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To date, numerous nucleotide, amino acid, and codon substitution models have
been developed to estimate the evolutionary history of any sequence/organism in a
more comprehensive way. Out of these three, the codon substitution model is the
most powerful. These models have been utilized extensively to detect selective
pressure on a protein, codon usage bias, ancestral reconstruction and phylogenetic
reconstruction. However, due to more computational demanding, in comparison to
nucleotide and amino acid substitution models, only a few studies have employed
the codon substitution model to understand the heterogeneity of the evolutionary
process in a genome-scale analysis. Hence, there is always a question of how to
develop more robust but less computationally demanding codon substitution
models to get more accurate results. In this review article, the authors attempted
to understand the basis of the development of different types of codon-substitution
models and how this information can be utilized to develop more robust but less
computationally demanding codon substitution models. The codon substitution
model enables to detect selection regime under which any gene or gene region is
evolving, codon usage bias in any organism or tissue-specific region and
phylogenetic relationship between different lineages more accurately than
nucleotide and amino acid substitution models. Thus, in the near future, these
codon models can be utilized in the field of conservation, breeding and medicine.
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Introduction

The continuous growth of DNA and protein data has provided an opportunity to infer their
function and their evolutionary history of any sequence/organisms in a more comprehensive
way (Anisimova and Liberles, 2007; Miyazawa, 2011a; Dufresne and Jeffery, 2011; Gupta and
Vadde, 2019a; Gupta et al., 2019; Gouda et al., 2020; Gupta et al., 2021a; Gupta et al., 2021b;
Gupta et al., 2021c; Gupta et al., 2021d; Gupta et al., 2021e; Chu et al., 2021). Population genetics
and phylogenetics are two of the most important subfields for inferring the evolutionary history
of any sequences/organisms (Haubold, 2014). While phylogeny approaches infer the evolution
of species and higher taxonomic orders, population genetics approaches are generally used for
understanding the evolution of the groups below the species level (Haubold, 2014). It is
pertinent to note that there is only one diagram, a phylogeny, that appears in Darwin’s seminal
work, “The Origin of Species.” This, in turn, indicates that phylogenies are the core metaphor of
evolutionary biology, and efforts to create them is as old as the evolutionary science field itself.
Phylogenies relation are inferred by comparing homologous characteristics that differ
(Haubold, 2014). A phylogenetic tree, often known as an evolutionary tree, is a
diagrammatic depiction of the evolutionary relationship between different species (Gupta
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et al., 2021c). All phylogenetic tree analysis is based on certain
implicit/explicit hypothetical models that make the complex
biological process into simpler form (Gatto et al., 2007; Zaheri
et al., 2014). However, the validity of certain models could be
plausibly challenged while analyzing real data. For instance, the
JC69 model hypothesizes that the rate of nucleotide substitution is
the same for all pairs of the four nucleotides, namely, guanine (G),
cytosine (C), adenine (A), and thymine (T) (Jukes and Cantor, 1969).
However, in reality, there are numerous mutations, and some
mutations are less tolerated in comparison to others (Liò and
Goldman, 1998; Choudhuri, 2014). Nevertheless, all models share a
common assumption, i.e., the Markov property (Liò and Goldman,
1998). In probability theory, any stochastic process has the Markov
property if the probability distribution of future states of the process is
dependent only on the present state (Gudivada et al., 2015). Markov
property has been widely utilized in population genetics research to
understand the change in gene frequencies in small populations
affected via genetic drift (Watterson, 1996).

Based on sequence type, all these substitution models can be
broadly classified as nucleotides, amino acid, and codon substitution
models (Arenas, 2015b). The parameter space dimension for these
models varies from 4 × 4 nucleotide substitution model to 20 ×
20 amino acid substitution models and, finally, to 61 × 61 codon
substitution models (where stop codons are generally omitted).
Because of only four states and small physiochemical differences
between base properties, nucleotide substitution models are easily
modeled via Markov models (Yang, 2006). However, as natural
selection functions mostly at the protein level, estimating
evolutionary history based on nucleotide substitution models can
sometimes be misleading (Shapiro et al., 2006; Seo and Kishino,
2008). Both amino acid or codon substitution models consider
protein-coding sequences and thus, an evolutionary distance
estimated via them is more accurate than the evolutionary distance
estimated through nucleotide substitution models (Anisimova and
Kosiol, 2009). Nevertheless, due to the complex physiochemical
relationship between amino acids, it is often difficult to predict the
substitution rate between amino acids in a small set of the original
dataset. Hence, the substitution rate in amino acid substitution models
is generally estimated from pre-defined empirical data sets (Anisimova
and Kosiol, 2009), which in turn may predict evolutionary history less
accurately.

The codon substitution models are especially interesting for
protein-coding genes because they consider both mutational
propensities at the nucleotide level and selective pressure on amino
acid substitutes as well as genetic code for estimating evolutionary
distance (Sullivan and Joyce, 2005). Additionally, amino acid
substitution models can estimate only purifying selection acting on
each site of sequence, whereas codon substitution models can estimate
both purifying as well as positive Darwinian selection (Doron-
Faigenboim and Pupko, 2007). Even for highly divergent species,
phylogenetic trees constructed via codon models were reported to be
more accurate than the phylogenetic tree constructed through the
amino acid substitution model (Zaheri et al., 2014). Though these
models were neglected initially, tracing phylogenetic relationships
between populations and traits/diseases via codon substitution
models is increasing nowadays in evolutionary medicine research
(Grunspan et al., 2017). Thus, the codon substitution model is
more powerful than nucleotide (Kimura, 1980; Hasegawa et al.,
1985; Tamura and Nei, 1993) and amino acid (Dayhoff et al., 1978;

Jones et al., 1992; Adachi and Hasegawa, 1996) substitution models.
However, as codon substitution models are computationally more
demanding, their usage is minimal. Hence, it needs to develop more
robust but less computationally demanding codon substitutionmodels
for reconstructing evolutionary history from sequence data. In this
review article, authors made an attempt to understand the basis of the
development of different types of codon-substitution models and how
this information can be utilized to develop more robust and less
computationally demanding codon substitution models for more
accurate phylogeny as well as understand the evolutionary history
of any sequences or organisms. In the near future, these models can be
applied in the field of conservation, breeding and medicine.

Basis of development of substitution
models

Evolution is generally considered a stochastic process by which the
DNA segment can be either inserted or deleted, or duplicated, or
recombination may take place (Cannarozzi and Schneider, 2012). The
most frequent events during evolution are point mutation, which may
have either no effect or a small effect or change protein function
completely. If this point mutation becomes fixed, either due to genetic
drift/positive selection, it is called substitution (Cannarozzi and
Schneider, 2012). The probability by which a new base gets fixed in
a population is dependent on the accompanying modification in the
species’ fitness (Cannarozzi and Schneider, 2012). To date, numerous
hypothetical substitution models have been proposed to understand
the mechanism associated with substitutions in either nucleotide or
amino acid sequences (Cannarozzi and Schneider, 2012). Though
some of these models are more complex than others, all substitution
models share a common assumption, i.e., the Markov property (Liò
and Goldman, 1998). Utilizing the Markov property, these
substitution models (Markov model) estimate the probabilities for
possible temporal or sequential DNA or protein sequences in any
individual or species. They also enable us to detect a preference of any
sequences towards the GC or AT content (Jukes and Cantor, 1969).

Each Markov model has some parameters, which, in evolutionary
biology, either represent the substitution rate or from which the
substitution rate can be derived (Cannarozzi and Schneider, 2012).
These parameters and hypotheses related to these parameters are often
estimated via Maximum Likelihood (ML) approaches (Yang, 2006).
ML detects optimum parameters associated with the occurrence of
data (for instance, a group of nucleotide sequences) under a given
phylogenetic tree and specific evolutionary model (Fisher, 1925;
Edwards, 1972). DART (DNA, Amino acid, and RNA Tests)
(Holmes and Rubin, 2002) and PAML (“Phylogenetic Analysis by
Maximum Likelihood”) (Yang, 2007) are two of the most widely used
software for estimating phylogenetic ML. Apart from the phylogenetic
tree, the ML value can also be utilized for answering several other
biological questions. For instance, the identification of the most
extreme transition/transversion mutational biases in a set of
aligned sequences and sites that are evolving under the greatest
selective constraints (Fisher, 1925; Edwards, 1972; Felsenstein and
Felenstein, 2004).

These days, codon substitution models are also developed in a
Bayesian framework. Apart from the likelihood function, Bayesian
inference also describes a prior likelihood distribution on the model
parameter (Benner, 2012). Thus, the main objective of the Bayesian
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inference is to compute the posterior distribution (which is
proportional to the likelihood multiplied by the prior), acquire
random samples from this posterior density by means of Monte
Carlo (MC) methods, and estimate mean and other numerous
quantities on the basis of the sample obtained (Benner, 2012).
Theoretically, any ML model can be converted into a Bayesian
model just by adding a prior distribution. The MC methods
employed in Bayesian inference are often very powerful in
exploring entirely novel codon substitution models, which is not
possible by using classical numerical optimization approaches. For
instance, the likelihood function, which is to be numerically assessed
point-wise, as well as optimized with regard to its parameters, is itself a
complicated integral over random variables (Benner, 2012). This
integral is present analytically available only for the simplest
models. On the contrary, when complicated models are considered,
analyticity gets depleted, and the classical numerical optimization
approaches employed in recent ML fail. In contrast, MC sampling
approaches permit numerous algorithmic tricks, for instance, data
augmentation as well as parameter expansion, which in turn improvise
the requirement for obvious analytical integration over incomplete
observations or over auxiliary variables. Nevertheless, MC methods
are very demanding in the context of both code development as well as
computational cost (Benner, 2012). Thus, the number of Bayesian
MCMC methods developed to date is very few and still, we have to
wait for the joint availability of huge amounts of inter-specific
sequence data as well as more powerful computational facilities for
understanding their potential in a more comprehensive way (Benner,
2012). Thus, the Markov property or Bayesian framework is the basis
for the development of almost all substitution models developed to-
date.

Substitution models

Based on sequence type, substitution models can be broadly
classified as (a) nucleotide, (b) amino acid, and (c) codon
substitution models.

Nucleotide substitution model

JC69 model is the simplest model of nucleotide substitution (Liò
and Goldman, 1998). It is based on two simple assumptions. The first
assumption is that each residue of DNA is equally likely to change to
any of the other three nucleotide bases. The second assumption is that
all four bases have the same frequency. Hence, the rate of transition is
equal to the rate of transversions (Pevsner, 2015). Because of its simple
assumptions, the JC69 model is unlikely to be applicable in most of the
data sets and works reasonably only in closely related sequences.
Though it can be utilized in distantly related sequences, the correction
made can sometimes be too significant to be reliable. As this model
involves a single parameter, α, for both the rate of substitution for each
nucleotide (3 α per unit time) and the rate of substitution in each of the
three possible directions of change (α), it is called a one-parameter
model. Kimura 2 Parameter (K80) is an extension of the JC69 model
(Jukes and Cantor, 1969). As in real data, transversions generally occur
at lower rates than transitions; (Kimura, 1980) proposed a model,
which assumes that the transitions rate is different from the

transversions rate. However, like the JC69 model, Kimura also
assumes that all four bases have the same frequency.

Later several more robust nucleotide substitution models, like, F81
(Felsenstein, 1981), HKY85 (Hasegawa et al., 1985) and TN93
(Tamura and Nei, 1993) models, were developed. The F81 model
was developed by American scientist (Felsenstein, 1981). Unlike Jukes
& Cantor or Kimura-2 parameters, the F81 model assumes that the
base frequency of all bases is different. However, like Jukes & Cantor,
the F81 model assumes that the base substitution occurs with equal
probability (Felsenstein, 1981). Hasegawa-Kishino-Yano 85 (HKY85)
model assumes unequal base frequencies as well as different
substitution rates between transversions and transitions (Hasegawa
et al., 1985). Tamura and Nei’s 1993 (TN93) model assumes unequal
base frequencies, but all transversions are assumed to take place at an
equal rate, but the transition rate between purine differs from that of
pyrimidine (Tamura and Nei, 1993).

For the first time in 1986, Simon Tavaré described a general
independent, finite-sites, neutral, and time-reversible model called the
general time-reversible (GTR) model or the general reversible (REV)
model, which assumes different substitution rates for each pair of
nucleotide and unequal base frequencies (Tavaré, 1986). Additionally,
the rate of variation across sites (+G) (Yang, 1994a) and/or a
proportion of invariable sites (+I) (Shoemaker and Fitch, 1989) can
also be included in any model. Recently several other DNA
substitution models comprising of non-stationary (nucleotide
composition can change over time) and non-reversible
(asymmetric) matrices (Boussau and Gouy, 2006; Jayaswal et al.,
2011) or even involving neighbor interactions (Lunter and Hein,
2004) were developed for inferring phylogenetic trees more accurately.

Amino acid substitution model

The two commonly used amino acid substitution matrices are the
PAM matrices (Dayhoff et al., 1978) and the Blocks amino acid
substitution matrices (BLOSUM) matrices. Margaret Dayhoff and
the team aligned closely related protein sequences of seventy-one
groups (Dayhoff et al., 1978). As all the sequences were closely related
homologs, mutation detected in them were less likely to change the
function of the protein, and hence the matrix designed was named
PAM, which is an abbreviated form of Percent Accepted Mutations,
where “accepted” designate the mutation favored via natural selection
in the sequence (Xiong, 2006). The PAM matrices were generated on
the basis of the evolutionary divergence amongst sequences of the
same group. For instance, one PAM unit is described as 1% of amino
acids have beenmodified (Xiong, 2006) and PAM60 is generated when
the PAM1 matrix is multiplied by itself sixty times. Thus, PAM with a
lower serial number is suitable for aligning closely related sequences,
and PAM with a higher serial number is suitable for divergent
sequences (Xiong, 2006). Later, Jones and the team utilized PAM
matrices and developed a more advanced replacement matrix, namely
the JTT model based on a large sequences dataset. After constructing a
phylogenetic tree of each protein family, this method identified
sequence pairs that are >85% identical and nearest-neighbors.
Further, it also calculated the evolutionary distance among them.
This pair of sequences were subsequently removed for avoiding
recounting modifications on any given branch of a phylogeny.
Likewise, this complete process was repeated for all such pairs of
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sequences in all protein families until the JTT matrix was finally
developed (Jones et al., 1992).

BLOSUM is constructed on the basis of >2,000 conserved amino
acid arrangements representing 500 groups of diverse protein
sequences (Henikoff and Henikoff, 1992). Unlike PAM matrices,
the BLOSUM matrices indicate the actual identity percentage
amongst sequences selected for constructing the matrices (Henikoff
and Henikoff, 1992). For instance, BLOSUM52 represents that
sequences nominated for generating matrix share an average
identity value of 52%. Hence, a higher BLOSUM number
represents less divergent sequences. As PAM matrices, except
PAM1, are generated from an evolutionary model and BLOSUM
matrices are generated from direct observations, PAM matrices have
more evolutionary meaning as compared to the BLOSUM matrices.
Hence, PAM matrices are generally utilized for reconstructing
phylogenetic trees. Nevertheless, due to the mathematical
extrapolation technique utilized, the PAM matrices are less realistic
for divergent sequences. The BLOSUM matrices are generated from
local sequence alignments of conserved sequence blocks, while the
PAM1matrix is generated based on the global alignment of full-length
sequences comprising both variable and conserved regions. Hence,
BLOSUM matrices are more advantageous during database searching
as well as finding conserved domains within proteins (Henikoff and
Henikoff, 1992).

Later, (Adachi and Hasegawa, 1996), Yanga & team (Yang et al.,
1998), and Adachi & team (Adachi et al., 2000) utilized the Maximum
Likelihood method for developing vertebrate mitochondrial,
mammalian mitochondrial (mtMAM), and chloroplast sequences
(cpREV) specific amino acid replacement models, respectively. As
Adachi & team, Yanga & team, and Adachi & team utilized only 20,
23 and 10 sequences, respectively, for constructing an amino acid
replacement model, the accuracy of their matrices is always under
question (Whelan and Goldman, 2001). Later Whelan and Goldman
combined the best attributes of both Maximum Likelihood (ML) and
counting methods for developing a more powerful amino acid
replacement model from an extensive database of different globular
protein families (Whelan and Goldman, 2001). Recently, Le and the
team have also developed a more robust amino acid substitution
model for metazoanmitochondrial (mtMet), vertebrate mitochondrial
(mtVer) and invertebrate mitochondrial (mtInv) (Le et al., 2017).
Amino acid substitution models have also been developed for
Influenza virus (FLU) (Dang et al., 2010), HIV between-patient
matrix HIV-Bm (HIVb) (Nickle et al., 2007), HIV within-patient
matrix HIV-Wm (HIVw) (Nickle et al., 2007), arthropod
mitochondrial (mtART) (Abascal et al., 2007), retrovirus (rtREV)
(Dimmic et al., 2002) and general ‘Variable Time’matrix (VT) (Müller
and Vingron, 2000).

Codon substitution models

A codon is a continuous three DNA/RNA bases sequences, which
encodes a specific amino acid or stop signal during protein synthesis.
As there are four different nucleotides, there are only 64 possible
codons. Out of these 64, only 61 code for specific amino acids, while
rest three codes act as a stop codon. Since there are only 20 amino
acids, more than one codon encodes one amino acid. This degeneracy
property of genetic code enables us to distinguish between
synonymous (do not alter encoded amino acid) and non-

synonymous (alter encoded amino acid) substitution at the
nucleotide level (Yang et al., 2000). Codon models are generally
utilized to estimate evolutionary pressures on proteins across
divergent lineages via comparing the ratio of substitution rates at
non-synonymous (dN) and synonymous sites (dS) in the protein-
coding regions (ω = dN/dS). Employing synonymous polymorphisms
as a proxy of neutral diversity, one can estimate if non-synonymous
polymorphisms are hindered or favored by natural selection. In the
neutral evolving genes, the fixation rate of non-synonymous and
synonymous mutation will be the same (ω = 1). During negative
(purifying) selection, the non-synonymous mutation is not favored by
natural selection and thus is eliminated, causing the fixation rate of
non-synonymous mutation to be lower than the synonymous rate (ω<
1). During positive (adaptive) selection, the non-synonymous
mutation is favored via Darwinian selection, thereby causing the
fixation rate of non-synonymous mutation to be higher than the
synonymous rate (ω> 1) (Gupta and Vadde, 2020).

A study reported that ancient proteins are under strong purifying
selection, while newly developed proteins are under positive selection
(Vishnoi et al., 2010). As newly developed young genes perform either
highly specialized (if generated de novo or via horizontal transfer) or
redundancy (if generated via duplication) functions, they are more at
risk of either losing their function or gaining novel functions in
succeeding lineages (Domazet-Loso and Tautz, 2003; Daubin and
Ochman, 2004; Wolf et al., 2009; Vishnoi et al., 2010). Though
initially, young genes experience a large number of adaptive
mutations, the substitution of some of the mutations will slowly
optimize the function of the gene in due course of time and hence
the supply of new adaptive mutations will also reduce; hence, ω value
of a young gene will decline over time (Vishnoi et al., 2010; Moutinho
et al., 2022). On the contrary, functions of old genes, like diabetic
genes, are highly optimized and they are likely to have already
exhausted all beneficial mutations by recent times and; thus, they
are expected to evolve under negative selection and fix only neutral
and/or nearly neutral mutations (Vishnoi et al., 2010).

Though ω was originally designed for detecting selective pressure
acting on a protein across divergent lineage, ω can also be utilized for
detecting selective pressure acting on a protein in a single population
(Kryazhimskiy and Plotkin, 2008). However, selective pressure
estimated via ω on sequences sampled from a single population
differs from that of the divergent lineages. For instance, though ω<
1 is a clear signature of negative selection across divergent lineages,
weak negative or strong positive selection between population samples
is also expected to produce ω< 1 (Roumagnac et al., 2006; Holt et al.,
2008; Kryazhimskiy and Plotkin, 2008). Strong positive selection in a
population will generate speedy sweeps at selected sites (but not at
neutral sites, which are presumed to be independent). Thus, two
individuals from the same population under strong positive selection
are likely to contain identical alleles at each selected site, generating ω<
1 (Kryazhimskiy and Plotkin, 2008).

Approaches to estimate selective
pressure on the coding region of a gene

To date, numerous methods have been developed for
estimating selective pressure on the coding region of a gene.
Most models consider numerous factors like codon biases and
variation amongst sites to estimate selective pressure more
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accurately. Initial models were designed to estimate global ω for the
entire sequence or for subsequences utilizing a sliding window
approach. However, in reality, ω varies amongst each amino acid
site in sequence data or amongst each branch in a phylogeny.
Recently more advanced approaches were developed to predict ω
per amino acid site (Yang, 2002; Suzuki, 2004b), which enable the
identification of single sites under positive selection in spite of low
global ω value for the entire protein. All these models can be
broadly classified as mechanistic, empirical and semi-empirical
codon substitution models.

Mechanistic codon substitution models

Mechanistic codon models detect selective pressure on the coding
region of a gene utilizing a finite set of parameters, for instance,
synonymous/non-synonymous rate ratio, transversion/transition rate
ratio, and codon frequencies at equilibrium. As the mechanistic codon
model utilizes a finite set of parameters, it is also known as the parametric
codon substitution model. Mechanistic codon models focus mainly on
silent-transversion, silent-transition, replacement-transversion rates, and
replacement-transitions amongst sense codons and codon frequencies.
Considering all parameters in a single codon model will be
computationally more demanding. Thus to avoid this problem, several
mechanistic codonmodels have been developed to date. Eachmechanistic
codon substitution models have distinctive parameters that differentiate
the substitution rate at the nucleotide level and selective pressure at the
protein level. Thus, each mechanistic model has the capacity to estimate
selective forces acting on any protein in their unique way (Whelan
et al., 2001; Delport et al., 2009). If selective pressure at the protein
level is not considered, codon models will be equivalent to
nucleotide substitution models. If the substitution rate at
nucleotide is not considered, the codon model will be equivalent
to amino acid substitution models (Miyazawa, 2011a). Several
studies utilizing a large set of protein-coding sequences reported
that codon substitution models are statistically more powerful than
nucleotide and amino acid models (Seo and Kishino, 2009;
Miyazawa, 2011b). However, the codon model having a larger
substitution rate was reported to be equivalent to the amino acid
substitution model (Seo and Kishino, 2008).

The first two mechanistic codon substitution models (Goldman
and Yang, 1994; Muse and Gaut, 1994) were capable of estimating only
the global ω of the coding region of a gene. These two models
considered transition/transversion ratio and codon frequencies for
estimating ω (Goldman and Yang, 1994; Muse and Gaut, 1994).
Besides, Goldman and Yang (Goldman and Yang, 1994) also
considered replacement probabilities amongst amino acids on the
basis of the Grantham physicochemical distance matrix (Grantham,
1974). Later Nielsen and Yang (Nielsen and Yang, 1998) & Yang and
the team (Yang et al., 2000) developed more robust mechanistic
Bayesian models individually. It is pertinent to note that in the
models developed by Goldman and Yang (Goldman and Yang,
1994) and Nielsen and Yang (Nielsen and Yang, 1998), the rate of
substitution is proportional to the frequency of the target codon
(which is not very mechanistic), and later many models employes
these models to “explain” the stationary distribution in codons,
whereas in the model developed by Muse and Gaut (Muse and
Gaut, 1994), it is proportional to the target nucleotide, which is
much more mechanistic considering the mutation process, and

based on which later different type of mutation-selection (MutSel)
model was developed [described below].

In 1994, Yang (Yang, 1994b) developed two approximation
approaches for Maximum Likelihood phylogenetic estimation,
which allow for varying substitution rates across nucleotide sites.
The first, known as the “discrete gamma model,” approximates the
gamma distribution by using many rate categories with equal
probability for each category. Each category’s mean is employed to
depict all of the rates within that category. This method’s performance
has been shown to be rather acceptable, with four such categories
seeming to be adequate to achieve both an optimum or near-optimal
fit by the model to the data, as well as an acceptable approximation to
the continuous distribution. The second strategy, dubbed the “fixed-
rates model,” divides sites into multiple groups based on the rates
anticipated by the star tree. When evaluating alternative tree
topologies, sites in various classes are considered to evolve at these
constant rates. Analyses of the data sets indicated that this approach
might yield good results; however, it seems to have certain aspects with
a least-squares pairwise comparison (Yang, 1994b). These models,
however, overlook the fact that substitution rates of each amino acid
differ distinctly. For instance, as only one transversion is required to
convert the phenylalanine codon (UUU) into a leucine codon (UUG)
as well as the tryptophan codon (UGG) into a leucine codon (UUG),
they consider their substitution rate to be same (Doron-Faigenboim
and Pupko, 2007). But in reality, the probability of occurring a former
event is approximately 5 times higher than a later event (Doron-
Faigenboim and Pupko, 2007).

Considering this lacuna, for the first time, in 2004, Whelan and
Goldman developed a complete parametric model that considers several
instantaneous substitutions (Whelan and Goldman, 2004). This model
estimated substitution rate matrice for single-, double- and triple
nucleotide mutation individually utilizing transition to transversion
ratio and equilibrated frequency of mutated nucleotides. Later, these
three matrices were joined together to estimate the general codon rate
matrix. This method is reported to estimate the likelihood of parameters
more accurately in comparison to othermechanisticmodels (Whelan and
Goldman, 2004). Double and triple nucleotide substitutions are reported
to occur through the mechanistic process, like during repairing DNA
break (Sakofsky et al., 2014) or error-prone polymerase activity (Harris
and Nielsen, 2014). Although double and triple substitutions rates are
predicted to be two to three orders of magnitude lower than single
substitutions (Smith et al., 2003; Whelan and Goldman, 2004; Tamuri
et al., 2012), the model which included double and triple substitutions
were reported to fit better in real data. Later several different models were
developed by Doron-Faigenboim and Pupko (Doron-Faigenboim and
Pupko, 2007), Kosiol, Holmes and Goldman (Kosiol et al., 2007), De
Maio & team (DeMaio et al., 2013), Miyazawa (Miyazawa, 2011b), Zoller
and Schneider (Zoller and Schneider, 2012), Zaheri, Dib and Salamin
(Zaheri et al., 2014), Venkat & team (Venkat et al., 2018) and Jones &
team (Jones et al., 2018), which included double and triple substitution
between codon.

Later, the model developed via Goldman and Yang (Goldman and
Yang, 1994) was modified to include various nucleotide models (Pond
et al., 2005; Pond and Frost, 2005; Arenas and Posada, 2014), estimate
ω variation across sites (Yang, 2007) and branches (Yang, 2007;
Dutheil et al., 2012). In the model developed by Pond and Muse,
they consider the possibility of site-to-site variation in synonymous
and non-synonymous substitution rates in protein-coding DNA
sequences and observed that within-gene variability in synonymous
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substitution rates is common (Pond and Muse, 2005). Another model
developed by Mayrose et al. (2007) that uses two hidden Markov
models and function on the spatial dimension. First and the second
model depicts the dependency between adjacent non-synonymous
and synonymous rates rates, respectively. They demonstrate that
taking into consideration synonymous rate variability and
dependence substantially improves the accuracy of ω estimate, in
particular for positively selected sites. In some models, codons were
partitioned based on the physicochemical properties of the encoded
amino acids (e.g., polarity or charge) (Sainudiin et al., 2005; Wong
et al., 2006), codon bias (Yang and Nielsen, 2008) or the effects of GC
contents (Misawa, 2011). Models in which codons were partitioned
based on the physicochemical properties of the encoded amino acids
explicitly parameterized physiochemical constraints due to non-
synonymous substitution. The model developed by Goldman &
Yang (Goldman and Yang, 1994) and Yang, Nielsen & Hasegawa
(Yang et al., 1998) applied mathematical functions for modeling
association amongst physiochemical properties and ω parameter.
Yang (Yang, 2000) permitted the effect of the physicochemical
property to fluctuate among sites. Sainudiin & team (Sainudiin
et al., 2005) and Wong & team (Wong et al., 2006) developed two
separate models that at first divided non-synonymous substitutions
into small groups in accordance with the pre-defined physiochemical
property. As the main objective of these two models is to examine the
impact of certain physicochemical properties of amino acids on the
structure and function of a protein, their parameterization is focused
on comparing the property-modifying substitutions rate with the
property-conserving substitutions rate. Conant and Stadler (Conant
and Stadler, 2009) estimated multiple amino acid properties via
modeling exchangeability amongst non-synonymous codons as a
linear combination of five pre-specified measures of physiochemical
properties. This model enabled us to investigate the association
between selection pressure and physicochemical properties while
avoiding over parameterization of the codon model.

In 2008, Yang and Nielsen (Yang and Nielsen, 2008) developed the
FMutSel model in which the amino acid frequencies are determined by
the functional requirements of the protein (Rodrigue et al., 2008;
Beaulieu et al., 2019). In the FMutSel model, each codon was allocated
a fitness parameter. Dissimilarities in fitness parameters amongst two
codons are utilized for specifying substitution rates in the Markov
matrix via altering the rates specified by the standard mutation models
(Yang and Nielsen, 2008). The FMutSel/FMutSel0 model combination
has only been implemented in PAML4 with the M0 andM3models so
far. Model M0 implies that ω across all branches and sites is constant,
whereas Model M3 allows ω to vary between sites (Du et al., 2014).
Likewise, in 2010, Rodrigue and the team developed a complex
extension of this model in which site-specific amino acid
propensity scores are utilized for estimating scaled selection
coefficients, which in turn was utilized for identifying substitution
rates (Rodrigue et al., 2010). In 2013, De Maio and team (De Maio
et al., 2013) reported that when some models were employed to
compute ω heterogeneity on data, where both multiple-
nonsynonymous rates and double & triple codon modification
occur, they yielded high false-positive rates. Recently Venkat &
team (Venkat et al., 2018) reported that when branch-site codon
models are employed in branch-specific tests to detect positive
selection, double modification may cause high false-positive rates.
To avoid this problem, recently, Dunn and the team developed a
statistically more powerful general-purpose parametric modeling

framework for codons (Dunn et al., 2019). By including
information about all possible instantaneous codon substitutions,
along with instantaneous double and triple nucleotide substitution
and multiple non-synonymous rates, both accuracy, as well as
statistical power was highly improved (Dunn et al., 2019).

Empirical codon substitution model

Though empirical codon models are highly useful in understanding
protein evolution as well as in phylogenetic applications, only a few
models have been developed to date (Kosiol et al., 2007). Substitution
rates amongst codons were empirically determined to utilize a large set
of protein-coding sequences (Schneider et al., 2005; Kosiol et al., 2007).
Unlike mechanistic models, empirical codon substitution cannot
distinguish between the substitution rate at the nucleotide level and
selective pressure at the protein level (Miyazawa, 2011a). Thus, there is
no parameter except codon frequencies for tailoring of each protein
family (Miyazawa, 2011a). Delport and team reported that empirical
substitution matrices represent average propensities of substitutions
across several protein families via sacrificing gene-level resolution
(Delport et al., 2010).

For the first time in 1990, Schöniger and the team constructed
counted codon-codon substitutions matrix on the basis of
~800 pairwise alignments of 41 actin genes (Schöniger et al.,
1990). However, due to a lack of a better electronic facility, this
matrix lost its fame in a short interval of time (Cannarozzi and
Schneider, 2012). Additionally, as this matrix was developed based
on a small number of sequences, it was less reliable. Later in 2005,
Schneider and the team (Schneider et al., 2005) developed another
empirical codon model utilizing a somewhat similar approach
employed by Gonnet and the team (Gonnet et al., 1992) for
constructing an amino acid substitution matrix. Since the
development of the first amino acid substitution matrix
(Dayhoff et al., 1978), it was for the first time Goonet & team
(Gonnet et al., 1992) and Jones & team (Jones et al., 1992)
developed two individual models based on the sufficiently large
amount of sequences and thus are more reliable. In 2007, Kosiol
and the team (Kosiol et al., 2007) developed an empirical codon
substitution matrix utilizing an extensive database of protein-
coding DNA sequences. They reported that the accuracy of the
model gets significantly improved by considering instantaneous
double and triple substitution. Additionally, the amino acid
encoded by each codon, associations amongst codons, and
physicochemical properties of amino acids is key factors for
driving the process of codon evolution (Kosiol et al., 2007).
Empirical codon substitution matrix is reported to outperform
mechanistic codon substitution matrix when utilized in likelihood-
based phylogenetic analysis (Kosiol et al., 2007). Empirical codon
models can also be utilized to detect different lineages sampled in a
single phylogenomic dataset (De Maio et al., 2013) rather than
depending on a general sequence database for instance Pandit
database (Kosiol et al., 2007). In 2014, Bloom developed another
novel model that depicts the experimental determination of a
parameter-free evolutionary model via deep sequencing,
mutagenesis, and functional selection (Bloom, 2014). Employing
this, Bloom build a model of influenza nucleoprotein evolution that
represents the gene phylogeny in a far better way as compared to
earlier existing models with nearly hundreds of free parameters. He

Frontiers in Genetics frontiersin.org06

Gupta and Vadde 10.3389/fgene.2023.1091575

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1091575


also emphasized that the data provided by these types of high-
throughput experiments can significantly improve the accuracy of
both phylogenetic as well as genetic studies.

Semi-empirical

The semi-empirical codon substitution matrix is often called a mixed
empirical codon substitution matrix because it combines empirical
substitution rate with mechanistic parameters of codon evolution
(Dunn et al., 2019). For the first time, Doron-Faigenboim & Pupko
combined existing empirical amino acid substitution matrices with
mechanistic parameters (Doron-Faigenboim and Pupko, 2007). They
assumed that the substitution rate between non-synonymous substitution
amongst codons was equal to the pre-estimated amino-substitution rate,
which was obtained by utilizing 189 parameters and a huge amount of
amino acid sequences (Doron-Faigenboim and Pupko, 2007). Later
Kosiol and team, utilizing 1830 codon substitution parameters and
large datasets, developed the first fully empirical codon model and
then appended those models with mechanistic parameters for codon
evolution (Kosiol et al., 2007). Subsequently, DeMaio and team (DeMaio
et al., 2013), developed another model with almost the same accuracy but
was less complex than the model developed by Doron-Faigenboim &
Pupko (Doron-Faigenboim and Pupko, 2007). The empirical matrices in
those studies denote a wide range of amino acid change propensity (Dunn
et al., 2019). Later, Zoller & Schneider (Zoller and Schneider, 2012) and
Miyazawa (Miyazawa, 2011a) developed different methods for tailoring
information contained in an empirical substitution matrix to a specific
dataset, and the benefit of these two approaches is that they can easily
distinguish between substitution rate at the nucleotide level and selective
pressure at the protein level.

Applications of the codon substitution
model

Codon substitution models are mainly utilized in detecting
selective pressure on a protein, codon usage bias,
ancestral reconstruction, and phylogenetic reconstruction. All

the applications available in recent literature are presented in
Table 1.

Studying selective pressure on a protein

Recent advancements in high throughput sequencing
technologies have enabled the generation of a huge amount of
sequence data (Gupta et al., 2017; Gupta and Vadde, 2019b; 2020).
This enormous amount of sequence data provides an opportunity
to detect a direct association between selective pressure and the
function of any protein in a more comprehensive way (Anisimova
and Kosiol, 2009). Codon models are commonly utilized for
identifying candidate genes and their variants under positive
selection (Ouyang and Liang, 2007; Parto and Lartillot, 2018;
Dunn et al., 2019). Initially, codon models presume that
synonymous and non-synonymous substitution rates among
sites as well as throughout the phylogenetic history, are constant
(Anisimova and Kosiol, 2009). Though the majority of proteins are
evolved under purifying selection, the positive selection may affect
a few lineages. During this adaptive evolution, only a few protein
sites have the capability to increase protein fitness during amino
acid substitution (Pupko and Galtier, 2002). Hence, these codon
model approaches presuming constant selective pressure over time
as well as across sites lack the power to detect genes evolving under
positive selection (Anisimova and Kosiol, 2009). Subsequently,
several situations of variation in the selective pressure was
included with the model developed by Muse & Gaut (Muse and
Gaut, 1994) and Goldman & Yang (Goldman and Yang, 1994).
These models were later utilised extensively to detect positive
selection by likelihood ratio test comparing two nested models.
One model (null hypothesis) do not permit positive selection while
other model (alternative hypothesis) permit positive positive
selection. Positive selection is identified when model permitting
sites/lineages under positive selection fits data significantly better
than the model restricting the site/lineages under positive selection.
Nevertheless, if few parameters become invaluable or because of
boundary problems, the asymptomatic null distribution may differ
from the standard (Anisimova and Kosiol, 2009).

TABLE 1 Applications of codon substitution models.

S. No Applications References

1 Identifying heterogeneous selection pressure at amino acid sites Yang et al. (2000)

2 Identifying molecular adaptation at individual sites along specific lineages Yang and Nielsen, (2002)

3 Phylogenetic reconstruction Ren et al. (2005)

4 Codon usage bias Wu et al. (2007), Yang and Nielsen, (2008), Zhao et al. (2016)

5 Reconstructing ancestral coding sequences Anisimova and Kosiol, (2009)

6 Molecular dating & functional analysis Cannarozzi and Schneider, (2012)

7 Evolution of sexual chromosomes, gene families, host-pathogen interactions or regulatory networks Cannarozzi and Schneider, (2012)

8 Identification and estimation of conservation at synonymous sites Rubinstein et al. (2012)

9 Detect pathogen evolutionary rate variation Baele et al. (2016)

10 Identify antibody lineage Hoehn et al. (2017)

11 Detect evolutionary histories under time-dependent substitution rates Membrebe et al. (2019)
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Additionally, the codon substitution model can be utilized for
detecting site-specific positive selection in proteins. Later, this
information can be used for testing the biological hypothesis
through laboratory experiments (Anisimova and Kosiol, 2009).
For instance, in 2005, Swayer and the team reported that a small
portion of TRIM5α, an immune defense protein, was recognized to
be under positive selection. Later, through functional analysis, they
confirmed the significance of the peptide segment in species-
specific viral inhibition (Sawyer et al., 2005). The conditional
selection model developed by Chen and the team may be
utilized particularly for detecting interaction amongst sites
during drug resistance (Chen and Lee, 2006). Considering this
earlier, we also employed a phylogenetic approach implemented in
the PAML’s CODEML modeling tool to identify the kind of
selection operating on T2D genes in the Drosophila genus. The
data showed that the gene sequences encoding T2D are evolving
under purifying selection. However, few membrane protein sites,
including those encoded by CG8051, ZnT35C, and kar, are
substantially evolving under positive selection. This may be due
to adaptive evolution in response to changes in the niche, food, or
other environmental conditions (Gupta and Vadde, 2020). Thus,
the identification of selective pressure via codon substitution
models may provide detailed insight into disease progression,
pathogenic drug resistance, and epidemic dynamics (Anisimova
and Kosiol, 2009).

Codon usage bias

Gene expression is modulated through transcription (DNA to
mRNA) and translation (mRNA to protein) mechanisms (Zhou
et al., 2016). Promoter strength & RNA stability are mainly
responsible for mRNA concentrations and transcript levels &
protein stability is responsible for protein concentrations in any
cell (Ikemura, 1985; Sharp et al., 1986). During translation, the
information is transmitted as codons. This genetic code is
degenerate in nature, i.e., except for tryptophan and methionine,
more than one codon (synonymous codons) can encode a single
amino acid (Wang et al., 2018). In coding sequences of many
organisms, these synonymous codons are utilized at unequal
frequencies (Chakraborty et al., 2017). This phenomenon is
called codon usage bias. Preferred codons are more frequently
utilized in highly expressed genes (Zhou et al., 2016). The degree of
codon usage bias differs amongst genes & species and is mainly
affected via neutral selection, directional mutation, tRNA
abundance (Olejniczak and Uhlenbeck, 2006), selection for
efficient translation initiation (Zalucki et al., 2007), gene length
(Sun et al., 2009), an expression level (Hiraoka et al., 2009), DNA
replication initiation site (Huang et al., 2009), etc. Codon usage bias
can also be utilized in detecting phylogenetic trees amongst species
(Wu et al., 2007; Zhao et al., 2016). In 2016, SENCA (site evolution
of nucleotides, codons, and amino acids), a codon substitution
model, was developed that distinctly describes (a) preferences
amongst synonymous codons, (b) amino acids, and (c)
nucleotide processes that apply on all sequence sites such as the
mutational bias (Pouyet et al., 2016). This model assumes that the
vast majority of synonymous substitutions are not neutral and can
predict more accurate estimates of selection in comparison to more
traditional codon sequence models (Pouyet et al., 2016).

Ancestral reconstruction

Codon substitution models are also utilized for reconstructing
ancestral coding sequences through parsimony and Maximum
Likelihood approaches (Anisimova and Kosiol, 2009). These
ancestral sequences can further be utilized to detect alterations that
have been experienced in every branch of phylogeny and at each
individual site of the gene sequence. Several studies have utilized
ancestral state information to understand protein evolution and
episodic or lineage-specific base composition (Long and Langley,
1993; Akashi, 1996; Eanes et al., 1996; Fitch et al., 1997; Takano-
Shimizu, 2001). For instance, the evolution of steroid receptors
(Thornton et al., 2003) and ancestral archosaur visual pigment
rhodopsin (Chang et al., 2002). Ancestral sequence reconstruction
is also employed in studying HIV evolution (Gaschen et al., 2002),
protein engineering (Cole and Gaucher, 2011), and understanding
variation in DNA turnover because of indels and substitutions
amongst eutherian mammalian lineages (Blanchette et al., 2004).
Additionally, numerous population genetic tests depend on this
ancestral reconstruction to understand the impact of natural
selection on the functional classes of mutations or genetic regions
(Akashi, 1995; Templeton, 1996; Akashi, 1999; Suzuki and Gojobori,
1999) and also identify coevolving nucleotides/amino acids (Osada
and Akashi, 2012; Liao et al., 2013).

Phylogenetic reconstruction

Codon models reconstruct phylogenetic trees by considering
genetic code and the rate of non-synonymous & synonymous base
substitutions. In almost every protein-coding gene, the incidence of
non-synonymous substitution is less and is mainly involved in early
divergence. Synonymous substitutions are higher and are responsible
for recent divergence. By considering this information, the codon
models may be utilized in reconstructing phylogenetic trees more
accurately (Ren et al., 2005). Earlier studies have reported that though
nucleotide substitution models are modified to accommodating
differences in the evolutionary dynamics at three codon positions
(Yang, 1996), the accuracy of this model is lower as compared to
codon models. Nevertheless, due to the lack of efficient codon-based
tree search methods, tree inference from coding sequence data is
generally performed under DNA and AA (amino acid) models.
Because of the 61 × 61 matrix, tree generation utilizing codon
models is computationally more demanding. To date, no efficient
methods have been developed for phylogeny reconstruction utilizing
the codon substitution model on a large dataset. For the small dataset,
phylogeny can be constructed using CODEML from the PAML
package (Yang, 2007). However, Yang has implemented a heuristic
algorithm in PAML, which is not the most efficient approach. One
possible way to reconstruct an efficient phylogenetic tree is by initially
generating numerous phylogenetic trees utilizing both DNA and
amino acid substitution models. Later, these trees can be utilized
for constructing more accurate trees under efficient Maximum
Likelihood (ML) heuristics under codon models (Anisimova and
Kosiol, 2009).

Another significant approach in the reconstruction of the
phylogenetic tree is by implementing codon models with a
Bayesian framework and sampling topological space with an
efficient Markov chain Monte Carlo (Anisimova and Kosiol, 2009).
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By using the Bayesian framework, we can either get similar or even
better tree topology in comparison to ML approaches. The main
reason for achieving better tree topology via the Bayesian framework is
that ML approaches search for a single best tree while the Bayesian
framework scan cluster of best trees. The benefits of the Bayesian
framework can also be explained via thematter of probability. The best
tree generated viaMLmay ~90% probability of demonstrating the real
information. On the contrary, the Bayesian framework generates
hundreds/thousands of near-optimal/optimal having ~90%
probability representing the real information. Hence, the
phylogenetic tree generated via the Bayesian framework is more
realistic than the phylogenetic tree generated via ML methods.
However, in this Bayesian framework, the rate of substitution will
differ for each three codon sites because it considers different data
partitions. Thus, codon model usage may serve as an important asset
while comparing several candidate trees inferred under either DNA or
amino acid models (Anisimova and Kosiol, 2009).

Limitation and development of next-
generation codon model

Though various codon models develop to date provide researchers
with a more powerful bioinformatics toolbox, these models’ enormous
exchangeability matrices (61 × 61, excluding stop codons) make
implementation difficult (Arenas, 2015b). Thus, the development of
next-generation development of the codon model with significant
attention to model choice as well as the implantation assumptions is
highly demanded (Benner, 2012). This can be achieved by using a
substantial quantity of data and a considerable amount of computing
power. Fortunately, efforts to optimize codon-based algorithms are
developing new evolutionary tools for simulating (Fletcher and Yang,
2009; Arenas, 2012) and analyzing (Gil et al., 2013; Zoller et al., 2015)
the codons evolution, even though additional research is needed in this
area (Arenas, 2015b). In addition to the development of new empirical
models, these models may follow two fascinating trends; First, evaluate
heterogeneity throughout the sequence and across time since various
sites/regions and time periods may evolve differently under distinct
models (Arenas, 2015a; Zoller et al., 2015). It is important to
remember that these partition methods may be highly realistic, for
instance, by using distinct models for coding and non-coding regions.
And it is well-known that ω estimations may be influenced by codon
models that are based on differences in codon frequency among sites.
Thus, there is a need for programs and methods that can determine
which codon substitution model works best in a given codon region
and time scale (Arenas, 2015b). The second possible trend may be the
integration of protein structure data into codon models. Codon
models could take into account information about the proteins’
functions and their folding stability (Grahnen et al., 2011; Liberles
et al., 2012). But if the protein structure changes over time or if more
than one protein structure is required to depict the encoded proteins in
the dataset, these implementations would incur high computational
costs (Arenas, 2015b).

Considering the limitation above and with the aim to develop
more robust codon-substitution models, in 2010, Zoller & Schneider
(Zoller and Schneider, 2010) investigated 3,666 codon substitution
matrices for detecting the most vital parameters of any codon model.
They employed principal component analysis (PCA) to identify the
numerous substitution rates that may co-vary across diverse genes.

Each individual 3,666 matrices were estimated employing “XRate”
from a single multiple sequence alignment generated from
Mammalian coding sequences. Irrespective of large variance related
to parameters computed from very less data, PCA analysis was able to
capture a few significant factors. As per PCA analysis, one of the most
important parameters in any codon substitution model is the ω value.
Amusingly, the substitutions in serine demand two nucleotide
alterations and a transitional non-synonymous modification were
grouped together with the non-synonymous substitutions. The
second most key parameter detected is the ratio amongst
substitutions having only one nucleotide dissimilarity and those
with two/three dissimilarities. Interestingly, this parameter is not
considered in any of the codon-substitution models developed to
date. As PCA analysis determines factors that differ maximum in any
dataset, there might be an evolutionary use that affects the multi-
nucleotide substitutions number that might get stable during coding
sequence evolution (Zoller and Schneider, 2010). However, this
method was unable to detect other important parameters
associated with codon substitution models.

Another study reported that, even though we assume phylogeny
on which molecular evolution is modeled is a more appropriate
representation of the evolutionary history of any lineage/taxa, but
this might not be true in the case of a small dataset or if recombination
has been ignored while generating tree topology (Delport et al., 2009).
It is possible to include such uncertainty in tree topology via Bayesian
methods (Yang et al., 2000). For example, MrBayes employed codon
substitution models for generating tree topology (Huelsenbeck and
Ronquist, 2001). These methods relax the assumption that a specific
tree is correct but not the assumption that a correct, though unknown,
tree exists. One of the probable solutions for the recombination
problem is the introduction of population genetics approximation
within the coalescent which co-estimates recombination rate and
selective pressure (Wilson and McVean, 2005). Another solution is
the identification of recombination breakpoints as well as the
prediction of a distinct phylogeny for each individual recombinant.
Parameters of these codon models are consecutively calculated in the
usual way, except that phylogenies, as well as branch lengths, are
partition-specific, while the remaining parameters are shared across all
segments (Scheffler et al., 2006). It is also highly advisable to
incorporate different synonymous rates in each recombinant
because recombination may also lead to differences in synonymous
rates (Scheffler et al., 2006). Software, namely, genetic algorithm for
recombination detection (GARD), is one of the suitable algorithms for
the detection of individual adaptive evolving sites in recombination
sequences (Kosakovsky Pond et al., 2006). It is pertinent to note that
codon models, particularly those that take rate variation into account,
may tolerate modest amounts of recombination (Anisimova et al.,
2003; Scheffler et al., 2006). False positive rate estimates may be
inflated, however, if recombination rates in such models are very
high. Thus, positive selection predictions should be regarded with care
for genes with the greatest recombination rates (Davydov et al., 2019).

Earlier several studies have also reported that though codon
models developed to date are extensively employed for estimating
selective pressure on the gene(s) (MacCallum and Hill, 2006) and
scanning genes under positive selection (Li et al., 2010), most of these
models generally aimed at investigating the recurrent diversifying
selection. Considering this, a few definite models were also developed
for investigating the directional selection and were employed on viral
data (Kosakovsky Pond et al., 2008; Lacerda et al., 2010). Nevertheless,
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these directional models are not time-reversible. Recent advancement
in sequence technologies enables enormous sequence growth and the
development of empirical codon models. Even successful attempts
were made to combine empirical estimates along with conventional
parameters (Wilson and McVean, 2005).

In addition to phylogeny, codon substitution models can also be
employed for studying synonymous codon bias, which may develop
because of optimizing for translational kinetics, efficiency, and
robustness. Selection against the non-optimal codons often causes a
negative correlation amongst synonymous substitution rates and
codon bias (Akashi and Eyre-Walker, 1998). Nevertheless, codon
bias is generally investigated with different codon adaptation
indexes on the basis of single sequences instead of estimating via
multiple sequence alignment and other parameters of a substitution
model. Markov models having fewer states, for instance, codons
translated via distinct tRNAs, can be employed for studying codon
usage as well as asymmetric selective effects (Benner, 2012). On the
other hand, mutation and selection may be modeled distinctly for
investigating the effects of mutational biases and translational
selection (Nielsen and Yang, 2003). Employing such models in
2007, Nielsen and the team investigated the evolution of codon
usage over time (Nielsen et al., 2007). In another study, (Yang and
Nielsen, 2008) computed optimal codon frequencies as well as
mutational bias parameters across multiple species and genes.
Further, LRT amongst pairs of nested selection mutation models
can be employed for investigating if the codon bias is because of
the mutational bias only. This model was further designed to include
site specific amino acid profiles, which in turn provide an attractive
substitute for fixed as well as random effects models (Rodrigue et al.,
2010). Utilizing the Dirichlet process, site-profiles were fitted to the
dataset in the Bayesian framework.

One of the underlying presumptions of the codon substitution
model is that the rate of codon change is a product of the mutation
fixation probability and the mutation rate (Kimura, 1962); this, in
turn, forms a significant connection to the population genetic theory.
Thus, we may also employ codon substitution models for estimating
relationships amongst interspecific and population parameters, e.g.,
the scaled selection coefficient (Benner, 2012). Given the importance
of codon-based models for detecting diversifying positive selection,
previous research has focused on two aspects of codon-based models
that are important for population genetic interpretations of
diversifying positive selection (Thorne et al., 2012). At first,
diversified positive selection is a kind of positive selection which is
often referred to an allele having a fitness advantage. When alleles’
relative fitnesses are largely consistent across environments, the
presence of positive selection is determined by the alleles involved
in the substitution rather than the codon position and/or lineage

influenced by substitution. On the other hand, codon-based
substitution models often seek to identify instances when non-
synonymous mutations are beneficial independent of the specific
alleles present before and after the mutation. Secondly, diversifying
positive selection within codon-based substitution models should be
interpreted with care while analysing population genetics. Even
though several parameterizations of codon-based models having
diversifying positive selection have been developed, they seems
have this simple model for substitution rates, as depicted in Figure 1.

Where u is a proportionality constant and μij is the rate at which i
mutates to j. A population genetic interpretation of a non-
synonymous rate Rij would therefore have ω proportional to P
(Zij), which is the fixation probability approximation by Kimura
(Kimura, 1962). One possible way to achieve this is to have all
non-synonymous modifications be neutral with respect to selection;
however, this would result in ω= 1, which would negate the necessity
inclusion for the ω parameter. The relative fitness of alleles might also
be determined by whether they represent a novel mutation. This
would mean that differences in fitness across alleles have nothing to do
with the DNA that code for them.

In 2003, Nielsen et al. tried to develop such a model. Interestingly,
they allow for variation amongst codon sites. For non-synonymous
modifications affecting a specific codon position in a certain lineage, ω
was considered to be independent of the decoded amino acids before
and after the modification. Since ω was independent of the amino
acids involved in the change, Nielsen et al. were able to derive
stationary sequence distributions that were independent of the ω
value. Since the stationary distribution does not change with codon
locations and stationarity can be presumed if the ω value for a branch
refers to a small or large population, inferences can be derived more
straightforward (Nielsen and Yang, 2003). It is pertinent to note that
inference of stationary distribution was also possible before as in
(Nielsen and Yang, 2003), however not much studies have been done.
Earlier, Halpern and Bruno (Halpern and Bruno, 1998) also developed
the MutSel model to unmask the mechanistic, population-genetic
explanation of evolution. In this method, a nucleotide mutation model
that is the same for all sites is combined with fixation probability
calculated from site-specific vectors of fitness coefficients under the
assumption of a Wright-Fisher population with mutation and
selection (Jones et al., 2017). This framework offers a systematic
approach to generating realistic sequence alignments that are
capable for detecting positive selection by directly relating ω to
fitness differences across amino acids. By forcing changes in fitness
coefficients at predetermined sites and branches, extensions of the
MutSel model (dos Reis, 2015) can also capture episodic positive
selection. Irrespective of all these advancements, implementation of
population genetic theory in the codon models is still in the infancy

FIGURE 1
Simple model for substitution rates, where Rij is a nonsynonymous rate, u is a proportionality constant and μij is the rate at which i mutates to j.
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stage (Benner, 2012). One important challenge is how to differentiate
between episodic changes in fitness landscapes and shifting balance in
the model. Positive selection via shifting balance is an autonomous,
unpredictable, and site-specific mechanism. So, the key question is,
how often is shifting balance in real-world data? (Thorne et al., 2012;
Jones et al., 2017). Another difficulty is posed by the fact that
mutation-selection equilibrium may be disrupted by a wide variety
of population genetic processes and how to include all these
parameters in the model (Thorne et al., 2012).

There is also still scope for Monte Carlo approach development.
Specifically, to date, “data-augmentation-based” methods have
received very little attention in terms of codon substitution model
development. This “data-augmentation-based” is though short-lived
but has computational benefits (de Koning et al., 2010). For instance,
thermodynamic integration is computationally expensive and, hence,
not much used in molecular evolutionary or Bayesian phylogenetic
applications. This is why the harmonic mean estimator (HME), which
has an infinite variance and produces less reliable results (Lartillot and
Philippe, 2006), is still widely used. Advancement in this direction,
nevertheless, is also in full swing. For example, in 2011, Xie and the
team (Xie et al., 2011) developed a more robust method, namely, the
“stepping-stone method”, on the basis of similar concepts, though
employing a discrete path in preference to a continuous one. In the
near future, there is also scope for combining “thermodynamic-based”
methods with “data-augmentation based” approaches. The “stepping-
stone” approaches, along with other recently developed computational
methods, may also contribute significantly to developing Bayes factor,
thereby providing a wide-range evaluation of the performance of
numerous different codon substitution modeling methods.

In 2010, Du and the team proposed new codon-based ancestral
reconstruction approaches that permit to examine changes in codon
usage bias in rhodopsin, which in turn might be responsible for shifts
in the visual ecology within the early mammals (Du, 2010). Using the
same approach, they observed an evolutionary trend towards
enhanced GC-ending codons at three early mammalians,
i.e., therian, placental and mammalian lineages of rhodopsin.
However, they also proposed that there is still scope for
incorporating a Bayesian distribution of different ancestral states
while estimating the Akashi ratio for calculating deviations from
equilibrium codon usage, as well as simulations for accessing the
significance of the deviations detected for rhodopsin (Du, 2010).

In one study, authors proposed that augmenting codon model
application along with information obtained from other approaches,
for instance, population genetics, coalescence, and HMMs may enable
us to understand the evolution of the complex system in a more
comprehensive way. For instance, in 2010, Gilbert and Parker
proposed a codon substitution model that can be used extensively to
study the origin of fungal diseases; specifically, that are associated with
crops (Gilbert and Parker, 2010).When any fungi are exposed to a novel
environment in a new host, they evolve very fast. Using these new codon
models, we can predict pesticide targets on the basis of the nature of
selection acting on crucial genes. These models can also be employed for
investigating the novel function of regulatory genes as well as networks
and important pathways associated with pathogenesis (Benner, 2012).
Recently, several other studies have also proposed a new hypothesis in
the context of intracellular pathogens (Casadevall, 2008). As per that
hypothesis, fungi become intracellular pathogens via dual-use traits
evolution. For instance, genes originally associated with escaping
amoeba predation consequently became advantageous and helped in

invading animal or plant cells (e.g. adhesins, toxins, efflux pumps, and
injectors, among others) (Benner, 2012). Codon models can also be
employed for tracing selective pressure acting on dual traits under
diverse circumstances (Benner, 2012).

Some researchers have also proposed that functional divergence of
proteins subsequently after some events, for instance, gene
duplication, may also result in complex sequence evolution, which
is poorly described via presently available “branch-site” codon models
(Anisimova and Liberles, 2007; Benner, 2012). On the contrary,
recently developed clade models, Clade model C (CmC) & Clade
model D (CmD) (present in the CODEML utility of the PAML
software package (Yang, 2007), are a collection of flexible “codon-
substitution” models comprised of both “among-lineage” as well as
“among-site” variation in selective pressure, which in turn can be an
effective tool for investigating signatures of functional divergence
amongst clades (Bielawski and Yang, 2004). To date, the clade
models have been utilized for studying functional divergence in
numerous gene families, e.g., β-globins (Aguileta et al., 2004) and
vertebrate Troponin C (Bielawski and Yang, 2004).

When augmented with EB site assignment methods, these clade
models may also provide an opportunity to unmask the molecular
bases of functional diversification, as well as help in understanding
biochemical analyses of homologous yet functionally divergent
proteins (Benner, 2012). However, these clade models are still in
the infancy phase and further research is required to establish actual
power as well as accuracy while dealing with complex forms of
divergence among clades (Benner, 2012). Nevertheless, one most
important limitations of the present clade models is the absence of
incorporation of “among-site rate variation” within ω. At present,
both CmC and CmD presume only one site class for which ω either
decreases or increases (but not both). But in reality, a large number of
complex divergence scenarios are possible. For example, a few sites
present within the divergent clade may switch to neutral from
purifying class, while others may switch in the opposite direction
(Benner, 2012). If such a scenario exists, novel approaches for
detecting might be necessary as like the ‘switching’ codon models
developed via Guindon and the team (Guindon et al., 2004).

Thus, by augmenting new parameters to existing codon
substitution models or by designing novel algorithms, we can
develop more robust and less computationally demanding codon
substitution models for more accurate phylogeny as well as
understanding the evolutionary history of any sequences or organisms.

Conclusion

wing to the presence of the huge amount of genomic sequences
due to recent advancements in technology, it is easy to understand the
evolutionary history of any sequences or organisms in a far better way.
Phylogenetic analysis utilizing nucleotide/amino acid/codon
substitution models are the most powerful tool for unraveling the
evolutionary history of genomic sequences/organisms. However, in
comparison with nucleotide and amino acid models, the codon
substitution model is more powerful. These models have been
utilized extensively to detect selective pressure on a protein, codon
usage bias, ancestral reconstruction and phylogenetic reconstruction.
However, most of the codon substitution models are still in their
infancy stage and deserve further attention. On the downside, the
presence of a large variety of models and each considering different
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biological factors, enhances the margin for misinterpretation. The
biological meaning of certain parameters may differ amongst models
and thus, model selection procedures also deserve greater attention.
Additionally, due to more computational demanding, in comparison
to nucleotide and amino acid substitution matrices, only a few studies
have employed the codon substitution model to understand the
heterogeneity of the evolutionary process in genome-scale analyses.
Thus, there is still scope for developing more robust and less
computationally demanding codon models. Authors believe that a
more robust codon substitution model can be developed considering
parameters like the size and structure of the population across time
and uncertainty in the ancestral state during estimation. Additionally,
results obtained from these models, when combined with other
multidisciplinary approaches, like epidemiology, physiology, and
molecular biology, are most likely to detect selective pressure on a
protein, codon usage bias, ancestral reconstruction and phylogenetic
reconstruction in a more comprehensive way. Thus, it seems clear that,
in the near future, research on substitution models requires the design
and development of more sophisticated as well as realistic substitution
models. For instance, the development of codon models with more
relaxing assumptions like temporal heterogeneity in both mutational
as well as selective processes. Additional effort is also being required to
evaluate, compare and apply these newly developed models with real
large datasets. As the codon substitution model enables to detect
selection regime under which any gene or gene region is evolving,
codon usage bias in any organisms or tissue-specific region and
phylogenetic relationship between different lineages more
accurately than nucleotide and amino acid substitution models, in
the near future, these codon models can be utilized in the field of
conservation, breeding and medicine.
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