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We investigate nonlocal quantum correlations aris-
ing between multiple two-level impurity atoms cou-
pled to an ultracold bosonic gas. We find that the
environment-induced dynamics of the impurity sub-
system can generate nonlocal states that are robust
against noise and violate a multipartite Bell inequal-
ity when projective spin measurements are made.
Genuine multipartite nonlocality is also observed in
a system of three impurities. We show that non-
Markovian effects, and the persistence of coherences
in the impurity subsystem, are crucial for preventing
complete loss of nonlocality and allow for nonlocal
correlations to be generated and maintained for ex-
tended periods of time.

Quantum physics allows for correlations that have
no classical counterpart. In modern quantum infor-
mation science, entanglement plays a key role as a re-
source [1], enabling communication protocols such as
quantum teleportation, quantum-over-classical speed-
ups in computation [2], and measurement precision
beyond the classical shot-noise limit [3]. The strongest
quantum correlations defy explanation in terms of a
local theory [4, 5]. As shown by Bell [5], the assump-
tion of local causality places constraints on the pos-
sible observations for parties that do not communi-
cate, known as Bell inequalities. These constraints
can be violated in quantum mechanics when the par-
ties share an entangled state on which they each make
local measurements, thus allowing the observation of
Bell nonlocality [6]. Nonlocality has been decisively
demonstrated in experiment [7–9] and is recognised
to enable information processing at an unprecedented
level of security, such as device-independent random
number generation [10, 11] and quantum key distri-
bution [12].

Understanding how and what quantum correlations
arise in interacting systems thus presents an intrigu-
ing question, and generating and stabilising them has
many potential applications. In particular, the study
of correlations is key to the characterisation of many-
body systems and many-body systems can support a
wide range of correlations [13]. The problem of gen-
erating and detecting nonlocality is related but dis-
tinct from that of entanglement, as entanglement is
necessary but not sufficient for nonlocality [14, 15].
Nonlocality in many-body systems is more challeng-
ing to observe [16–19] but does arise, as shown in
a number of works, e.g. [20–26]. At the same time,
engineered environments have enabled dissipative en-
tangled state preparation, where the effects of noise

and loss are used to an advantage rather than being a
hindrance [27, 28]. Steady-state entanglement genera-
tion is also possible with these techniques [29–32] and
can even be achieved via incoherent interactions with
thermal environments [33, 34]. In the latter case, it
has recently been suggested that the generated entan-
glement be quantified based on its usefulness for par-
ticular tasks, including Bell inequality violation [35].
However, similar techniques for nonlocality generation
remain largely unexplored [36].

In this work we consider the generation of nonlo-
cality between two-level impurity atoms coupled to
an ultracold bosonic gas, which is trapped in a one-
dimensional optical lattice and described by the Bose-
Hubbard model [37]. The subsystem of impurity
atoms can be viewed as an open system in a con-
trollable environment [38]. Previous analyses of a
single impurity atom embedded in a Bose-Hubbard
lattice have found that the pure-dephasing dynam-
ics of the impurity can be non-Markovian [38–40].
This observation partially motivates our choice of this
model for nonlocality generation. Suppose that the
system-environment interactions can generate nonlo-
cality in the impurity subsystem. By viewing non-
Markovianity in terms of information backflow from
the environment to the system [41], one might suspect
that memory effects could suppress the destruction
of nonlocal correlations due to decoherence. Indeed,
previous work examining entanglement generation be-
tween two impurities reported on the possibility of
entanglement trapping [42], where non-Markovian ef-
fects completely halt the dephasing and thus the loss
of entanglement.

Here we demonstrate that memory effects can lead
to persistent nonlocality, in which the reduced state of
the impurity atoms evolves from a separable state into
a nonlocal state and remains nonlocal for an extended
period of time. Not only is the resulting nonlocality
found to be robust against noise but it also survives
in large systems. Note that the focus is on nonlocal-
ity generation without the precise dynamical control
usually involved in realising gates [43, 44]. In this
respect, our work is similar in spirit to autonomous
steady-state entanglement generation [29–34].

A system of N ultracold atoms in a one-dimensional
optical lattice is well described by the Bose-Hubbard

Accepted in Quantum 2023-01-13, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

20
3.

04
72

7v
3 

 [
qu

an
t-

ph
] 

 2
3 

Ja
n 

20
23

https://quantum-journal.org/?s=Persistent%20nonlocality%20in%20an%20ultracold-atom%20environment&reason=title-click


Hamiltonian

ĤBH = −J
M∑
j=1

(
â†j+1âj + â†j âj+1

)
+ U

2

M∑
j=1

â†j
2â2
j ,

(1)
where j labels the lattice sites and the bosonic oper-
ators â†j (âj) create (annihilate) an atom localised on
site j. The hopping between neighbouring lattice sites
is quantified by J > 0, and U > 0 is the pairwise on-
site interaction strength. We consider a ring-shaped
lattice of size M , such that âM+1 = â1. Impurity
atoms of a different species are then embedded in the
Bose-Hubbard lattice [45], with at most one impu-
rity atom per lattice site. Setups introducing multi-
ple atomic impurities into a large Bose gas have been
demonstrated experimentally [46–48]. Only the two
lowest internal states of each impurity are assumed to
contribute to the dynamics, so that each impurity can
be treated as a qubit. The excited and ground states
are labelled |1〉 and |0〉 respectively. If the qubits are
coupled to the Bose gas via a contact density-density
interaction then the total Hamiltonian has the form
[49, 50]

Ĥ = ĤBH + ω0

2

d∑
j=1

σ̂zj + η

d∑
j=1
|1〉〈1|j ⊗ n̂lj , (2)

where d is the number of impurity atoms.
The first and second terms are the free Hamiltoni-

ans of the Bose gas (1) and the qubits respectively.
The third term describes qubit-gas interactions, with
the excited state of the qubit on site lj coupling to the

bosonic number operator n̂lj = â†lj âlj with strength
η ≥ 0. For simplicity, we assume that the qubits are
degenerate and couple with equal strength to the gas,
such that ω0 and η are the same on all lattice sites.

The dynamics generated by the Bose-Hubbard
Hamiltonian are generally complicated and approx-
imations are needed in order to obtain analytic re-
sults. To this end, we assume that the gas is prepared
in its ground state and work in the superfluid regime
U/J � 1. In this case the Bogoliubov approximation
[51] can be applied to bring the Hamiltonian (2) into
the form

Ĥ =
∑
k

ωk b̂
†
k b̂k + ω0

2

d∑
j=1

σ̂zj (3)

+ η

d∑
j=1

∑
k

√
εkn0

ωkM
|1〉〈1|j ⊗

(
b̂†keikalj + b̂ke−ikalj

)
,

where we have neglected an overall constant term
and introduced the renormalised transition frequency
ω0 = ω0+ηn0 in terms of the quasicondensate density
n0. The operators b̂†k (b̂k) create (annihilate) Bogoli-
ubov quasiparticles with quasimomentum k and sat-
isfy the canonical commutation relations. The sums
are taken over k 6= 0 and the quasiparticle dispersion

relation ωk =
√
ε2k + 2Un0εk depends on the single-

particle energies εk = 4J sin2 (ka/2), where a is the
lattice constant.

From here on we shall often refer to the ultra-
cold gas as the ‘environment’ and the subsystem of
qubits as the ‘system’. We assume that the envi-
ronment and the system are initially uncorrelated
ρ̂(0) = ρ̂S(0)⊗ρ̂E , where ρ̂S(0) is an arbitrary d-qubit
state and ρ̂E is the ground state of the Bose-Hubbard
Hamiltonian (1). With the Bogoliubov approximation
it is then possible to derive an analytic expression for

system state ρ̂S(t) = trE [e−itĤ ρ̂(0)eitĤ ], where Ĥ is
the Hamiltonian (3) and the partial trace is taken over
the environment. The matrix elements of the system
state in the eigenbasis of the free qubit Hamiltonian
are found to be of the form

[ρ̂S(t)]ij = e−γij(t)eiϕij(t)[ρ̂S(0)]ij , (4)

where i = (i1, . . . , id) labels a basis vector with ij ∈
{0, 1}, and the time-dependent parameters γij(t) and
ϕij(t) are real valued. A derivation of this result is
provided in Appendix A but there are several details
worth noting here.

First, the time evolution of ρ̂S consists of a unitary
and a non-unitary part. In the unitary part, we find
that the coupling of the qubits to the ultracold gas in-
duces a time-dependent qubit-qubit interaction with
terms of the form cij(t)σ̂zi σ̂zj . That is, each qubit cou-
ples to all the others through a ZZ interaction with
a time-dependent strength that varies between differ-
ent pairs of qubits. We shall see that this interaction
can generate a nonlocal state from a separable initial
state. To give some insight into how this can happen,
consider an interaction of the form gσ̂z1 σ̂

z
2 with g ∈ R.

Two qubits initialised in the spin-x up state |+,+〉
are mapped to the state cos(gt)|+,+〉−i sin(gt)|−,−〉.
When gt = π/4 the separable initial state has evolved
into a maximally entangled state.

On the other hand, the non-unitary part gives rise
to dephasing described by the parameters

γij(t) =
∑
k

νk sin2
(
ωkt

2

) ∣∣∣∣∣
d∑

m=1
eikalm(im − jm)

∣∣∣∣∣
2

,

(5)
with νk = 2η2n0εk/ω

3
kM . This only affects the off-

diagonal elements of the state and generally degrades
any nonlocal correlations that may have built up.
However, due to the sinusoidal factor, these param-
eters need not be monotonically increasing. There
can be times when the time rate of change γ̇ij(t) < 0,
corresponding to a backflow of information from the
environment to the system.

To understand this, recall that the trace distance
can be viewed as a measure of distinguishability be-
tween two quantum states. If the trace distance, and
hence distinguishablity, between two states is increas-
ing at some instant of time, then there must be a flow
of information from the environment to the system
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Figure 1: Generation of tripartite nonlocality (A) and genuine tripartite nonlocality (B) between three qubits coupled to a three-
site Bose-Hubbard ring. Bell inequality violation vs. time and coupling strength is shown on the left of each panel. Positive
values indicate violation. Noise robustness is shown on the right as p∗ vs. time. Smaller p∗ indicates greater robustness. The
results are for an interacting ultracold gas of N = 100 particles and interaction strength UN = 2J . The qubit energy is
ω0 = 1.

[41]. In Appendix B we show that if γ̇ij(t) < 0 at
some time t for some pair of indices (i, j), then one
can always find a pair of initial states such that the
trace distance distance between them is increasing at
time t.

The parameters γij(t) are proportional to η2 and,
as expected, the strength of the dephasing is amplified
when the interaction between the system and environ-
ment is increased. Furthermore, the coefficients cij(t)
in the ZZ interaction are also proportional to η2. We
therefore expect there to be a trade-off between gen-
erating nonlocality slowly over an extended period of
time, and quickly generating nonlocality that only
lasts for a short period of time, due to a large de-
phasing rate.

Finally, from the solution (4) we see that the eigen-
states of σ̂z1 . . . σ̂

z
d are stationary states of the approx-

imate dynamics. Thus, to observe nonlocality gener-
ation, and non-trivial time evolution, the initial state
cannot be a product of spin-z eigenstates. Guided by
the remarks above equation (5) we shall assume that
all the qubits are initially prepared in the spin-x up
state |+, . . . ,+〉.

In general, to determine whether a state is nonlo-
cal is a challenging problem in the multipartite setting
[6]. All tight correlation Bell inequalities for d parties,
each with a choice of two dichotomic measurements,
were derived by Werner and Wolf [52] and Żukowski

and Brukner [53]. These 22d

inequalities can be ex-
pressed as a single nonlinear inequality∑

r

|ξ̃(r)| ≤ 1 (6)

which we refer to as the WWZB inequality. Here
ξ̃(r) = 2−d

∑
s(−1)r·sξ(s), r, s are vectors in {0, 1}d

and ξ(s) = 〈Â(1)
s1 . . . Â

(d)
sd 〉, where the components sj

label the choice of the±1-valued observable Â
(j)
sj made

on subsystem j.
Various forms of nonlocality can be distinguished

in the multipartite setting. For instance, it is possible

for nonlocal correlations to be local with respect to
some bipartition. On the other hand, when all par-
ties are nonlocally correlated the correlations are said
to be genuine multipartite nonlocal (GMNL). This is
the strongest form of multipartite nonlocality. How-
ever, it is generally difficult to test if a state is GMNL
[6, 54]. Here we make use of the Bell inequality in-
troduced in [55], a violation of which detects genuine
tripartite nonlocality (GTNL), and find that GTNL
can be established between three impurity atoms. For
brevity we refer to this inequality as the GTNL in-
equality and provide the definition in Appendix C.

Let us first examine a three-site Bose-Hubbard ring
with a single impurity atom coupled to each site. In
this case, we can numerically solve the Schrödinger
equation with the many-body Hamiltonian (2) ex-
actly to obtain the reduced state of the three qubits.
We test the WWZB inequality (6) using projective

spin measurements Â
(j)
sj = usj

· σ̂j on each of the
j ∈ {1, 2, 3} qubits. Here σ̂j is a vector of Pauli op-
erators acting on qubit j and the unit vector usj is
the Bloch vector of the measurement. We also test
the GTNL inequality with projective spin measure-
ments (see Appendix C). At each instant of time a
maximisation of each inequality was performed over
the twelve angles parameterising the measurements.

In panels A and B of Fig. 1 we plot respectively
the degree of violation of the WWZB and GTNL in-
equalities against coupling strength and time. We see
that nonlocal states can be generated from separa-
ble states across a wide range of parameters. Fur-
thermore, across the entire parameter space we see
oscillations in the degree of Bell inequality violation,
which is a non-Markovian effect due to information
backflow from the environment. Using (5) we find
that γ̇ij(t) < 0 if and only if sin(ωkt) < 0, where ωk is
evaluated at k = 2π/3a. Information thus flows back
and forth between the system and environment, and
information flow from the environment to the system
vanishes at the times t = 2nπ/ωk with n ∈ N. These
are indicated by dashed-black vertical lines and coin-
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cide with the revivals of nonlocality.
For coupling strength η ≈ 0.2J , we observe that

nonlocality is generated and persists for a long pe-
riod of time. This illustrates the trade-off between
dephasing and unitary dynamics. Due to the non-
Markovianity of the dynamics, the information lost
to the environment quickly returns and complete loss
of nonlocality is avoided.

The noise robustness of nonlocality can be quan-
tified by subjecting ρ̂S(t) to completely depolarising
noise [56]

ρ̃(p) = pρ̂S(t) + (1− p) Î2d . (7)

The smallest value p∗ such that ρ̃(p∗) is nonlocal pro-
vides a measure of robustness. Panel A in Fig. 1 illus-
trates that robust nonlocality (p∗ ≈ 0.5) can be gener-
ated quickly for larger η but is short lived. For weaker
coupling strength, nonlocality builds up more slowly
but remains robust over a longer time. In frame B of
Fig. 1 we see that the GTNL is less robust against
noise but the behaviour with respect to η is similar to
the tripartite nonlocal case.

Using the approximate solution (4), we are also
able to investigate nonlocality generation beyond the
regime where exact numerical solutions are possi-
ble. The approximate solution is expected to be
valid provided that the ultracold gas remains close
to the ground state. We compared the approximate
and exact numerical solutions for small, numerically
tractable systems and found excellent agreement be-
tween the two. In Fig. 2 we consider a five-site Bose-
Hubbard ring with one qubit coupled to each site. We
again observe that separable states can evolve into ro-
bust nonlocal states that violate the WWZB inequal-
ity for projective spin measurements.

To illustrate the importance of non-Markovianity
on the nonlocality generation we also plot the Breuer-
Laine-Piilo (BLP) measure of non-Markovianity N
[41] in the right panel of Fig. 2. This quantifies the
total amount of information flowing back into the sys-
tem from the environment and can be written as

N = max
ρ̂1,2(0)

∑
i

[D(ρ̂1(bi), ρ̂2(bi))−D(ρ̂1(ai), ρ̂2(ai))] .

(8)
The sum is taken over all time intervals (ai, bi) where
the trace distance D(ρ̂1(t), ρ̂2(t)) between the two ini-
tial states states ρ̂1,2(0) is increasing. Thus, whenever
N increases there is information flowing from the envi-
ronment to the system. In Fig. 2 we observe that the
oscillations in the robustness parameter p∗ coincide
with the information flow into and out of the system.
This confirms the intuition that memory effects are
crucial in preventing the complete loss of nonlocality.

The examples above focused on the case d = M ,
with one impurity embedded in each lattice site.
When the number of lattice sites is increased, with

Figure 2: Generation of nonlocality among five qubits cou-
pled to a five-site Bose-Hubbard ring with strength η =
0.05J . (Left) The noise robustness of nonlocality vs. time.
Smaller p∗ indicates greater robustness. (Right) Non-
Markovianity vs. time. Results are for a gas of N = 1000
particles with interaction strength UN = 2J and qubit en-
ergy ω0 = 1.

Figure 3: Two impurity atoms embedded in a lattice of size
M at sites 1 andM respectively. (Left) The noise robustness
of nonlocality vs. time when the non-unitary part of the dy-
namics is neglected. Smaller p∗ indicates greater robustness.
(Right) Non-Markovianity vs. time. Results are for a gas of
N = 1000 particles with interaction strength UN = 2J ,
coupling strength η = 0.04J and qubit energy ω0 = 1.

the number of impurities and other parameters fixed,
generating nonlocal correlations in a short time can
become difficult. There are two main reasons for this.
The first concerns the unitary part of the dynamics,
generated by the effective Hamiltonian (see Appendix
A)

ĥ(t) =
d∑
j=1

ωj(t)σ̂zj +
d∑

j>m

d−1∑
m=1

cjm(t)σ̂zj σ̂zm. (9)

This has a complicated dependence on the system pa-
rameters, as illustrated in the left panel of Fig. 3 for
two impurities embedded on sites 1 and M respec-
tively. Within the time scale considered, we observe
that the unitary part generates increasingly weaker
nonlocality as the lattice size increases from M = 2
to M = 6, at which point essentially zero nonlocality
is generated. Nonlocal correlations appear again when
M is increased beyond this point. Furthermore, the
dynamics of the impurities become ‘more Markovian’

Accepted in Quantum 2023-01-13, click title to verify. Published under CC-BY 4.0. 4



(with a smaller BLP measure of non-Markovianity)
when the lattice size increases [57]. This is illustrated
in the right panel of Fig. 3. A larger M results in
longer time intervals of information loss to the envi-
ronment and less information backflow. Fig. 3 shows
how these two effects can combine together to sup-
press nonlocality generation at short times. However,
at longer times strong persistent nonlocal correlations
can be generated, even when the separation between
the impurities is large. This raises the question of
whether persistent nonlocality is possible in large lat-
tices.

There is no condensate in an infinite one-
dimensional lattice. Taking the continuum limit with

the substitutions
∑
k → M

∫ 1/2
−1/2 dq and k → 2πq/a

leads to a divergent momentum integral in the ex-
pression for the condensate density [51]. In a large
but finite system, this divergence can be avoided by
introducing a low-momentum cut off q0 = 1/M , where
the number of lattice sites M is large. This yields the
dephasing parameters

γij(t) = 4η2n0

∫ 1/2

q0

εq
ω3
q

sin2
(
ωqt

2

)
Sij(q) dq. (10)

Here εq = 4J sin2(πq), ωq =
√
ε2q + 2Un0εq and

Sij(q) =

∣∣∣∣∣
d∑

m=1
e2iπqlm(im − jm)

∣∣∣∣∣
2

. (11)

The same substitutions can also be used to obtain
a large lattice expression for the term ϕij(t) in the
approximate solution (4).

For simplicity we focus on the dynamics of two im-
purity atoms embedded in a large lattice. In this case
we can apply the Horodecki criterion to quantify the
degree of Bell inequality violation [58, 59] (see Ap-
pendix D), avoiding the need to optimise over mea-
surements. For a pair of qubits there are three differ-
ent decoherence parameters that appear in the density
matrix. The first, Γ0(t) ≡ γ(1,1),(1,0)(t), is given by

Γ0(t) = 4η2n0

∫ 1/2

q0

εq
ω3
q

sin2
(
ωqt

2

)
dq (12)

and is the dephasing rate that a single impurity atom
experiences. The other two, Γ±(t), which are defined
as γ(1,1),(0,0)(t) and γ(1,0),(0,1)(t) respectively, have the
form Γ±(t) = 2Γ0(t)± Γ(t) with

Γ(t) = 8η2n0

∫ 1/2

q0

εq
ω3
q

sin2
(
ωqt

2

)
cos (2πq(l1 − l2)) dq.

(13)
The decoherence rates Γ±(t) are not simply twice the
single impurity dephasing rate. Rather, one is larger
and one is smaller than Γ0(t). The system is said
to exhibit super and subdecoherence. This feature
of collective decoherence is known to occur when two

Figure 4: Decoherence rates Γ+ (left) and Γ− (right) vs.
time. Results show the long-time evolution for a gas with
n = 1 atoms per lattice site, interaction strength U = 0.04J ,
coupling strength η = 0.03J and qubit energy ω0 = 1. The
low-momentum cut off q0 = 10−6, corresponding to 106

lattice sites.

qubits interact with a shared bosonic environment via
a spin-boson type interaction [60, 61].

The time evolution of Γ±(t) is plotted in Fig. 4
for a pair of qubits embedded in neighbouring lattice
sites. The rate Γ−(t) exhibits small oscillations, in-
dicating (weak) non-Markovian behaviour. More im-
portantly, the rates level out around a finite value,
resulting in the persistence of coherences in the im-
purity subsystem at long times. A similar effect has
previously been observed in a set up consisting of im-
purity atoms, each trapped in a double-well potential
and interacting with a homogeneous Bose gas [61].
Because the coherences are preserved, long-time gen-
eration and persistence of nonlocality is possible. This
is illustrated in Fig. 5 for two impurities coupled to a
large lattice with 106 sites.

In conclusion, we have demonstrated that the
system-environment coupling of impurity qubits in a
cold Bose gas can generate multipartite, nonlocal cor-
relations that persist over long times. The setup can
be realised with current technology and the procedure
is simple in the sense that no dynamic driving or con-
trol is needed, except for initialisation and read out.
We have shown that robust 3- and 5-partite nonlo-
cality can be observed (tolerating up to ∼ 50% de-
polarising noise) as well as genuinely tripartite non-
locality. We note that the observation of (genuine)
multipartite nonlocality also witnesses the presence
of (genuine) multipartite entanglement. The number
of parties studied here is limited by numerics, but we
expect that nonlocality between an arbitrary number
of parties is possible.

To gain insight into the many-body dynamics we
made the Bogoliubov approximation and derived an
approximate solution for the reduced state of the im-
purities. The time evolution was found to consist of
two parts: an effective unitary dynamics, generating
the nonlocality; and a non-unitary part, resulting in
dephasing that tends to destroy the nonlocal corre-
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Figure 5: Nonlocality generation in a large system. Measure
of Bell inequality violation B vs. time. Values greater than
zero indicate Bell inequality violation, and B = 1 corresponds
to a maximal violation of the CHSH inequality for some set
of measurements. The parameters are the same as Fig. 4

lations. We observed that non-Markovian effects in
the reduced-state dynamics are crucial for maintain-
ing nonlocality over long periods of time. Here, mem-
ory effects suppress the complete loss of information to
the environment. This feature could be particularly
useful in experimental setups that require flexibility
in the manipulation of the impurities. Furthermore,
we demonstrated that persistent nonlocality can still
occur in large systems. This is possible due to the
saturation of decoherence rates, resulting in sustained
coherences in the impurity subsystem.

The analytic solution obtained using the Bogoli-
ubov approximation is only expected to be valid pro-
vided that the ultracold gas remains close to its
ground state. Surprisingly, in our numerical simu-
lations we observed that the approximation can still
give a reliable indication of nonlocality generation in
situations where the trace distance between the exact
numerical and approximate solutions is large. This
suggests that the properties of the total state that the
Bogoliubov approximation fails to account for may
not play a crucial role in determining whether the
reduced state is nonlocal. Exploring this connection
could be beneficial for further understanding nonlo-
cality generation in many-body systems.

Finally, there has been growing interest in the use
of impurity atoms embedded in many-body environ-
ments, from nondestructive measurements of Bose-
Einstein condensate phase fluctuations [62] and cor-
relations in ultracold-atom systems [49, 50], to tem-
perature measurements of Bose-Einstein condensates
[63]. In each of these examples information about a
many-body system is extracted by making measure-
ments on a probe system that typically has a simple

structure, e.g., a two-level impurity atom. An inter-
esting future research direction would be to examine
whether nonlocal probe states can provide an advan-
tage in applications of this kind.

We gratefully acknowledge support from the Carls-
berg Foundation CF19-0313 and the Independent Re-
search Fund Denmark 7027-00044B.
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A Derivation of the approximate solution
Here we provide a derivation of the approximate solution (4) in the main text. We refer to the subsystem of
impurities as the ‘system’ and the ultracold gas as the ‘environment’. We work in the zero-temperature limit
and assume that the system and environment are initially uncorrelated ρ̂(0) = ρ̂S(0) ⊗ ρ̂E . Here ρ̂S(0) is an
arbitrary d-qubit state and ρ̂E = |v〉〈v| is the Bogoliubov vacuum state with |v〉 = |0, . . . , 0〉.

The dynamics of the total system-environment state are generated by the Hamiltonian (3) in the main text,
where the Bogoliubov approximation has been made. Setting

Ĥ0 =
∑
k

ωk b̂
†
k b̂k + ω0

2

d∑
j=1

σ̂zj (14)

yields the interaction-picture Hamiltonian

ĤI(t) =
d∑
j=1

∑
k

ξk|1〉〈1|j ⊗
(
b̂†kei(ωkt+kalj) + h.c.

)
, (15)

where we have defined ξk = η
√
n0εk/ωkM . In order to solve the Schrödinger equation we use the Magnus

expansion [64] to obtain the time-evolution operator ÛI(t). Fortunately, in this case the Magnus series truncates
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at the second term and we find ÛI(t) = exp
(

Ω̂1(t) + Ω̂2(t)
)

, where

Ω̂1(t) =
d∑
j=1

∑
k

|1〉〈1|j ⊗
(
βjk(t)b̂†k − h.c.

)
, (16)

with βjk(t) = ξkeikalj
(
1− eiωkt

)
/ωk, and

Ω̂2(t) = −i
d∑
j=1

(
d∑

m=1
cjm(t)

)
σ̂zj

− i
d∑

j>m

d−1∑
m=1

cjm(t)σ̂zj σ̂zm, (17)

where we have neglected a term proportional to the identity and defined the time-dependent coefficients

cjm(t) = 1
2
∑
k

(
ξk
ωk

)2
(sin(ωkt)− ωkt) cos(ka (lj − lm)). (18)

Note that Ω̂1 and Ω̂2 commute with each other. Furthermore, Ω̂2 only acts on the system and also commutes
with Ĥ0. Going back to the Schrödinger picture we therefore find that the coupling to the environment induces

a unitary evolution Û(t) = exp
(
−iĥ(t)

)
on the subsystem of qubits with

ĥ(t) =
d∑
j=1

ωj(t)σ̂zj +
d∑

j>m

d−1∑
m=1

cjm(t)σ̂zj σ̂zm, (19)

where ωj(t) = ω0t/2 +
∑
m cjm(t).

To simplify the notation we define σ̂(t) = Û(t)ρ̂S(0)Û†(t), which is the system state following the unitary
evolution above. The total system-environment state at time t can then be written as

ρ̂(t) = K̂(t) (σ̂(t)⊗ |v〉〈v|) K̂†(t) (20)

where K̂(t) = exp
(
−it

∑
k ωk b̂

†
k b̂k

)
exp
(

Ω̂1(t)
)

. The system state is obtained by taking the partial trace over

the environment

ρ̂S(t) =
∞∑
n=0
〈n|eΩ̂1(t)|v〉σ̂(t)〈v|eΩ̂†

1(t)|n〉, (21)

where the sum is taken over all n = (n1, . . . , nM−1). Because each of the different k modes in Ω̂1(t) commute
we can write

eΩ̂1(t) =
∏
k

exp
(
X̂k ⊗ b̂†k − X̂

†
k ⊗ b̂k

)
(22)

in terms of the operators X̂k =
∑d
j=1 βjk(t)|1〉〈1|j , where the βjk(t) are defined in (16). The

operators 〈n|eΩ̂1(t)|v〉 appearing in (21) therefore factorise into products of operators of the form

〈nk| exp
(
X̂k ⊗ b̂†k − X̂

†
k ⊗ b̂k

)
|0〉, which, after applying the Baker-Campbell-Hausdorff formula, can be writ-

ten as
1√
nk!

e− 1
2 X̂

†
k
X̂kX̂nk

k . (23)

The X̂k are diagonal in the standard basis, with time-dependent matrix elements

xki (t) = ξk
ωk

(
1− eiωkt

) d∑
m=1

imeikalm . (24)

Here i = (i1, . . . , id) with ij ∈ {0, 1} is the matrix element index and k labels the quasimomentum value.
After a little algebra we obtain the matrix elements of the system state in the standard basis

[ρ̂S(t)]ij =
∏
k

〈xkj (t)|xki (t)〉[σ̂(t)]ij , (25)
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where |xkj (t)〉 is a Glauber coherent state. It is straightforward to work out the action of the unitary part (19)
on the system and obtain an expression for [σ̂(t)]ij . Inserting this into (25) finally gives

[ρ̂S(t)]ij = e−γij(t)eiϕij(t)[ρ̂S(0)]ij , (26)

where the γij(t) are defined in equation (5) of the main text and

ϕij(t) =
d∑
s=1

ωs(t)
(
(−1)is − (−1)js

)
+

d∑
r>s

d−1∑
s=1

crs(t)
(
(−1)jr+js − (−1)ir+is

)
+
∑
k

d∑
r,s=1

f2
k (t) sin(ka(lr − ls))irjs, (27)

with fk(t) = 2ξk sin (ωkt/2) /ωk.

B Negative rates and non-Markovian dynamics
We show that if γ̇ij(t) < 0 at some time t for some pair of indices (i, j), then the dynamics are non-Markovian.
We shall do this by finding a pair of initial states such that their trace distance is increasing at time t.

First recall that the indices i = (i1, . . . , id) and j = (j1, . . . , jd) label standard basis vectors, which we denote
|i〉 and |j〉 respectively. Consider the pair of pure initial states

|ψ1(0)〉 = 1√
2

(|i〉+ |j〉) , |ψ2(0)〉 = 1√
2

(|i〉 − |j〉) , (28)

where the difference between the corresponding density operators is given by

∆̂(0) = ρ̂1(0)− ρ̂2(0) = |j〉〈i|+ |i〉〈j|. (29)

We see that in the standard basis ∆̂(0) is a matrix with 1 in elements (i, j) and (j, i), and zeros elsewhere.
The time evolution of the difference is given by (26) and is of the form

∆(t) = e−γij(t)A(t). (30)

Here A(t) is a Hermitian matrix with eiϕij(t) in element (i, j), e−iϕij(t) in element (j, i), and zeros elsewhere.

The trace norm ‖A(t)‖1 = tr
[√

A†(t)A(t)
]

= 2. It then follows that the trace distance between the two states

ρ̂1(t) and ρ̂2(t) is given by

D(ρ̂1(t), ρ̂2(t)) = 1
2‖∆̂(t)‖1 = e−γij(t). (31)

Finally, we see that
d

dt
D(ρ̂1(t), ρ̂2(t)) = −γ̇ij(t)e−γij(t) > 0 (32)

at time t by hypothesis. The dynamics are therefore non-Markovian according to the BLP measure.

C Genuine tripartite nonlocality
Here we provide the Bell-type inequality derived in [55] to test for genuine tripartite nonlocality. Consider three
parties, Alice, Bob and Charlie, each with a choice of two measurements labelled x, y, z ∈ {0, 1} with outputs
a, b, c ∈ {0, 1}. A violation of the inequality

I = −2P (A1B1)− 2P (B1C1)− 2P (A1C1)
− P (A0B0C1)− P (A0B1C0)− P (A1B0C0)
+ 2P (A1B1C0) + 2P (A1B0C1) + 2P (A0B1C1)
+ 2P (A1B1C1) ≤ 0, (33)
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detects genuine tripartite nonlocality. Here, P (AiBj) = P (a = 0, b = 0|x = i, y = j) and P (AiBjCk) = P (a =
0, b = 0, c = 0|x = i, y = j, z = k).

The measurement operators defined in the main text have outcomes ±1, as required for testing the WWZB
inequality. Measurement operators for projective spin measurements corresponding to output labels a ∈ {0, 1}
take the form

Π̂a|x = 1
2

[
Î + (−1)aux · σ̂

]
, (34)

where the input x ∈ {0, 1} selects the unit vector ux (the Bloch vector of the measurement).

D The Horodecki criterion
In this appendix we provide the Horodecki criterion and a quantity to measure the degree of Bell inequality
violation in a two-qubit system. The Horodecki criterion [58] provides a necessary and sufficient condition for a
state ρ̂ to violate the CHSH inequality [65] for some set of measurements. Given a two-qubit state ρ̂, construct
the 3× 3 matrix T with elements Tij = tr[σ̂i ⊗ σ̂j ρ̂], where σ̂i are the Pauli spin operators. DefineM(ρ̂) as the
sum of the two largest eigenvalues of T †T . The Horodecki criterion states that ρ̂ violates the CHSH inequality
for some set of measurements iff M(ρ̂) > 1. To quantify the degree of Bell inequality violation we use the
measure proposed in [59]

B(ρ̂) =
√

max{0,M(ρ̂)− 1}. (35)

When B(ρ̂) = 0 there exists a local model and B(ρ̂) = 1 corresponds to a maximal violation of the CHSH
inequality. The larger the value of B(ρ̂) > 0 the greater the violation of the CHSH inequality.
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