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We introduce a variational quantum algorithm to solve unconstrained black box
binary optimization problems, i.e., problems in which the objective function is given as
black box. This is in contrast to the typical setting of quantum algorithms for optimiza-
tion where a classical objective function is provided as a given Quadratic Unconstrained
Binary Optimization problem and mapped to a sum of Pauli operators. Furthermore,
we provide theoretical justification for our method based on convergence guarantees of
quantum imaginary time evolution.

To investigate the performance of our algorithm and its potential advantages, we
tackle a challenging real-world optimization problem: feature selection. This refers to
the problem of selecting a subset of relevant features to use for constructing a predictive
model such as fraud detection. Optimal feature selection—when formulated in terms
of a generic loss function—offers little structure on which to build classical heuristics,
thus resulting primarily in ‘greedy methods’. This leaves room for (near-term) quan-
tum algorithms to be competitive to classical state-of-the-art approaches. We apply
our quantum-optimization-based feature selection algorithm, termed VarQFS, to build
a predictive model for a credit risk data set with 20 and 59 input features (qubits) and
train the model using quantum hardware and tensor-network-based numerical simu-
lations, respectively. We show that the quantum method produces competitive and
in certain aspects even better performance compared to traditional feature selection
techniques used in today’s industry.

1 Introduction
In recent years, quantum computing has emerged as a promising platform on which to apply
heuristic approaches to solve computationally expensive combinatorial optimization tasks [1–8].
Most of these approaches have in common that they consider a Quadratic Unconstrained Binary
Optimization (QUBO) problem. In this work, we introduce a variational quantum optimization
algorithm that can be applied to the much broader class of unconstrained black box binary opti-
mization problems. More explicitly, the algorithm takes a black box optimization problem f (x) as
input and returns the optimal solution xopt = minx∈{ 0,1 }n f (x) or a good approximation thereof.
The solution space of these optimization problems is typically exponential in n. Mapping the
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solution space to the computational basis states of a parameterized quantum state with n qubits,
allows an algorithm definition where the search for xopt is conducted by optimization of the state
parameters.

It should be noted that QUBOs are a special case of the considered problem class, and that
one might be able to find a QUBO that represents or at least approximates a black box binary
optimization problem. However, in general this is not possible efficiently. Furthermore, the respec-
tive objective function implicitly defines a diagonal Hamiltonian, whose ground state corresponds
to the optimal solution of the considered optimization problem. Hence, finding the solution of
the given black box optimization may be approached with various ground state approximation
techniques such as the variational quantum eigensolver (VQE) [7, 9]. In this work, we search for
the problem solution with a method that, firstly, (in contrast to standard VQE) comes with a
strong theoretical justification for finding a solution close to the ground state and, secondly, has
promising scaling behavior. More specifically, we employ an efficient stochastic approximation to
the quantum natural gradients algorithm which is closely related to quantum imaginary time evo-
lution [10]. The key component of quantum imaginary time evolution is the continuous suppression
of the sampling probabilities of all excited states while amplifying the sampling probability of the
ground state. Therefore, the only state that remains after sufficient evolution time is the ground
state (and similarly for degenerate ground states). A comparable concept for optimization based
on damping the amplitude magnitudes of large energy eigenstates is suggested in a VQE setting in
[7]. The authors employ a set of filtering operators which applied to the quantum state increase the
magnitude of the amplitudes of lower eigenstates. At each optimization step, the algorithm aims to
find a set of parameters with which the variational state approximates the filter operator mapped
state as good as possible. For an exponential filter operator, this approach can be interpreted as a
quantum imaginary time evolution approximation. While the authors of [7] focus on QUBO based
problems, our approach now shows how to employ the idea of damping the amplitude magnitues
of large energy eigenstates for a generalized optimization setting.

To illustrate the potential of this algorithm in a specific context, we are going to focus our
analysis and discussion on the example of feature selection, a challenging and practically relevant
optimization problem. Feature selection generically refers to the process of selecting a subset of
relevant features and/or eliminating redundant or irrelevant features from a given data set. To that
end, one aims at keeping only a subset of features that is most relevant for a given learning task
while discarding the rest. As the cardinality of the feature space grows, the problem of determining
the best feature subset depicts exponential growth.

We devise and test the variational quantum optimization algorithm for feature selection—
termed variational quantum feature selection (VarQFS)—in which a parameterized quantum circuit
is trained to provide good feature subsets. Hereby, a subset is referred to as good if the respective
features lead to a model which performs well in terms of a predefined metric. The suitability or
fitness of a subset of features depends not only on the underlying data distribution, but also on
the type of algorithm and the associated hyperparameters and can be measured using different
criteria depending on the response type. Furthermore, we investigate the application and resulting
performance of VarQFS on a publicly available real-world credit risk data set [11]. Our VarQFS
algorithm employs a promising, scalable optimizer, i.e., Quantum Natural SPSA (QN-SPSA) [12]
to train a parameterized quantum circuit. The approach facilitates performance investigation as
well as feasibility demonstrations on systems up to 59 qubits with a matrix product state (MPS)
simulator and on systems with 20 qubits on actual quantum hardware. The results reveal that the
suggested approach is not only able to compete with state-of-the-art classical methods but it even
manages to outperform them in some of the presented examples. In fact, VarQFS is able to find
feature subsets that lead to better fitness results with respect to a predefined metric compared to
the classical benchmarks.

The rest of the paper is structured as follows. First, the classical feature selection methods
are discussed in Sec. 2. Next, we introduce the variational quantum optimization algorithm which
helps to find heuristic solutions to unconstrained black box binary optimization problems and
discuss its use for VarQFS in Sec. 3. Then, we present the simulation and hardware experiment
settings and results in Sec. 4. Finally, a conclusion and an outlook are given in Sec. 5.
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2 Feature Selection
Feature selection helps to simplify learning problems respectively to improve training properties.
Given a training data set with thousands of features, it may become expensive or even infeasible
to train a machine learning (ML) model on this data. Feature selection describes the task of
selecting a subset of features which are then used to train a given model. The main goal of this
approach is speeding up the model training process, reducing memory costs during the training,
and avoiding overfitting. Furthermore, it is not always the case that every feature is important
for the training. Therefore, feature selection can also help to increase the interpretability of the
model, and to improve generalizability. However, finding the optimal subset of a set of features for
a given data set is a combinatorial optimization problem that is NP-hard [13]. Typical classical
feature selection heuristics investigate the features independently or consider at most pair-wise
correlations. Generally, feature selection represents an optimization problem which offers little
structure to be exploited by classical techniques and thus offers an interesting test-bed to study
potential advantages of quantum algorithms.

The main categories of classical feature selection techniques are given as follows: model-based
methods, filter methods, and wrapper methods [14]. Model-based techniques provide methods to
rank features based on the feature importance score generated as part of the learning process. The
filter methods use statistical techniques to evaluate the relationship between each feature and the
output variable. Such methods typically assess feature fitness with statistical tests or thresholds
that filter out features which are unable to meet the thresholds. Finally, wrapper methods assess
the performances of many models composed of different features and select those features that
perform best according to a given performance metric. These methods are usually iterative or
sequential in nature and involve evaluating performances using multiple sets of features, and are
thus computationally expensive; nevertheless, they do perform better than the other two classes of
methods in practise. One of the most familiar examples of wrapper methods is a technique called
Recursive Feature Elimination (RFE) [15].

RFE employs an iterative backward elimination process. It evaluates the performance of an
underlying model on successively smaller subsets of features. The training process of the model
begins by including all the raw features. The next step is the elimination of the least important
features as determined by the feature ranking scores provided by the underlying model, such as the
shift in model scores upon feature nullification, weights or feature importances. These two steps
are recursively implemented until the predefined number of features is eventually reached or the
best performance on validation data is achieved.

An extension of RFE involves an automatic search over the optimal number of features to be
selected using a cross-validation procedure and is referred to as RFECV. Both RFE and RFECV
involve a greedy, iterative procedure for selecting a subset of features which is prone to not properly
accounting for the correlations between multiple features. Furthermore, the feature importance
ranking, which is at the core of RFE and RFECV, may not be unique when there exists multi-
collinearity among features. Several folds could be used to overcome this problem. Each fold may
produce a slightly different performance ranking of features with some collective decision being
made to produce stability. Nevertheless, the number of folds is a hyperparameter of the algorithm
and there is no guarantee that a different selection of the folds would not produce a slightly different
answer.

We would like to point out that one can also formulate a feature selection problem in terms
of a QUBO, which could be solved, e.g., with VQE or QAOA, see [16], or adiabatic quantum
computing, see [17]. However, the QUBO based optimization leads to an intrinsically different
problem setting than considered here. More specifically, the construction of the respective QUBO
is based on correlation coefficients between each individual feature of the various data points and
the corresponding labels as well as on correlation coefficients between every pair of features of
the data. However, the evaluation of those correlation coefficients requires a significant overhead.
Furthermore, this method only enables to capture up to pair-wise correlations.
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3 Variational Quantum Optimization
This section describes a variational quantum optimization algorithm which can be used to tackle
a large class of optimization problems with feature selection being just one such example. To that
end, we prepare a quantum state with a parameterized quantum circuit, identify its basis states
with states of the solution space, and define the loss function according to the optimization task
at hand. The model is then trained with the goal of maximizing the probability to sample the
optimal solution from the parameterized quantum state. We present the details of our scheme in
generality in Sec. 3.1; its application to VarQFS is described in Sec. 3.2.

3.1 Optimization
Suppose an unconstrained binary optimization problem

min
x∈{0,1}n

f(x),

where the objective function f : {0, 1}n → R with |f(x)| = O (poly(n)), may be given as a black
box. Then, we use an n-qubit parameterized quantum circuit U (θ) with θ = { θ0, . . . , θk−1 } to
prepare a parameterized quantum state:

|ψ (θ)〉 = U (θ) |0〉⊗n =
2n−1∑
j=0

e−iφj(θ)
√
pj (θ) |j〉 , (1)

where e−iφj corresponds to an arbitrary phase and pj (θ) is the probability to sample |j〉. Further,
the basis states |j〉 are identified with possible solutions xj of the optimization problem. While the
sampling probabilities pj (θ) and basis states |j〉 are important for this context, the phase terms
e−iφj can be neglected. Hence, it suffices to choose an ansatz that acts in the real space of the
amplitudes.

Now, the goal of the variational quantum optimization is to maximize the probability to sample
solutions xj corresponding to good objective values f(xj) from |ψ (θ)〉 by optimizing a loss function

L (θ) =
∑
j

pj (θ) f (xj) , (2)

with respect to θ.
An important aspect of the variational quantum optimization presented above is that it is not

necessary to have an explicit Pauli-operator representation of the objective function. Instead, to
evaluate Eq. (2) we must generate samples (shots) according to the sampling probabilities pj(θ),
calculate the values f(xj) via the given black box function, and finally sum up the results. Although
the loss function consists of a sum over an exponential number of terms, it can be approximated
well with a polynomial number of measurements. Consider that Nshots number of samples xs (θ)
are independently drawn from the quantum state |ψ (θ)〉 and used to evaluate an empirical estimate

L̃ (θ) = 1
Nshots

Nshots−1∑
s=0

f (xs (θ)) (3)

to the loss function. Then, Hoeffding’s inequality [18] implies that

P
(
|L (θ)− L̃ (θ)| ≥ ε

)
≤ 2 exp

(
−2ε2Nshots

(fmax − fmin)2

)
, (4)

for ε > 0 and fmin ≤ f (xj) ≤ fmax, ∀xj ∈ { 0, 1 }n. By setting P
(
|L (θ)− L̃ (θ)| ≥ ε

)
=: γ, we

can directly find that

ε ≤ α (γ)
√

1
Nshots

, (5)
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It should further be noted that this optimization task can be written as a ground state problem
with respect to an implicitly defined diagonal Hamiltonian

min
θ
〈ψ (θ)|H |ψ (θ)〉 , (6)

for

H =

f(x0)
. . .

f(x2n−1)

 . (7)

Loss functions of this type are typically highly non-convex [19]. It is therefore of great impor-
tance to choose the right optimizer. We focus on the application of an optimizer which is promis-
ing to achieve high performance for quantum problems [20–22] using information-geometry-aware
parameter training: quantum natural gradient (QNG) [23]. Standard-gradient-based optimizers
update the parameters by searching for the steepest descent in the Euclidean geometry of the
loss landscape. Natural-gradient-based optimizers [24], on the other hand, focus on the natural
geometry of the parameters.

Given that the optimization task corresponds to a ground state problem, exact QNG-based
optimization is equivalent to variationally approximating quantum imaginary time evolution [10].
Exact quantum imaginary time evolution is guaranteed to converge to the ground state for run time
t→∞ if the initial state has a non-zero overlap. With an adequately expressive ansatz, sufficiently
small (adaptive) step size, and enough shots, a QNG-based optimizer follows the evolution of
imaginary time in its convergence path to the global optimum. Although these conditions are
difficult to suffice in practice, this gives theoretical motivation for the approach presented here. We
would also like to point out that the approximation error induced by VarQITE can be efficiently
bounded as is discussed in [25]. These bounds may, then, be used to iteratively improve the
variational implementation.

Formally, a QNG represents a gradient that is rescaled by the quantum geometric tensor—which
in turn is proportional to the quantum Fisher information matrix (QFI) [26, 27]. To compute a
QNG, we first need to evaluate the gradient of the loss function ∇θL (θ). Next, the QFI, FQ, is
evaluated with its entries being given by

FQpq = 4Re

(
∂ 〈ψ(θ)|
∂θp

∂ |ψ(θ)〉
∂θq

− ∂ 〈ψ(θ)|
∂θp

|ψ(θ)〉〈ψ(θ)|∂ |ψ(θ)〉
∂θq

)
. (8)

The QNG finally corresponds to(1
4F

Q
)−1
∇θL (θ) =

(1
4F

Q
)−1∑

j

∇θpj (θ) f (xj) . (9)

In practice, the advantage of QNG over standard gradients is quickly limited by the large
computational cost of evaluating the QFI—which scales quadratically in the number of ansatz
parameters θ. To circumvent this steep scaling, we use an efficient but approximate QNG-based
optimizer that uses a simultaneous perturbation stochastic approximation (SPSA) [28] to compute
both the underlying gradient and QFI at constant cost, i.e., QN-SPSA [12].

SPSA gradient approximations are based on a perturbation of all system parameters in random
directions

∇θL (θ) ≈ L (θ + ε∆)− L (θ − ε∆)
2ε∆ := g (θ) , (10)

where the vector ∆ represents the random directions and 0 < ε � 1. Notably, the division by ∆
is element-wise. If the random directions are sampled from a suitable distribution, e.g., uniformly
drawn from {−1, 1} for each parameter dimension, then the gradient approximation is known to
represent an unbiased estimator [28]. This concept can also be generalized to evaluate an SPSA
approximation to the QFI with the following steps. First, we rewrite the QFI as a Hessian

FQpq = −2∂
2 |〈ψ (θ′)|ψ (θ)〉|2

∂θp∂θq

∣∣∣
θ′=θ

. (11)
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The equivalence of Eq. (8) and Eq. (11) is shown, e.g., in [12, 29]. Next, we use a second-order
SPSA scheme with two random direction vectors ∆1 and ∆2 [30] to approximate FQpq stochastically
such as

F̃Q := ∆1∆T
2 + ∆2∆T

1
−2ε2

(
|〈ψ (θ)|ψ (θ + ε (∆1 + ∆2))〉|2 − |〈ψ (θ)|ψ (θ + ε∆1)〉| |2−

− |〈ψ (θ)|ψ (θ − ε (∆1 −∆2))〉|2 + |〈ψ (θ)|ψ (θ − ε∆1)〉|2
)
.

(12)

Finally, the SPSA approximations g (θ) and F̃Qpq are used to evaluate a QNG approximation as(1
4 F̃

Q
)−1

g (θ) , (13)

which then enables the execution of a QN-SPSA optimization. Since a single sample F̃Q is generally
not an accurate estimate of FQ, we typically use an average over a collection of independent
samples. For more details we would like to refer the interested reader to [12].

Lastly, the optimization scheme requires the initial state to have a non-zero overlap with the
ground state, i.e., the optimal solution. A simple approach to suffice this criteria in our case is an
initial parameterization θinit, which allocates the same probability mass on every basis state, i.e.,

|ψ (θinit)〉 = 1√
2n

2n−1∑
j=0
|j〉 . (14)

3.2 Quantum Feature Selection
We now discuss the application of the variational quantum optimization as a wrapper method for
feature selection—VarQFS. The following section presents the general methodology and the specific
details on the numerical simulations and hardware experiments – which verify the feasibility of our
method – are presented in Sec. 4.

Suppose a training data set Xtrain with n input features and corresponding labels ytrain. There
are 2n possible feature subsets labelled as {x0, . . . ,x2n−1 }. Furthermore, the basis states of the
parameterized state |ψ (θ)〉 are identified with different combinations of feature subsets. The
mapping from a basis state to a feature subset uses a binary approach: Every feature l in the
training data is related to a qubit l. If qubit l is measured and the result corresponds to |1〉
(|0〉) then feature l is included (excluded) from the feature subset. During each optimization step,
Nshots samples are drawn from the quantum state |ψ (θ)〉 and the measured states |m〉 are related to
feature subsets xm. Then, xm and the training data Xtrain are used to train a classification model
C (xm, Xtrain). After training the model, a set of predicted labels can be extracted for the training
data ypredm . These labels are further used to evaluate a performance score S

(
ypredm , ytrain

)
. In the

following, we simplify the notation and write Strain (xm), i.e., the score corresponding to a selected
feature subset evaluated on the training data, and Stest (xm), for the test data, respectively.

The goal is again to minimize the objective function with respect to the model parameters θ such
that the probability to sample feature subsets leading to the best objective values is maximized.
In practice, only a finite number of shots is drawn. Thus, the optimization is actually performed
with the empirical loss function

L̃ (θ) =
Nshots−1∑
m=0

p̃m (θ)Strain (xm) , (15)

where empirical estimates of the sampling probabilities p̃m (θ) are evaluated as the normalized
measurement frequencies of the basis states |m〉 after Nshots samples.

4 Results
This section presents VarQFS experiments for a publicly available credit risk data set [11]. First, we
outline the details of the experiments and then we show the training results from experiments run
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with both, a matrix product state (MPS) simulator, and the ibmq montreal quantum processing
unit (QPU). The presented proof-of-principle experiments show for both backends that variational
quantum optimization has the potential to outperform traditional feature selection methods, i.e.,
RFE and RFECV, in certain aspects. For the latter, Scikit-learn implementations [31] are used;
for RFECV, we consider two different models: one trained using a log-loss score and the other
using an accuracy score.

First, the data set used for training and testing is presented in Sec. 4.1. Next, the details of the
VarQFS model and optimization are given in Sec. 4.2 and the respective backends are discussed in
Sec. 4.3. Then, we investigate the VarQFS training using both numerical simulation and a QPU
for a reduced data set consisting of 20 features (qubits) in Sec. 4.4. Finally, Sec. 4.5 presents the
results for training a VarQFS model on the full 59-feature (qubit) problem with the MPS simulator.
Notably, the goal of the MPS simulations is a proof-of-principle demonstration for the scalability
of this approach.

4.1 Data
This work uses a publicly available credit risk data set X with corresponding labels y which is
made available by the UCI machine learning repository [11]. The data set includes 1, 000 data
points which determine the credit-worthiness of a customer with respect to 20 attributes. Some
of these attributes are of a categorical nature. To incorporate these categorical attributes into our
training, we employ one-hot encoding [32]. This expands the feature space of the data points to
59 dimensional vectors. This fact allows us to directly conclude that the individual features are
not linearly independent. A list of all features is presented in Appendix A.

To train and validate the VarQFS model, the full data set is split into 50% train and 50%
test data, Xtrain, ytrain and Xtest, ytest, respectively. Different ratios of test and train splits were
attempted, along with different measures of multivariate distribution checks conditioned upon the
response, through a process of parameter tuning. To ensure that the generated train and test data
sets are representative of each other, we verify that the two data sets have comparable properties.
To that end, the Pearson correlation coefficient [33]—a linear correlation measure—is evaluated
for every individual feature and the data instance label for the train and the test data. Next, we
check that the respective Pearson correlation coefficients for train and test data vary at most by
≈ 10%.

4.2 Model and Training

Sampling à Model Training                à Performance Score

𝑁!"#$! shots to draw 
feature subset samples

<latexit sha1_base64="aRPh/bhhj4fq8gCBStxp7etPxWY="></latexit>xm

<latexit sha1_base64="PAcfmG3qx1iiSczoccJp7TPQKZ0="></latexit>C (xm, Xtrain)

Label prediction for the 
training data

<latexit sha1_base64="tvN+ed4W3eGmPiqP3MKt1j5AdUI="></latexit>

ypred
m

<latexit sha1_base64="5M+ePZA2WW1DhdxgF8LQmvO1XaE=">AAAC0HicbVFNbxMxEPUuXyV8peVYDoaoUkEoykYIOFZAJS6I8pE2UhwirzPZmHi9K3u2ZOVaiAsH/iH/gR+Bk+6BtIxk6fmNx2/mTVoqabHX+x3FV65eu35j62br1u07d++1t3eObVEZAQNRqMIMU25BSQ0DlKhgWBrgeargJF28XuVPTsFYWejPWJcwznmm5UwKjoGatH8yDd9EkedcTx0rTfHVj5KxO+skzHCdKWAPmVoD2knOfIulkEntuJKZfhKuOce54Mp98kzBDPfrSf7FMYQlutDH1PuntJ40BBoutffMyGyOj1sMgmTz0aTd6XV766CXQdKADmniaLId9dm0EFUOGoXi1o6SXoljxw1KoSB0VlkouVjwDEYBap6DHbu1YZ7uBWZKZ4UJRyNds/9WOJ5bW+dpeLka0F7Mrcj/5UYVzl6OndRlhaDFudCsUhQLunKfTqUBgaoOgAsjQ69UzLnhAsOONlRSwxeAflNZiDCuDeQbCEMbeBcaeF+C4VgYxw6H3q0Xkqbu0Ps9CssyqIVJT7mqoNUKLicXPb0Mjvvd5Hn32Yd+5+BV4/cW2SWPyD5JyAtyQN6SIzIggvyJdqLd6EH8MV7G3+Mf50/jqKm5TzYi/vUX5UHkBg==</latexit>

S
�
ypred

m , ytrain
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Measurement à Logistic Regression à Log-Loss

Figure 1 The diagram illustrates the workflow model for the VarQFS experiments presented in this section.

We choose to implement baseline experiments using logistic regression as classifier C (xm, Xtrain)
and log-loss as performance score Strain (xm) respectively Stest (xm), both provided by Scikit-learn
[31]. The model training workflow is illustrated in detail in Fig. 1. Note that in our general
formalism any arbitrary classifier and scoring function can be utilized as the model treats them
as black boxes. In proof-of-principle experiments, we also tested VarQFS for other classifiers, e.g.,
the Random Forest and the Gradient Boosting classifier provided by Scikit-learn [31] as well as the
LGBM classifier provided by LightGBM [34] and observed comparable training behavior. In our
simulations, we (lazily) evaluate the scores throughout the optimization and cache the results. It
should be noted that the scores are independent of the circuit parameters θ.
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Furthermore, we implement |ψ (θ)〉 using a parameterized quantum circuit ansatz class that
applies solely real transformations onto the quantum state amplitudes. More specifically, we em-
ploy Qiskit’s RealAmplitudes ansatz with linear entanglement which is illustrated in Fig. 2. The
respective ansätze consist of single-qubit RY gates and of CNOT gates which are arranged in a
linear fashion. Every ansatz consists of a layer of single-qubit gates and d blocks of consecutive
two-qubit and single-qubit gate layers. The number d is often referred to as the circuit ‘depth’. In
the experiments presented below d is chosen as either 0, 1, or 2 to enable accurate simulation with
an MPS backend and sufficiently stable circuit execution on quantum hardware. More specifically,
this type of ansatz has a maximal bond dimension of χ ≤ 2d and can be represented exactly with an
MPS simulator backend if d is not too large (see Sec. 4.3 for more details). Note that the QN-SPSA
optimizer requires the evaluation of overlaps per Eq. (12), which is implemented via a compute-
uncompute method: as the states are prepared by a known unitary, |ψ(θ)〉 = U(θ) |0〉⊗n, the
overlap of two states | 〈ψ(θ1)|ψ(θ2)〉 |2 can be computed by preparing the state U†(θ2)U(θ1) |0〉⊗n
and evaluating the sampling probability of |0〉⊗n. This method to compute the overlap effectively
doubles d at fixed n. Thus, the required bond dimension is the square of that for a single circuit,
e.g., χ ≤ (2d)2 = 4d for the ‘linear’ entanglement circuit.

Figure 2: This circuit shows a parameterized quantum circuit which acts as model ansatz. More specifically,
this figure represents the ‘RealAmplitudes‘ ansatz for 20 qubits/features with depth 1 and ‘linear’ entanglement.

In this case, ansätze with higher depths lead to more parameters. The accuracy of SPSA
gradient and QFI approximations is better for systems with less parameters. Thus, we stabilize
the training performance for ansätze with higher depths, by resampling the SPSA gradient and the
SPSA QFI multiple times. The average of the gradient and QFI samples are then used to compute
the parameter updates with QN-SPSA. In the following experiments, 5 (10) samples define the
updates if the ansatz has depth 1 (2).

4.3 Backends
To perform simulations at large qubit numbers, we employ an MPS simulator. The MPS formalism
provides a classically efficient means of evaluating and analyzing moderately entangled quantum
circuits [35, 36]. In our simulations, we use Qiskit [37] Aer’s MPS simulator backend. The classical
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(space and time) computational cost of simulating circuits with MPS is, for a polynomial number
of gates, only polynomial in the number of qubits n, but exponential in the amount of (bipartite)
entanglement generated by the circuit. In this context, a natural measure of entanglement is
given by Sχ = log2 χ, where χ is the maximal Schmidt rank over all possible bipartitions of the n
qubits [35]. In the language of MPS, χ is equivalent to the (maximal) bond dimension of an exact
MPS representation of the state, i.e., with zero truncation error. For our MPS simulations, we
indeed consider only circuits with sufficiently limited entanglement and depth such that they can
be represented exactly with relatively small bond dimension χ.

The space complexity of the standard MPS method is O(nχ2) and the time complexity per
evaluation of a single two-qubit gate is O(χ3). For MPS simulations of our generic loss function
protocol spelled out above requires that we must sample from |ψ(θ)〉 to compute Eq. (2), thereby,
as with hardware, incurring shot noise error. Sampling computational basis states of an MPS
according to px(θ) is optimally done in time O(nχ2) per shot [38].

The chosen QPU is the ibmq montreal superconducting qubit processor with 27 qubits. Fig. 3
depicts the topology diagram of this processor. The diagram illustrates the T1 times for each qubit
as well as the CNOT gate error rates for each possible connection between qubits as depicted in
the diagram.

Figure 3 The topology diagram for ibmq montreal quantum processor. This diagram indicates the pairs of qubits
that support two-qubit gate operations between them. This is also called the coupling map or connectiv-
ity. Qubits are represented as circles and the supported two-qubit gate operations are displayed as lines
connecting the qubits. The coloring of the qubits indicates their respective T1 times and the coloring of

the connections between qubits indicates the errors induced by CNOT gates.

4.4 Reduced Data Set
As a first step, the application of VarQFS on 20 features of the data, described in Sec. 4.1, is
investigated. These features are chosen as those 20 features that are ranked as the most important
ones according to an RFECV (log-loss) method that is applied to the full training data set. The
respective features are listed in Appendix A. This setting is studied as it represents a non-trivial
case that can still be evaluated with an exhaustive search method to find the feature subset with
the best—in our case lowest—training score of Strain (xbest) = 0.5351. Notably, finding the subset
which gives the best train score is the optimal solution of the objective function of the considered
optimization problem.

In order to benchmark our VarQFS results, we evaluate the feature selection task with RFE
and RFECV methods. RFECV is once run using a log-loss and once an accuracy scoring function
S. The final evaluation of all models is based on a log-loss score to ensure comparability with the
VarQFS models.

To run VarQFS with a depth d = 2 ansatz, we use the MPS simulator as backend and the
QN-SPSA optimization for 5, 000 iterations where Nshots = 10, 000 samples are drawn from |ψ(θ)〉
in each iteration. The setting is trained for 10 different random seeds to ensure that the presented
results are statistically relevant. The final loss value of the training is on average 0.5357 with a
standard deviation of ±0.0003. The example with the lowest loss after training is presented in
Fig. 4.
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After the training is finished, 10, 000 samples are drawn to analyse the sampling probabilities
pm (θ) of feature subsets xm of the trained quantum state. Fig. 4(a) and Fig. 4(b) present the
cumulative distribution functions (CDFs) for the sampling probabilities pm (θ) with respect to
the corresponding train Strain (xm) and test Stest (xm) scores. The figures also include the CDF
scores corresponding to the exhaustive search where each feature subset has the same sampling
probability. Furthermore, the illustrations show the scores for the best samples and the respective
scores found with the traditional RFE/RFECV methods as well as the confidence intervals (CIs).
Here and in the remainder of this work, all CIs are computed with confidence level 95% using 50
bootstraps with 70% of the train/test data.

Fig. 4(a) illustrates that most of the probability mass of the state trained with VarQFS corre-
sponds to feature subsets with lower train scores than any of the RFE/RFECV methods managed
to find. The plot in Fig. 4(b) shows that VarQFS even manages to find a feature subset with a
slightly better test score then RFE/RFECV. The figure also reveals that the feature subset with
the smallest train score does not lead to the smallest test score. Investigating the different feature
subset samples drawn from the trained model can, thus, give important insights and help to make
a practical decision. The training evolution and its convergence is illustrated in Fig. 4(c) with
respect to the loss function given in Eq. (15). The figure shows various outliers which stem from
the stochastic nature of QN-SPSA. In order to avoid that these outliers interfere with the success
of the optimization, the optimizer includes an additional check which discards any update that
would increase the loss, up to a tolerance of twice the standard deviation of the loss function at
the initial point [30].

The VarQFS experiment carried out with ibmq montreal employs again a depth 2 ansatz—
corresponding to 60 one-qubit gates and 38 two-qubit gates. Unlike the simulated depth 2 experi-
ments, the hardware experiments do not employ additional resampling for the SPSA gradient/QFI
due to the limited availability of quantum hardware resources. The number of optimization itera-
tions is also reduced to 300. Furthermore, the number of samples drawn at each iteration is 8, 000;
at the time of these experiments, the maximum number of samples that can be drawn by the QPU
at a time is 8, 192.

Although the loss function presented in Fig. 4(d) does not converge as smoothly as the MPS
simulations, it still shows good convergence. The illustrated outliers are in this case partially due to
the stochastic nature of QN-SPSA and partially due to the physical noise of the quantum backend.
Again, the optimization scheme only accepts parameter updates which improve the loss function.

A comparison of the results from all feature selection methods described above for the 20 feature
problem is presented in Tab. 1. The table includes the train/test scores and corresponding CIs for
the features selected with RFE and RFECV. Furthermore, the best train/test scores sampled in
the analysis step, and corresponding CIs are given for the VarQFS experiments executed with the
MPS simulator as well as the QPU. We would like to point out that the MPS results are averaged
for all 10 executions with different random seeds.

Method Train Score Test Score Train CI Test CI
RFECV (acc) 0.5473 0.5711 [0.5344, 0.5633] [0.5527, 0.5845]
RFECV (log) 0.5371 0.5562 [0.5184, 0.5551] [0.5391, 0.5731]

RFE 0.5371 0.5562 [0.5229, 0.5525] [0.5368, 0.5737]
MPS 0.5351± 1.16 · 10−5 0.5558± 0.0003 [0.5172± 0.0028, 0.5517± 0.0022] [0.5372± 0.0035, 0.5722± 0.0027]
QPU 0.5351 0.5542 [0.5162, 0.5542] [0.5386, 0.5715]

Table 1 The table summarizes the results for the experiments conducted with 20 features. For the RFECV
(accuracy), RFECV (log-loss) and RFE feature selection methods the train scores, test scores and
corresponding CI bounds are shown. The VarQFS experiments are presented with respect to the best
train score, the best test score and corresponding CIs. Notably, the results from the MPS simulations are
given in terms of the average and standard deviation for the optimizations with 10 different random seeds.

The table reveals that while the simulated as well as QPU VarQFS experiments manage to find
feature subsets leading to the optimal train score, the classical methods do not. Furthermore, the
data reveals that although the loss function for the QPU VarQFS experiment does not converge as
nicely as in the simulated experiment, the sampled feature subsets lead to a similarly good train
and even better test score than the MPS VarQFS result average. Besides good training results,
we are in practice interested in finding a feature subset which also leads to good generalizability
expressed by a small test score Stest (xm). The VarQFS methods manage to find (on average)
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Figure 4 (a) The figure shows the cumulative distribution function of the train scores with respect to the samples
drawn from the trained MPS VarQFS model as well as the exhaustive search where all feature subsets are
considered with equal sampling probability. Furthermore, the train scores of the best sampled subset, RFE
and RFECV models are shown – including the corresponding CIs. (b) This figure is equivalent to (a) but
is given for the test score. This shows that the features leading to the best train scores not necessarily lead
to the best generalization performance. (c) The evolution of the loss function over 5, 000 iterations for the
MPS VarQFS experiment is illustrated. (d) The loss function progress for the QPU VarQFS experiment

over 300 iterations is presented.

better test scores than the classical methods. Moreover, we would like to point out that it is the
small amount of training data which is (most likely) the culprit of the relatively large CIs.

We now discuss the relative performance of the quantum and classical methods in more detail.
To this end, we conduct a statistical analysis comparing the train and test scores of the trained
quantum models with RFECV (accuracy), RFECV (log-loss) and RFE feature selection methods.
We examined paired scores on 1000 data subsets with 70% of the training and test data and evaluate
the percentage of subsets on which the VarQFS algorithm outperforms the classical methods. More
specifically, we first find the 10 feature subsets sampled from the trained VarQFS algorithm that
lead to the smallest train scores on the full training data. Next, we evaluate the percentage of data
sets where VarQFS gives better train and test scores than RFECV (accuracy), RFECV (log-loss)
and RFE. Finally, these percentages are averaged over the 10 feature subsets. The results are
presented in Tab. 2.

We find that the VarQFS algorithm is able to outperform the classical methods in almost
all of these instances. It can be seen that the average performance for the best seed across the
training data for all three classical methods is quite high, with the quantum algorithm achieving a
lower log-loss score on between 89% and 100% of the data sets. This indicates that the quantum
algorithm has the potential to outperform classical methodologies.

Finally, Tab. 3 shows that the time required to run the VarQFS algorithm on an actual quantum
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Method Compared Model Avg. Train Data Max. Train Data Avg. Test Data Max. Test Data
MPS RFECV (acc) 100% 100% 100% 100%
QPU RFECV (acc) 100% − 100% −
MPS RFECV (log) 100% 100% 100% 100%
QPU RFECV (log) 99.8% − 96.4% −
MPS RFE 100% 100% 100% 100%
QPU RFE 99.7% − 96.3% −

Table 2 The statistical analysis examines paired scores on 1000 data subsets consisting of 70% of the original train
and test data for the reduced data set. The table shows the percentage of instances where VarQFS leads
to better scores on the train and test data compared to RFECV (accuracy), RFECV (log-loss) and RFE.
For the VarQFS algorithm implemented with the MPS simulator, we evaluate the average over the 10
different seeds used for training as well as maximum percentage for the various seeds. Since the
experiments with the QPU are only executed on one seed, the presented value only represents an average
over the 10 feature subsets for this instance.

Backend Iteration (s) Gradient (s) QFI (s)
MPS Simulator 11.1294 0.0008 0.0064

QPU 818.5777 ≈ 24 (w.o. queuing) ≈ 48 (w.o. queuing)

Table 3 This table presents the time needed to run a single iteration (without resampling), the SPSA gradient, as
well as, SPSA QFI evaluation with the MPS simulator and the actual hardware. The time measured for
one iteration with the QPU corresponds comes from an exemplary run with priority access to the
ibmq montreal backend. Notably, the SPSA gradient/QFI times correspond to the time needed for
backend compilation, instrument loading and execution on the QPU. The time it takes to queue for circuit
execution is not included.

backend is still significantly larger than the efficient MPS simulator.

4.5 Full Data Set
Next, we investigate the performance of VarQFS on the full credit risk data set from Sec. 4.1. Since
the number of features in this setting is too large, we can no longer conduct an exhaustive search
for comparison. Nevertheless, traditional feature selection methods—in our case RFE/RFECV—
can be used as benchmark for the VarQFS performance. The respective train/test scores and
corresponding CIs are presented in Tab. 4.

To train VarQFS on the given data set Xtrain, 10 different random seeds are chosen for ansätze
with depth 0, 1 and 2. Each training employs 5, 000 iteration steps with QN-SPSA drawing 10, 000
samples in every step. The convergence is on average slightly better for d = 0 than for higher
depths. More explicitly, d = 0 results on average in loss values of 0.4389 with standard deviation
±0.0009, while d = 1 (d = 2) results on average in 0.4510 (0.4432) with standard deviation
±0.0144 (0.0024). This may be due to the approximations of the QN-SPSA optimizer. Since
the ansätze with higher depths have more parameters, the QN-SPSA approximations are more
likely to deviate from the actual gradient, and QFI. While the QN-SPSA implementation already
employs additional resamplings for the ansätze with higher depths, we expect that an increase
in the number of resamplings would lead to further improvement in the convergence behavior.
Nevertheless, higher depths are on average better in terms of the best test score samples.

Fig. 5 presents the training with depth 2 that lead to the best loss score. The loss function in
Fig. 5(a) shows good convergence behavior despite the occurrence of various outliers during the
optimization. Fig. 5(b) and Fig. 5(c) present the CDF for the train and test scores corresponding to
the feature subset probability distribution evaluated with 10, 000 samples drawn from the trained
VarQFS model. Furthermore, the figures illustrate the best sample drawn from VarQFS and the
scores evaluated with RFE/RFECV as well as the corresponding CIs. The graphs not only show
that the VarQFS algorithm manages to find feature subsets that are better than the ones found
by RFE/RFECV, but also, that significant probability mass lies on feature subsets whose training
scores are better than the RFECV (log-loss) and RFE solutions.

Next, we extract the final objective values and the best train and test scores as well as the
corresponding CIs from all 10 optimization runs for each depth 0, 1 and 2. We report their
averages and standard deviations in Tab. 4, whereby the train and test scores are evaluated using
10, 000 samples.

Furthermore, the mean values for the best sampled train and test scores are better than the
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Figure 5 (a) The evolution of the loss function over 5, 000 iterations is illustrated. (b) The figure shows the cumula-
tive distribution function of the train scores with respect to the samples drawn from the trained VarQFS
model. Furthermore, the train scores of the best sampled subset, RFE and RFECV models are shown –

including the corresponding CIs. (c) This figure is equivalent to (b) but is given for the test scores.

Method Train Score Test Score Train CI Test CI
RFECV (acc) 0.4389 0.4900 [0.4193, 0.4651] [0.4643, 0.5132]
RFECV (log) 0.4556 0.4905 [0.4288, 0.4772] [0.4658, 0.5099]

RFE 0.4456 0.4848 [0.4191, 0.4638] [0.4597, 0.5188]
MPS d = 0 0.4386± 0.0034 0.4804± 0.0028 [0.4164± 0.0050, 0.4621± 0.0044] [0.4537± 0.0043, 0.5033± 0.0059]
MPS d = 1 0.4388± 0.0034 0.4776± 0.0038 [0.4150± 0.0055, 0.4596± 0.0043] [0.4545± 0.0050, 0.5026± 0.0063]
MPS d = 2 0.4401± 0.0043 0.4759± 0.0019 [0.4182± 0.0068, 0.4620± 0.0026] [0.4514± 0.0035, 0.4982± 0.0048]

Table 4 The table shows the train scores, test scores and corresponding CI bounds for the RFECV (accuracy),
RFECV (log-loss) and RFE feature selection methods for the logistic regression model with 59 features.
The train scores for d = 0 are on average marginally better than higher depth results. This may again be
related to the approximation error of QN-SPSA mentioned before. Moreover, the mean value and
standard deviation for the experiments conducted with 10 random seeds are presented for each depth 0, 1
and 2 with respect to the best train/test scores of each experiment and corresponding CI.

classical RFE/RFECV methods for all depths. The analysis also reveals that the best train score
Strain (xm) = 0.4386 and test score Stest (xm) = 0.4759 is found for depth 0 and 2.

Throughout the various experiments good trainability is observed. In Appendix. B, we discuss
the occurrence possibilities of barren plateaus [39] in VarQFS. Furthermore, we present empirical
evidence that the VarQFS model investigated in this paper is unlikely to be affected by this
problem.

Finally, we employ the same statistical analysis as in Sec. 4.4 to investigate the statistical
significance of the VarQFS performance in comparison to RFECV (accuracy), RFECV (log-loss)
and RFE. Tab. 5 reflects the percentage of instances on which VarQFS outperforms the classical
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algorithms.

Method Compared Model Avg. Train Data Max. Train Data Avg. Test Data Max. Test Data
MPS d = 0 RFECV (acc) 67.3% 90.45% 42.1% 65.4%
MPS d = 1 RFECV (acc) 62.0% 89.9% 33.5% 61.1%
MPS d = 2 RFECV (acc) 50.0% 89.9% 35.0% 53.5%
MPS d = 0 RFECV (log) 94.4% 100% 48.0% 64.8%
MPS d = 1 RFECV (log) 97.1% 100% 43.3% 57.4%
MPS d = 2 RFECV (log) 95.3% 100% 42.7% 53.9%
MPS d = 0 RFE 84.3% 99.8% 17.0% 84.0%
MPS d = 1 RFE 85.5% 99.7% 14.7% 71.2%
MPS d = 2 RFE 69.3% 99.7% 10.7% 15.2%

Table 5 The statistical analysis examines paired scores on 1000 data subsets consisting of 70% of the original train
and test data for the full data set. The table shows the percentage of instances where VarQFS lead to
better scores on the train and test data compared to RFECV (accuracy), RFECV (log-loss) and RFE. For
the VarQFS algorithm implemented with the MPS simulator, we evaluate the average over the 10 different
seeds as well as maximum percentage for the various seeds.

It can be observed that there is a strong seed dependence in the performance characteristics
of these experiments. We hypothesise that this is related to the training issues mentioned above.
More specifically, we expect that given the current number of QN-SPSA resamples the VarQFS
method does not converge to its optimal point for all seeds given the full data set and that the
statistical test reflects this with lower fractions of advantageous VarQFS feature selection runs.
While the statistical significance of the presented results is not as strong as for the reduced data
set, one can still see that VarQFS manages in every setting at least for one seed to outperform
the classical methods on more than ≈ 90% of the training data instances. Even for the test data,
there exists—except for one instance—one seed where VarQFS outperforms RFECV (accuracy),
RFECV (log-loss) and RFE in more than half of the cases.

5 Discussion, Conclusion, and Outlook
This work presents a variational quantum optimization algorithm for unconstrained black box
binary optimization. With a relation of the optimization task to a ground state problem and
by employing a solver motivated through quantum imaginary time evolution we provide strong
theoretical justification for promising convergence behavior. We have demonstrated the potential
of this approach to compete with, and even outperform, established classical methods on the
example of feature selection for a real-world data set using MPS simulation as well as a real QPU.

The proof-of-principle results presented here—from the simulation as well as the actual quan-
tum hardware—do in fact illustrate the potential of VarQFS to find better feature subsets than
traditional methods. We would like to highlight that the ibmq montreal based VarQFS model man-
ages to outperform traditional methods even without using error mitigation [40, 41]. The empirical
study for the full data set reveal that using higher depth ansätze—which ultimately leads to more
entanglement in the system—can improve the generalization of the model, i.e., help to find on
average better test scores. While the results show good convergence for the VarQFS training, we
expect that further studies of QN-SPSA and its hyperparameter settings can help to further im-
prove the training, particularly for higher depth ansätze. Furthermore, it would be an interesting
research question to investigate the VarQITE error bounds presented in [25] in the context of a
stochastic QN-SPSA implementation which could help to get an improved understanding of the
accuracy of the presented methods.

One particularly promising property of this method in the context of feature selection is that
all features and their correlations are considered jointly. Many classical methods on the other hand
consider only up to pair-wise correlations and are, thus, prone to missing important information
about the underlying data. In this context, it would be interesting to compare VarQFS to classical
feature selection methods, e.g., based on probabilistic models [42], that also consider all variable
correlations jointly. In fact, it should be possible to generalize the ideas of, for example, Refs. [38,
43, 44] and use MPS themselves (or some other tensor network structure) as a probabilistic model
for difficult combinatorial optimization tasks such as feature selection.

We would also like to highlight that the 59 feature (qubit) MPS experiments represent rela-
tively large simulations of a full variational quantum algorithm, especially given the necessity of
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sampling shots in calculating not only the loss function but also the overlaps in the definition of
the approximate QFI. These results lay the foundation for future investigations of VarQFS experi-
ments at larger scale with actual quantum hardware. This, in addition to the classical complexity
of evaluating the black box scoring function for a given sample, make these simulations particularly
complicated and expensive. While this type of simulation has rarely been explored for variational
quantum algorithms, we believe that it has a lot of potential in this context, especially for un-
derstanding the role that increasing entanglement may play in such algorithms. While we have
focused on representing the problem exactly with MPS, an interesting question that remains to
be studied in variational quantum algorithms more broadly is whether or not approximate MPS
simulations of training would produce barren plateaus induced by finite truncation error and its
accompanying state infidelity—an effect which might be interpreted as a type of noise [45, 46].

Furthermore, it can be expected that future quantum hardware will enable to study this al-
gorithm in the context of larger systems and ansätze with more entanglement. In particular, we
would then not have to rely on classical simulators such as the MPS simulator but could investi-
gate the results of scaled experiments with non-trivial ansatz classes. The impact of entanglement
in the model ansatz is an important point that is open for future research. While our empirical
results revealed that ansätze with higher depth can improve certain aspects of the trained model,
it remains to be studied whether this is due to a certain structure in the entanglement or the larger
parameter space. Here, we have focused on a low-depth ansatz with RY gates and a simple ‘linear’
entanglement structure of CNOT gates, due to its compatibility with both the employed QPU
and MPS simulator (in the sense of requiring only 1D nearest-neighbor connectivity), but under-
standing the appropriateness of other ansatz circuit choices—including perhaps those built out of
quantum (e.g., isometric) tensor networks [47–51]—is an important open question. In general, it
would be interesting to study if preliminary statistical (classical) analysis could be employed to
find a suitable entanglement structure.

Future work could also study further variations of the optimization settings. For example, the
method can easily be adapted to ensure that the final feature subset contains m features by either
using a Hamming-weight preserving ansatz or by introducing penalty terms to the loss function.
Moreover, one could compare VarQFS to a larger variety of classical state-of-the-art feature se-
lection methods by conducting further empirical studies. Other potential improvements in the
settings, such as training methods based on cross-validation techniques, may also be investigated.

Finally, we would like to conclude by pointing out that while this work presents the potential of
variational quantum optimization for feature selection, it remains a question for future research to
study this approach on other combinatorial optimization problem instances or even generalizations
of the objective function type.
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Code Availability. The code for the implementation of the classical parts of the algorithm can
be found under Scikit-learn [31]. Furthermore, the code for the implementation of the variational
quantum circuit as well as the QN-SPSA optimizer used for the presented experiments are publicly
available in Qiskit [37]. Lastly, the data set used in the presented experiments is made available
by the UCI machine learning repository [11].

A Features Data Set
This section provides a list of the features included in the reduced data set and the full data
set from the German credit risk data set from the UCI Machine Learning Repository [11]. The
following list presents all features of the given data set.

• Status of existing checking account

– A11: x < 0
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– A12: 0 ≤ x < 200
– A13: x ≥ 200
– A14: no checking account

• Duration in month

• Credit History

– A30: no credits taken/ all credits paid back duly

– A31: all credits at this bank paid back duly

– A32: existing credits paid back duly till now

– A33: delay in paying off in the past

– A34: critical account/ other credits existing (not at this bank)

• Purpose

– A40: car (new)

– A41: car (used)

– A42: furniture/equipment

– A43: radio/television

– A44: domestic appliances

– A45: repairs

– A46: education

– A47: (vacation - does not exist?)

– A48: retraining

– A49: business

– A410: others

• Credit Amount

• Savings account/bonds

– A61: x < 100
– A62: 100 ≤ x < 500
– A63: 500 ≤ x < 1000
– A64: x ≥ 1000
– A65: unknown/ no savings account

• Present employment since

– A71: unemployed

– A72: x < 1year

– A73: 1 ≤ x < 4 years

– A74: 4 ≤ x < 7 years

– A75: x ≥ 7 years

• Installment rate in percentage of disposable income

• Personal status and sex

– A91: male: divorced/separated

– A92: female: divorced/separated/married

– A93: male: single
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– A94: male: married/widowed

– A95: female: single

• Other debtors / guarantors

– A101: none

– A102: co-applicant

– A103: guarantor

• Present residence since

• Property

– A121: real estate

– A122: if not A121: building society savings agreement/ life insurance

– A123: if not A121/A122: car or other, not in attribute 6

– A124: unknown / no property

• Age in years

• Other installment plans

– A141: bank

– A142: stores

– A143: none

• Housing

– A151: rent

– A152: own

– A153: for free

• Number of existing credits at this bank

• Job

– A171: unemployed/ unskilled - non-resident

– A172: unskilled - resident

– A173: skilled employee / official

– A174: management/ self-employed/ highly qualified employee/ officer

• Number of people being liable to provide maintenance for

• Telephone

– A191: none

– A192: yes, registered under the customers name

• foreign worker

– A201: yes

– A202: no

The following list presents the features are ranked as the 20 most important from the full data
set by RFECV (log-loss).

• Existing Checking Account Status A11

• Saving Account Or Bonds A65
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• Present Employment Since A71

• Present Employment Since A72

• Present Employment Since A74

• Marital Status And Gender A93

• Other Debtors Or Guarantors A102

• Other Debtors Or Guarantors A103

• Property A124

• Other Installment Plans A141

• Other Installment Plans A143

• Housing Status A151

• Housing Status A153

• Housing Status A152

• Present Employment Since A75

• Marital Status And Gender A94

• Credit History A32

• Current Residence Duration

• Employment Status A174

• Other Installment Plans A142

B Barren Plateaus
In this section, we discuss the scalability of the suggested VarQFS algorithm with respect to the
potential occurrence of exponentially vanishing gradients – also called barren plateaus [39]. In
particular, we give empirical evidence that the given setting of model and training data is unlikely
to be subject to cost function induced barren plateaus [52].

Barren plateaus may occur due to various reasons. Firstly, ansätze which are very expressive,
such that they represent (approximate) 2-designs [53], can lead to a landscape which is exponen-
tially flat in the number of qubits n [39]. This may, e.g., be circumvented by informed initialization
strategies [54, 55] or the design of problem-dependent ansätze [56]. Secondly, exhaustive entan-
glement in an ansatz—in combination with partial traces on parts of the state—may also lead to
barren plateaus [57–59]. Entanglement-induced barren plateaus may be avoided by limiting the
entanglement in the chosen model ansatz [60]. Thirdly, exponentially vanishing gradients can be
due to the local noise of current quantum hardware [46]. At the moment, hardware noise may be
reduced using error mitigation [40, 41]. Fault-tolerant quantum computers would eradicate this
issue. Lastly, barren plateaus can occur due to cost functions that depend on global observables,
i.e., observables which require all n qubits to be measured at the same time [52]. The first three
culprits of barren plateau may be handled independently of the problem at hand, e.g., by using the
measures suggested above. But the last type is an intrinsic property of the algorithm’s objective
function.

In this case, training data is an important factor when it comes to the potential impact of cost
function dependent barren plateaus. More explicitly, we see from Eq. 7 that the image of f for
{x0, . . . ,x2n−1 } defines the observable of the given optimization problem. A-priori we do not
know whether the image of f induces a global observable or local observable—an observable that
can be evaluated by measuring at most k � n qubits together and does not lead to gradients that
vanish exponentially in the system size.
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In the remainder of this section, we give numerical evidence that the presented VarQFS problem
is unlikely to suffer from this problem for the given credit risk data set and may, thus, be scalable
in our setting. To that end, we numerically verify that the observable induced by the image of f
for the given credit risk data can be (approximately) represented by a local Hamiltonian. More
specifically, it is shown that a linear program can fit a quadratic binary unconstrained optimization
(QUBO) problem [61], which corresponds to a 2−local Hamiltonian, to the objective values of our
problem for the given credit risk data set for n = { 5, 10, 15, 20 } qubits.

First, an exhaustive search is employed to find the objective values Strain (xm) for all possible
feature combinations. Then, we define a linear program with n2 variables and 2n constraints and
use the `2 norm to fit a QUBO with CPLEX [62] for n = { 5, 10, 15, 20 } qubits. The mean squared
error for the various n is at most of the order 10−7. Thus, we conclude that the individual scores
are well approximated for all tested model sizes. This is visualized in Fig. 6 where we show the
scores from the exhaustive search as well as the scores corresponding to the fitted QUBO model.

We would like to point out that these results solely present an empirical indication that the
specific feature selection problem investigated in Sec. 4 may be effectively trained for larger system
sizes. However, it remains an open question for future research to generally understand what
training data leads to local or global observables.
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Figure 6 The figure shows the sorted scores Strain (xm) found using exhaustive search on the VarQFS model as
well as the respective scores from the fitted QUBO model. The x axis corresponds to the different feature

subsets represented by indices.
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