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Full waveform inversion (FWI) is a non-linear optimization problem based on

full-wavefield modeling to obtain quantitative information of subsurface

structure by minimizing the difference between the observed seismic data

and the predicted wavefield. The limited-memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) method is an effective quasi-Newtonmethod in FWI due to its

high inversion efficiency with low calculation and storage requirements. Like

other conventional quasi-Newton methods, the approximation of the Hessian

matrix in the L-BFGS method satisfies the quasi-Newton equation, which only

exploits the gradient and model information while the available objective

function value is neglected. The modified quasi-Newton equation considers

the gradient, model, and objective function information together. Theoretical

analysis reveals that the modified quasi-Newton equation is superior to the

conventional quasi-Newton equation as it achieves higher-order accuracy in

approximating the Hessian matrix. The modified L-BFGS method can be

obtained by using the modified quasi-Newton equation to modify the

L-BFGS method. This modification improves the accuracy of the Hessian

matrix approximation with little increase of calculation for each iteration. We

incorporate the modified L-BFGSmethod into FWI, numerical results show that

the modified L-BFGS method has a higher convergence rate, achieves better

inversion results, and has stronger anti-noise ability than the conventional

L-BFGS method.

KEYWORDS

full waveform inversion, hessian matrix, quasi-Newton equation, modified quasi-
Newton equation, L-BFGS, modified L-BFGS

1 Introduction

Full waveform inversion (FWI) is a data-fitting method to extract quantitative

information of subsurface structures by minimizing the residual between the observed

seismic data and the predicted wavefield (Virieux and Operto, 2009). It is an important

method to prospecting for oil- and gas-reservoirs. Frequency-domain FWI proposed by

Pratt and Worthington (1990) uses an implicit finite difference scheme which is
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convenient for multi-shots computation. By successively

iterating from low frequencies to high frequencies, FWI can

more easily converge to the global minimum (Sirgue and Pratt,

2004). Time-domain FWI uses an explicit finite difference

scheme and requires less memory in wavefield modeling

(Tarantola, 1984). Bunks et al. (1995) proposed multiscale

time-domain FWI to make the inversion stably converge to

the global minimum through sequential iterations form low to

high frequency scales.

Newton methods are effective methods for optimization, but

they are not suitable for large-scale inverse problems due to the

high computational cost of the Hessian matrix (Pratt et al., 1998).

Instead of computing the Hessian matrix directly, the truncated

Newton method computes the Newton descent direction by

solving the corresponding linear system through an iterative

procedure such as the conjugate gradient method (Metivier et al.,

2013). Quasi-Newton methods construct an approximate inverse

Hessian matrix by updating it over successive iterations (Nocedal

and Wright, 1999). Many efforts have been made to improve the

performance of quasi-Newton methods. Ma et al., 2010, Ma and

Hale, 2011) used a projected Hessian matrix to reduce storage

and computational costs. Wang et al. (2013) proposed a hybrid

iterative optimization scheme, which can dynamically switch

between inversion methods. Liu et al., 2015) applied a

memoryless quasi-Newton method which can achieve

acceptable result with low storage to FWI. Conventional

quasi-Newton methods only exploit the gradient and model

information while the available information of the objective

function value is ignored. Attempts have been made to

consider the objective function information in optimization

(Yuan, 1991; Yuan and Byrd, 1995) and modified quasi-

Newton methods have been proposed (Wei et al., 2004, 2006).

The modified quasi-Newton equation exploits the gradient,

model, and objective function value information together, and

it achieves higher-order accuracy in approximating the Hessian

matrix with little increase in computational costs for each

iteration (Zhang et al., 1999; Zhang and Xu, 2001). Liu and

Liu, (2013) introduced the modified quasi-Newton equation

(Zhang and Xu, 2001) into FWI, tested the performance of

the modified Broyden-Fletcher-Goldfarb-Shanno (mBFGS)

method on a simple model, and showed the superiority of the

modified BFGS method over the conventional BFGS method.

However, the storage of the full dense approximate inverse

Hessian matrix is still a challenge for large-scale problems. The

limited-memory BFGS (L-BFGS) method is an adaptation of the

BFGS method and a limited-memory quasi-Newton method

widely-used in FWI. It reduces storage by constructing the

approximate inverse Hessian matrix with several vector pairs

of recent iterations instead of saving the entire matrix (Liu and

FIGURE 1
(A)True model and (B)initial model for the Marmousi model
test.

FIGURE 2
The results of the Marmousi model test. (A) steepest descent
method, (B) L-BFGS method, (C) mL-BFGS method.
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Nocedal, 1989). There are many different types of L-BFGS

methods developed for FWI. Fabien-Ouellet et al. (2017)

proposed a stochastic L-BFGS method that supports the

stochastic random subsampling of sources. Dai et al. (2017)

implemented a L-BFGS-based orthant-wise limited memory

quasi-Newton method in l1-regularized FWI with prior model

information. Liu et al. (2022) advanced L-BFGS and Hessian

related pre-conditioners for uncertainty quantification in FWI

and proposed a BFGS-RSVD workflow to achieve a faster

Hessian retrieval. By applying the modification strategy to the

L-BFGS method, one can obtain the modified L-BFGS (mL-

BFGS) method, which considers the objective function

information and more accurately approximates the inverse

Hessian matrix than the conventional L-BFGS method (Yuan

et al., 2010).

In this paper, we first review the derivation of the modified

quasi-Newton equation, then introduce the modified L-BFGS

method into FWI and give the pseudo code of the algorithm.

Next, we compare the mL-BFGS method with the L-BFGS and

steepest descent method through time-domain FWI on a

regenerated Marmousi model. Then we compare the mL-

BFGS method with the L-BFGS method through frequency-

domain FWI on a regenerated Overthrust model with noise-

free and noise-added synthetic seismic data. Numerical results

show that the mL-BFGS method only increases a small

calculation amount in each iteration, converges faster, and

achieves higher inversion accuracy with less computational

resources. Moreover, the mL-BFGS method has stronger anti-

noise ability than the L-BFGS method.

2 Theory

2.1 Quasi-Newton equation and modified
quasi-Newton equation

Full waveform inversion is a non-linear optimization

problem to minimize the objective function (Pratt et al., 1998)

F v( ) � 1
2
δdTδd*, (1)

where v represents the model parameters, superscripts T and *

represent conjugate and transpose, respectively. δd is the misfit

between the observed seismic data and the calculated seismic

data. The objective function F(v) is the least-squares norm

of δd.

FIGURE 3
The vertical traces of the Marmousi model test at (A) 300 m and (B) 750 m. Solid black line: the true velocity; dashed black line: the initial
velocity; blue line: steepest descent result; green line: L-BFGS result; red line: mL-BFGS result.
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One of the most important methods to solve this

optimization problem is quasi-Newton method. It avoids the

expensive calculation of the exact Hessian matrix by using the

approximation of the Hessian matrix instead. The update

formula of the quasi-Newton method is

vk+1 � vk − αkHkgk, (2)

where subscript k indicates the iteration number; α denotes the

step length; g represents the gradient of the objective function;

andH is an approximation of the inverse Hessian matrix that can

be obtained from the quasi-Newton equation.

Then, we derive the quasi-Newton equation by second order

Taylor expansion of the objective function F(v) at vk

F vk( ) � F vk+1( ) − gTk+1sk +
1
2
sTkGk+1sk +Ο sk‖ ‖3( ), (3)

where sk � vk+1 − vk, and G denotes the second-order derivative

matrix of the objective function, i.e., G is the Hessian matrix. We

differentiate Eq. 3 with respect to the model parameter, and pre-

multiply by sTk to obtain

sTkGk+1sk � sTk yk +Ο sk‖ ‖3( ), (4)

where yk � gk+1 − gk. Using B to represent the approximation of

Hessian matrix G, we can rewrite Eq. 4 as

Bk+1sk � yk. (5)

This is the quasi-Newton equation. The difference between

the exact Hessian matrix and the approximate Hessian matrix B

can be expressed by the following formula:

sTkBk+1sk � sTkGk+1sk +Ο sk‖ ‖3( ), (6)

As shown in Eq. 5, the quasi-Newton equation only exploits

the gradient and model information, while the available objective

function value information is neglected. In order to achieve

higher-order accuracy in Hessian matrix approximation,

Zhang et al. (1999) introduced the function value information

to the quasi-Newton equation and proposed a modified quasi-

Newton equation.

According to the example of Zhang et al. (1999), we derive

the modified quasi-Newton equation through third-order Taylor

expansion of the objective function F(v) at vk

F vk( ) � F vk+1( ) − gTk+1sk +
1
2
sTkGk+1sk − 1

6
sTk Tk+1sk( )sk

+ Ο sk‖ ‖4( ), (7)

FIGURE 4
The convergence curves of the Marmousi model test using (A) 0–10 Hz, (B) 0–15 Hz, and (C) unfiltered data. Black line: steepest descent
method; blue line: L-BFGS method; red line: mL-BFGS method.
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where T denotes the third order derivative matrix of the objective

function. We differentiate Eq. 7 with respect to the model

parameter, and pre-multiply sTk to obtain

sTkgk � sTkgk+1 − sTkGk+1sk + 1
2
sTk Tk+1sk( )sk +Ο sk‖ ‖4( ), (8)

Substitute Eq. 8 into Eq. 7 and eliminate Tk+1 to obtain

sTkGk+1sk � sTk yk + 6 F vk( ) − F vk+1( )[ ] + 3 gk + gk+1( )Tsk
+ Ο sk‖ ‖4( ), (9)

We use B̂ to represent the approximation of Hessian matrix G,

and rewrite Eq. 9 to obtain the modified quasi-Newton equation:

B̂k+1sk � ŷk, (10)
where

ŷk � yk +
θk
sTk z

z, sTk z ≠ 0( ), (11)

θk � 6 F vk( ) − F vk+1( )[ ] + 3 gk + gk+1( )Tsk. (12)

In this paper, the vector z in Eq. 11 is chosen to be sk to ensure

that the denominator is not zero. As shown in Eqs. 10–12, the

modified quasi-Newton equation considers the information of

gradient, model, and objective function at the same time, while

the calculation of vector addition andmultiplication only increases

a little. The difference between the exact Hessian matrix and the

approximate Hessian matrix B̂ can be expressed as:

sTk B̂k+1sk � sTkGk+1sk +Ο sk‖ ‖4( ), (13)

Comparing Eq. 6, 13, we find that the modified quasi-

Newton equation is superior to the conventional quasi-

Newton equation as it achieves higher-order accuracy in

approximating the Hessian matrix.

2.2 Modified L-BFGS method

For large optimization problems with many variables, the

approximate inverse Hessian matrix is usually dense, so the

calculation and storage requirements of quasi-Newton

methods like the BFGS method are excessive. The L-BFGS

method is widely-used to solve large-scale problems while

requiring less storage. Instead of storing the entire matrix, the

L-BFGS method only stores a certain number of vector pairs

sk, yk{ }, and implicitly forms the inverse Hessian matrix

(Nocedal and Wright, 1999).

The update formula of the modified BFGS (mBFGS)

method is

HMBFGS
k+1 � VT

kH
MBFGS
k Vk + ρksks

T
k , (14)

where

ρk �
1

ŷTk sk
,Vk � I − ρkŷks

T
k , (15)

I denotes the identity matrix, and ρk equals
1

ŷTk sk
. Yuan et al.

(2010) gave the modified L-BFGS method, which only stores the

information of several recent iterations:

HML−BFGS
k � VT

k−1...V
T
k−m( )HML−BFGS 0( )

k Vk−m...Vk−1( )
+ρk−m VT

k−1...V
T
k−m+1( )sk−msTk−m Vk−m+1...Vk−1( )

+ρk−m+1 VT
k−1...V

T
k−m+2( )sk−m+1sTk−m+1 Vk−m+2...Vk−1( )

+... + ρk−1sk−1s
T
k−1,

(16)

FIGURE 5
(A) True model and (B) initial model for the Overthrust model test.
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In Eq. 16, the recent m vector pairs sk, ŷk{ } are used, and the

information of model, gradient, and objective function are

considered together. The initial inverse Hessian matrix

HML−BFGS(0) is constructed by using the pseudo-Hessian

matrix (Shin et al., 2001).

Nowwe present the pseudo-code for the mL-BFGS algorithm

in FWI as follows:

q � gk;

for i � k − 1, k − 2,..., k −m

ai � ρis
T
i q ; (ρi � 1

ŷT
i si

)
q � q − aiŷi;

end

r � HMBFGS(0)
k q ;

for i � k −m, k −m + 1,..., k − 1

β � ρiŷ
T
i r ;

r � r + si(ai − β) ;
end

stop with result r � HMBFGS
k gk .

Algorithm 1

Algorithm 2

1. Get initial model v0; integer m>0, k=0;
2. k=k+1; compute sk, yk, θk;

Compute ŷk � yk + θk
sT
k
z z;

3. if k>m
Discard the vector pair sk−m, ŷk−m{ } from storage;

Save sk, ŷk{ };
4. Give the initial approximate inverseHessianmatrixHMBFGS(0)

k ;

5. Compute the update direction with Algorithm 1;

Get the step length through line search and compute the

updated model:

vk+1 � vk − αkr;

6. if termination condition satisfied

stop with vk+1;

else

go to step 2.

3 Numerical examples

3.1 Time-domain FWI on marmousi model

In this section, we incorporate the mL-BFGS method into

time-domain FWI, then compare the results with the

conventional L-BFGS method and steepest descent method.

A modified Marmousi model is generated by resampling a

representative region of the Marmousi model and is used as

the true velocity model, as shown in Figure 1A. The depth and

length of the model are 558 and 1,044 m, respectively, and the

grid interval is 6 m. There are 175 receivers laid on the surface

with a spatial interval of 6 m, and 25 shots located at a depth of

6 m with a spatial interval of 30 m. The initial model is a

laterally homogeneous model with velocity linearly increasing

from 1,500 m/s at the surface to 4,300 m/s at the bottom

(Figure 1B).

A Ricker wavelet with a main frequency of 30 Hz is used.

We consider cutoff frequencies of 10 and 15 Hz and perform

low-pass filtering on the Ricker wavelet. By sequentially using

the 0–10 and 0–15 Hz low-pass filtered Ricker wavelet and

unfiltered Ricker wavelet as the source, we perform multiscale

FWI from low to high frequency (Bunks et al., 1995) and set the

maximum iteration numbers of the three different scales to 12,

14, and 16, respectively. The termination condition is

|F(vk+1)−F(vk)F(vk) |≤ 0.005.
The multiscale FWI results of the steepest descent,

L-BFGS and mL-BFGS methods are shown in Figure 2. The

velocity structures at the deep part of the model are not well

recovered in the result of steepest descent method (Figure 2A),

while the inversion using the L-BFGS (Figure 2B) and mL-

BFGS (Figure 2C) method rebuilds this part better. To make

further comparison, two velocity traces at x=300 m

(Figure 3A) and x=750 m (Figure 3B) are extracted from

the reconstructed models. We can find that the velocity

traces obtained by the mL-BFGS method are more

consistent with the true velocity traces than the velocity

traces obtained using L-BFGS method.

Figure 4 shows the comparison of the convergence curves of

the steepest descent, L-BFGS and mL-BFGS methods in the three

scales. It can be seen that the convergence rate of steepest descent

method is slower than the L-BFGS and mL-BFGS methods.

3.2 Frequency-domain FWI on overthrust
model

3.2.1 Nosie-free data
In this section, we incorporate the mL-BFGS method into the

frequency-domain FWI, and compare the results with the

conventional L-BFGS method. A modified Overthrust model

is generated by resampling a representative region of the

Overthrust model and is used as the true velocity model, as

shown in Figure 5A. The depth and length of the model are

1.875 and 7.5 km, respectively, and the grid interval is 25 m.

There are 75 receivers laid on the surface with a spatial interval of

100 m, and 74 shots are located at a depth of 25 m with a spatial

interval of 100 m. The initial model is a laterally homogeneous

model, where the velocity increases linearly from 2,400 m/s at the

surface to 5,296 m/s at the bottom (Figure 5B).
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We generate the synthetic data by an average-derivative

optimal frequency-domain modeling algorithm (Chen, 2012).

A Ricker wavelet with a central frequency of 10 Hz is used. We

select seven frequencies in the inversion process: 2.7, 3.7, 4.9,

7.1, 10.0, 14.2, and 20.0 Hz. The inversion iterations are

performed from low frequency to high frequency in

sequence, and jump into the next frequency when

20 iterations are completed or the termination condition

|F(vk+1)−F(vk)F(vk) |≤ 0.005 is satisfied.

Figure 6A shows the frequency-domain FWI result using the

L-BFGS method. The velocity structures of the left deep part of

the model are not well recovered, while the inversion using the

mL-BFGS method rebuilds this part better (Figure 6C). To make

further comparison, two velocity traces at x=1.475 km and

x=5.725 km are extracted from the reconstructed models using

the L-BFGS (Figure 6B) and mL-BFGS (Figure 6D) methods,

respectively. It can be found that the velocity traces obtained by

the mL-BFGS method are more consistent with the true velocity

traces than the velocity traces obtained using L-BFGS at the

depth of 0.7 km–1.875 km.

Ben-Hadj-Ali et al. (2011) proposed a factor to assess the

error of inversion by quantitatively evaluate the differences

between the true model and the reconstructed model using

the following formula

err � vinv − vtrue‖ ‖2
vtrue‖ ‖2( )

1/2

× 100%, (17)

where vinv and vtrue denote the recovered model and true model,

respectively. According to Eq. 17, the error factor of rebuilt

models using L-BFGS and mL-BFGS method is 10.63% and

7.56%, respectively (Table 1), which illustrates that the

FIGURE 6
The results of frequency-domain FWI with noise-free data. (A) Reconstructed model using L-BFGS method. (B) Two vertical traces extracted
from model (A) at x=1.475 and 5.725 km. (C) Reconstructed model using mL-BFGS method. (D) Two vertical traces extracted from model (C) at
x=1.475 and 5.725 km. Solid line: the true velocity; dashed line: the initial velocity; dotted line: the reconstructed velocity.

TABLE 1 Comparison between L-BFGS and mL-BFGS in FWI with noise-free data.

Methods Consuming time (s) Iteration number Average consuming time
each iteration (s)

Error (%)

L-BFGS 5,804.42 114 50.92 10.63

mL-BFGS 2,802.65 55 50.96 7.56
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inversion result using mL-BFGS method is less different from the

true model and more accurate.

The convergence curves of the L-BFGS and mL-BFGS

methods are shown in Figures 7A,B, respectively. The

vertical axis denotes the value of the misfit function, and

the horizontal axis denotes the 7 frequency numbers. The total

iteration number of L-BFGS is 114, while the total iteration

number of mL-BFGS is only 55. As shown in Table 1, the

average calculation time for each iteration of the two methods

is almost the same, but the mL-BFGS method converges faster

FIGURE 7
The convergence curves of (A) L-BFGS method and (B) mL-BFGS method of the Overthrust model test with noise-free data.

FIGURE 8
(A) The original seismogram. (B) The seismogram contaminated by Gaussian noise.
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and requires fewer iterations. Therefore, the mL-BFGS

method obtains better inversion result than the L-BFGS

method with less calculation time.

3.2.2 Noise-added data
Actual seismic data are always contaminated by noise.

Therefore, we introduce noise into the synthetic seismic data,

and study the performance of the mL-BFGS method with noisy

data in this section. We construct the noisy synthetic data

(Figure 8B) by introducing Gaussian noise to the original

synthetic data (Figure 8A) using the suaddnoise procedure of

Seismic Unix (Cohen and Stockwell, 2008), with the S/N

parameter equal to 40. Except for the noise-added seismic

data, there are no differences between the experiment settings

of the numerical example in this section and the previous

numerical example with noise-free data.

As illustrated in Figure 9A, the model reconstructed using the

L-BFGS method is blurred and severely contaminated by artefacts.

This phenomenon is reflected in the extracted velocity traces

(Figure 9B), which show that the recovered velocity deviates

from the true velocity significantly. Comparing with the model

recovered using the L-BFGSmethod, themodel reconstructed by the

mL-BFGSmethod (Figure 9C) is less contaminated by artefacts, and

the model layers are more continuous. As shown in Figure 9D,

the extracted velocity traces are in better accordance with the

true velocity than those in Figure 9B. According to Eq. 17, the

error factor of rebuilt models using L-BFGS and mL-BFGS

method with noise-added data is 14.38% and 10.58%,

respectively (Table 2).

The convergence curves of the L-BFGS and mL-BFGS

methods with noise-added data are shown in Figures 10A,B,

respectively. The total number of iterations of the mL-BFGS

FIGURE 9
The results of frequency-domain FWI with noise-added data. (A) Reconstructed model using the L-BFGS method. (B) Two vertical traces
extracted from model (A) at x=1.475 and 5.725 km. (C) Reconstructed model using the mL-BFGS method. (D) Two vertical traces extracted from
model (C) at x=1.475 and 5.725 km. Solid line: the true velocity; dashed line: the initial velocity; dotted line: the reconstructed velocity.

TABLE 2 Comparison between L-BFGS and mL-BFGS in FWI with noise-added data.

Methods Consuming time (s) Iteration number Average consuming time
each iteration (s)

Error (%)

L-BFGS 4,224.22 83 50.89 14.38

mL-BFGS 1732.19 34 50.95 10.58
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method is 34, which is markedly less than the total number of

iterations, 83, of the L-BFGS method. It can be seen from

Table 2 that with similar average calculation time for each

iteration, the mL-BFGS method consumed less computing

time in total because it converges faster and takes fewer

iterations than the L-BFGS method, and the error factor

for the reconstructed model with the mL-BFGS method is

smaller than that with L-BFGS.

4 Conclusion and perspectives

We incorporated the modified L-BFGS method into full

waveform inversion. The modified L-BFGS method considers

the gradient, model, and function information together, and

achieves higher-order accuracy for approximating the inverse

Hessian matrix than the conventional L-BFGS method, while

calculation time does not increase significantly for each

iteration. Through numerical experiments incorporating

modified L-BFGS into time-domain FWI on a regenerated

Marmousi model and frequency-domain FWI on a

regenerated Overthrust model with noise-free and noise-

added synthetic seismic data, the modified L-BFGS method

shows some advantages over the L-BFGS method including:

higher convergence speed, less computation time, better

inversion results, and stronger anti-noise ability. Therefore,

the modified L-BFGS is an effective method in full waveform

inversion.

In this paper, we only considered conventional FWI with simple

L2-norm objective function, while there are other types of FWI

based on different misfit functions, like the envelope inversion,

traveltime inversion, and FWI using the deconvolution-based

objective function. It is theoretically feasible to incorporate the

modified L-BFGS method into these inversion methods with

other types of misfit function.
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