving performance.

In this study, we randomly selected 10% images as the developmental
dataset, and we demonstrated that the deep learning segmentation model
trained on the developmental dataset achieved good segmentation results
on both the developmental test set and the independent test set, proving
that our sampling strategy is effective. The sampling strategy has the
following benefits: first, it greatly reduced the workload and time
necessary for manual labeling. Second, it ensures generalizability to the
entire abdominal prediction. Thirdly, this strategy reduces the workload
of model training.

This design allows us to train a 2D segmentation model capable of
segmenting 3D slices and generating 3D features, such as the volumes
of various body parts. Compared to heavy 3Dmodels, this 2Dmodel is
lightweight and suitable for deployment in hospitals.

With time cost analysis of the three deep learning models under
different computing processors, it is evident that processing 41 images
to calculate the abdominal body component volume using a CPU takes
less than 1 min per patient, which is very fast. If the computing
processors are GPUs, the calculation time can be shortened to a few
seconds for each patient. This is based on a CT scan with a slice
thickness of 5 mm; for a CT scan with a slice thickness of 0.625 mm,
the volume calculation of the abdominal body components would
require more computational resources, but the time cost would still be
acceptable when using GPUs.

4.2 Characteristics of the predictive model for
sarcopenia

In this study, we developed an artificial intelligence pipeline for
sarcopenia prediction using abdominal body parts. Moreover, we
constructed a quick classification model, the Auto SMI model, for the
accurate prediction of sarcopenia. The system can be applied to patients
undergoing abdominal CT scans without exposing them to additional
radiation, thus enabling more efficient screening for sarcopenia.

4.3 Future work

Using the Artificial Intelligence Body Part Measure System (AIBMS)
developed in this paper, it is possible to explore correlations between body
part information generated by the system and various kinds of diseases
and to provide more effective screening, auxiliary diagnosis, and even
companion diagnosis. This system enables the discovery of new clinically
significant biomarkers from CT images, such as the level of intramuscular
fat infiltration and muscle quality, and the establishment of their
correlations with diseases.

5 Conclusion

In conclusion, we developed an Artificial Intelligence Body Part
Measure System (AIBMS) that automatically segmented and
quantified the body parts in abdominal CT images, which can be

used in a variety of clinical scenarios. We also developed twomodels to
predict sarcopenia with a high accuracy.
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