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Wheatgrass extract has
chondroprotective and
anti-inflammatory effects
on porcine cartilage

Kate Cridland, Anna Garland, Persephone McCrae
and Wendy Pearson*

Department of Animal Biosciences, University of Guelph, Department of Animal Biosciences,
Guelph, ON, Canada
Lameness is a commonly observed disorder in sows and negatively impacts both

animal welfare and the profitability of the pig sector. The purpose of this study was

to determine anti-inflammatory and/or chondroprotective effects of wheatgrass

(WG) on porcine cartilage explants stimulated with lipopolysaccharide (LPS).

Explants were aseptically prepared from the intercarpal joints of nine market-

weight pigs and placed in culture at 37°C for a total of 120 hours. For the final 96

hours, explants were conditioned with an aqueous extract of WG (0, 5 or 15 mg/
mL), and for the final 48 hours explants were stimulated with LPS (0 or 10 µg/mL).

Media was removed and replaced every 24 hours. Samples from the final 48 hours

were analyzed for biomarkers of cartilage inflammation [prostaglandin E2 (PGE2)

and nitric oxide (NO)] and cartilage structure [glycosaminoglycan (GAG)], and

cartilage explants were stained for an estimate of cell viability. Stimulation of

explants with LPS significantly increased media concentrations of PGE2, GAG and

NO compared with that from unstimulated explants. LPS stimulation did not

significantly affect cell viability. Conditioning of explants with WG (5 mg/mL)

significantly reduced LPS-stimulated cartilage release of PGE2, NO, and GAG (5

and 15 mg/mL), without impairing chondrocyte viability. These data provide

evidence for a non-cytotoxic chondroprotective and anti-inflammatory effect of

WG extract in cartilage and suggest a role of WG in protection against cartilage

breakdown, inflammation, and pain associated with osteoarthritis.
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Introduction

Lameness, characterized by alterations in gait or posture, is commonly observed in

sows. It is associated with reduced animal welfare and economic losses, including those

associated with increased labour and veterinary costs, decreased slaughter value, and

animals that are culled prior to reaching optimal breeding efficiency (Dagorn and
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Aumaitre, 1979; Anil et al., 2005; Anil et al., 2009; Pluym et al.,

2013). Recently, lameness was ranked as the most important

measure of welfare in pigs (Whay et al., 2003). Estimates of

lameness prevalence vary geographically, but range from 8.8% to

15% for many European countries (Gjein & Larssen, 1995;

Bonde et al., 2004; Heinonen et al., 2006; Kilbride et al., 2009;

Pluym et al., 2011), 15% in the United States (Lay et al., 2008),

and 20% in Canada (Seddon et al., 2013). Rates of lameness may

also vary with the productive cycle, with the greatest prevalence

of lameness reported after sows were moved to the gestation unit

(8.1%) versus 4.1% and 5.5% after being moved to the farrowing

pens and insemination cages, respectively (Pluym et al., 2013).

Lameness in sows can be attributed to several risk factors,

including mixing of individuals resulting in increased

aggression (EFSA, 2007), lack of exercise (Fredeen and Sather,

1978), and housing type (stalled or group) coupled with floor/

bedding type, such as slatted floors (Heinonen et al., 2006; Anil

et al., 2007; Karlen et al., 2007; Spoolder et al., 2017). Causes of

lameness include claw and skin lesions, infectious and metabolic

disorders, trauma, fractures, osteochondrosis, osteomalacia, and

osteoarthritis (Fredeen and Sather, 1978; Wells, 1984; Dewey

et al., 1992; Kroneman et al., 1993; Bonde et al., 2004; Kilbride

et al., 2009).

Lameness typically results in reduced activity, which may

impact social, explorative, and feeding behaviours, including

increased lying time and decreased water intake (Madec et al.,

1986; Cornou et al., 2008; Weary et al., 2009; Ala-Kurikka et al.,

2017). These problems may be exacerbated by group-housing,

where lame sows may experience greater degrees of social

pressure, be unable to compete for resources, and/or be

involved in fighting (Gjein and Larssen, 1995; Heinonen

et al., 2013). The stress associated with lameness may also

limit the abilities of the immune system to fight infection and

disease, which can result in the development of secondary

diseases, as well as weight loss and reduced reproductive

performance (Bonde et al., 2004; Anil et al., 2009). Inactivity

is positively associated with urinary and reproductive

infections (Madec et al., 1986; Dee, 1992), which have been

reported to account for 6.6 to 8% of all deaths (Chagnon

et al., 1991).

Lameness directly impacts longevity, with increased culling and

euthanasia ormortality rates of lame sows (Anil et al., 2009), leading

to reduced welfare and increased economic costs (Jensen et al.,

2010). It is estimated that 6 to 35% of sows are culled due to

lameness and claw lesions (Anil et al., 2009). Non-lame sows have a

survival time that is more than double that of lame sows after the

first farrowing, with a greater reproductive success (lower rates of

stillborn or mummified fetuses) in non-lame sows (Anil et al., 2009;

Pluym et al., 2011). Furthermore, lame sows tend to have lower

litter weights (Fitzgerald et al., 2012) and greater piglet mortality

caused by crushing due to increased lying time (Anil et al., 2009).

However, lameness itself is not associated with lower rates of
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pregnancy (Heinonen et al., 2006), instead, lame sows are more

likely to be removed from the herd (either due to culling or

mortality) earlier than their non-lame counterparts, resulting in

fewer overall pregnancies. A study conducted on ten different

Danish herds found that of euthanized sows, 72% of cases of

euthanasia were associated with the locomotory system, most

commonly osteoarthritis (OA; 24%) and fractures (16%), with

arthrosis as a secondary diagnosis in 88% of cases (Kirk et al.,

2005). Furthermore, OA impacts millions of people worldwide and

poses a significant public health concern (Maetzel et al., 2004).

Porcine models are considered to be a highly translational model of

human OA due to similarities between human and porcine joint

sizes, weight-bearing, and cartilage thickness (Cruz et al., 2016).

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly

used in pain management of animals, including swine (Keita et al.,

2010; Reiner et al., 2012; Kluivers-Poodt et al., 2013). Using a

chemical synovitis model, Pairis-Garcia et al. observed that sows

treated with flunixin meglumine and meloxicam had reduced lying

posture frequency compared to sows treated with saline, and that

pain was mitigated at both 48 and 72 h after lameness induction

(Pairis-Garcia et al., 2015). Owing to the absence of a

pharmaceutical ‘cure’ for arthritis, and the well-established

adverse effects associated with common pharmaceutical pain

remedies (Ghanem et al., 2016), feed ingredients targeting

maintenance of joint health have emerged on the front-line of

OA management in other species. The vast majority of these

‘functional’ feed ingredients with do not have research to support

their safety or efficacy in modifying the pathophysiology of OA. A

feed ingredient with considerable potential to positively influence

clinical outcomes in arthritic animals is wheatgrass (WG; Triticum

aestivum). WG is a hardy perennial grass that is a rich source of

antioxidant compounds (Durairaj et al., 2014; Parit et al., 2018). Its

contemporary popularity as a ‘superfood’ arose initially from a

patent in 1930’s which claimed to capture the superior nutritive of

sprouted wheatgrass for the purpose of detoxifying the body and

providing a concentrated abundance of nutrients. Antioxidant

products have demonstrated significant benefit in cases of OA

(Ansari et al., 2020), as have extracts rich in polyphenols (Oliviero

et al., 2018) such as WG (Durairaj et al., 2014; Benincasa et al.,

2015). Therefore, the objective of this study was to characterize the

effect of WG on porcine cartilage responses to an inflammatory

stimulus (lipopolysaccharide; LPS).
Materials and methods

Study design

The purpose of this controlled, in-vitro study was to

determine anti-inflammatory and/or chondroprotective effects

of WG on porcine cartilage explant stimulated with LPS. Briefly,

cartilage explants were obtained from the intercarpal joint of
frontiersin.org
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nine pigs. From each animal, explants were treated with four

conditions, as shown in Figure 1 and described below. Since this

study utilized post-mortem tissue from animals slaughtered for

reasons unrelated to this study (i.e., for food), animal ethics

approval was not required.
Wheatgrass extract

Wheatgrass (WG) extract was prepared by adding WG (190.8

mg) to double distilled water (35mL) and 100% ethanol (100µL). At

the same time, an identical blank (B) solution was prepared

containing only ethanol and water, without WG. The solutions

were incubated at 37°C at 7% CO2 for 2 hours before being

centrifuged at 4°C for 20 minutes, and supernatant was separated

from the pellet. pH of both supernatants was adjusted to 6.3, before

being sterilized through a 0.22µm filter and frozen at -20°C until use.
Preparation and conditioning of
cartilage explants

Explants were prepared and maintained according to the

method described by Pearson et al. (2010). Cartilage from nine

pigs was aseptically harvested from the intercarpal joints using a

4mm biopsy tool and acclimatized in basal tissue culture media

(TCM) for 48 h in 24-well tissue culture plates (two explants per

well) at 37°C with 7% CO2. After the initial 48h acclimatization

period, TCM was removed and refreshed with one of four

conditions: 1. Control (C) – 1000 mL of tissue culture media

(TCM); 2. Blank (B) – 970 mL TCM + 30 mL blank solution; 3.

T1 – 970 mL TCM + 20 mL B + 10 mL WG (equivalent to a well

concentration of 5 mg/mL); 4. T3 –970 mL TCM + 30 mL WG

(equivalent to a well concentration of 15 mg/mL). These equate to

approximate doses of 18 and 54 g for a 300 kg pig, respectively,

assuming a total body water content of approximately 65%.

Media and conditioning were subsequently removed and

replaced with fresh solutions every 24 h. After the initial 72 h of

culture, half of each of the explant wells were stimulated with
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LPS (10 ug/mL) for an additional 48h. Explants from each of the

nine animals were exposed to each condition.
Sample analysis

Media samples were analyzed for biomarkers with

importance in cartilage inflammation (PGE2; ELISA and nitric

oxide; Griess Reaction) and breakdown (net glycosaminoglycan

release; DMB assay) and an assessment of chondrocyte viability

(differential live/dead staining).

PGE2
TCM samples were analyzed for PGE2 using a commercially

available ELISA kit (Arbour Assays; cat #K051-H5). Plates were

read at absorbance of 450 nm. A best-fit 3rd order polynomial

standard curve was developed for each plate (R2 ≥ 0.99), and

these equations were used to calculate PGE2 concentrations for

samples from each plate.

GAG
TCM GAG concentration was determined using a 1,9-

Dimethyl Methylene Blue (1,9-DMB) spectrophotometric

assay [19]. Samples were added to 96-well plates at 50%

dilution, and serially diluted 1:2 up to a final dilution of

1:64. Guanidine hydrochloride (275 mg/mL) was added to

each well followed immediately by addition of 150 mL DMB

reagent. Absorbance was measured at 530 nm. Sample

absorbance was compared to that of a bovine chondroitin

sulfate standard (Sigma, Oakville ON). A best-fit linear

standard curve was developed for each plate (R2 ≥ 0.99),

and these equations used to calculate GAG concentrations for

samples on each plate.

NO2-
Nitrite (NO2-), a stable oxidation product of NO, was

analyzed by the Griess reaction [19]. Undiluted TCM samples

were added to 96 well plates. Sulfanilamide (0.01 g/mL) and N-

(1)-Napthylethylene diamine hydrochloride (1 mg/mL)

dissolved in phosphoric acid (0.085 g/L) was added to all

wells, and absorbance was read within 5 min at 530 nm.

Sample absorbance was compared to a sodium nitrite

standard. A best-fit linear standard curve was developed for

each plate (R2 ≥ 0.99), and these equations were used to calculate

nitrite concentrations for samples from each plate.
Cell viability
Viability of cells within cartilage explants was determined

using a Calcein-AM (C-AM)/Ethidium homodimer-1 (EthD-1)

cytotoxicity assay kit (Molecular Probes) modified for use in

cartilage explants [19]. C-AM and EthD-1 were mixed in sterile

distilled water at concentrations of 4 and 8 mM, respectively.
FIGURE 1

Study design for cartilage explants. TSM, tissue culture media; B,
Blank (0.28% ethanol in double-distilled water); WG, wheatgrass.
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Explants were placed one per well into a sterile 96-well

microtitre plate and incubated in 200 mL of the C-AM/EthD-1

solution for 40 min at room temperature. The microplate reader

(Victor 3 1420 Microplate Reader, Perkin Elmer, Woodbridge

ON) was set to scan each well, beginning at the bottom, using 10

horizontal steps at each of 3 vertical displacements set 0.1 mm

apart. C-AM and EthD-1 fluorescence in explants were obtained

with using excitation/emission filters of 485/530 nm and 530/

685 nm, respectively.
Statistical analysis

All data were analyzed using SigmaPlot (version 14.0) and

are reported as mean ± SEM, unless otherwise indicated. Data

were analyzed using a 2-way repeated measures ANOVA (with

respect to time and treatment) to determine the effect of WG on

each outcome measure. A Student t-test was used to determine

the effect of treatments on cell viability. When a significant F-

ratio was obtained, the Holm Sidak post-hoc test was used to

identify differences between treatments. Any treatments

stimulated with LPS are designated with + (i.e., C+, B+, T1+

and T3+). Significance was accepted when p < 0.05.
Results

For each outcome measure, C and B explants were initially

compared, in order to demonstrate that the vehicle in which

WG was extracted did not alter baseline responses of cartilage

to LPS. Provided that no differences were identified between C

and B explants, effects of WG were only compared with

B explants.
Media [NO]

Controls
There was no significant change in media [NO] in C or B

explants across the 48 h sampling time (Figure 2). Stimulation of

C+ explants with LPS resulted in a significant increase in media

[NO] between 0 (14.7 ± 0.4 mg/mL) and 24 h (18.4 ± 1.3 mg/mL)

(p = 0.009), and 0 and 48 h (21.3 ± 1.1 mg/mL) (p < 0.001). Media

[NO] was significantly higher in C+ than in C explants at 24 (p =

0.003) and 48 h (p < 0.001).

Significant increase in [NO] was also observed in B+

explants between 0 (14.9 ± 0.3 mg/mL) and 24 h (19.3 ± 1.1

mg/mL) (p = 0.007), between 0 and 48 h (22.9 ± 2.0 mg/mL) (p <

0.001), and between 24 and 48 h (p = 0.03). Media [NO] was

significantly higher in B+ explants than in B explants at 24 (p =

0.007) and 48 h (p < 0.001).

There were no differences in [NO] between C and B (p = 1.0)

or C+ and B+ (p = 1.0) at any time point.
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Wheatgrass
There was no change in media [NO] in T1 or T3 explants

across the 48 h sampling time course (Figure 3A). Stimulation of

T1+ explants with LPS resulted in a significant increase in media

[NO] between 0 (14.6 ± 0.2 mg/mL) and 48 h (18.2 ± 1.7 mg/mL)

(p < 0.001). Media [NO] was significantly lower in T1+ than in B+

explants at 48 h (p = 0.01) (Figure 3B). Stimulation of T3+

explants with LPS resulted in a significant increase in media

[NO] between 0 (14.3 ± 0.5 mg/mL) and 48 h (18.9 ± 1.0 mg/mL)

(p < 0.001), and 24 (15.9 ± 1.0 mg/mL) and 48 h (p = 0.007). There

were no differences in media [NO] between B+ and T3+ at any

time point (Figure 3B).
Media [GAG]

Controls
There was no significant change in media [GAG] in C or B

explants across the 48 h sampling time (Figure 4). Stimulation of

C+ explants with LPS resulted in a significant increase in media

[GAG] between 0 (6.8 ± 0.7 mg/mL) and 24 h (9.9 ± 0.3 mg/mL)

(p = 0.05), 24 and 48 h (14.8 ± 1.9 mg/mL) (p < 0.001), and 0 and

48 h (p < 0.001). Media [GAG] was significantly higher in C+

than in C explants at 48 h (p < 0.001). Significant increase in

[GAG] was also observed in B+ explants between 0 (6.6 ± 0.7 mg/
mL) and 24 h (9.7 ± 1.0 mg/mL) (p = 0.05), 0 and 48 h (14.9 ± 1.9

mg/mL), and between 24 and 48 h (p < 0.001). Media [GAG] was

significantly higher in B+ explants than in B explants at 48 h (p <
FIGURE 2

Media [NO] (µg/mL) from explants cultured in basal media (C) or
media conditioned with 1% DD20; Ethanol (0.3%) (B) in the
presence (+) or absence of lipopolysaccharide (10µg/mL).
*denotes significant change from baseline within treatments.
Letters denote significant difference between treatments at
individual time points.
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0.001) (Figure 4). There were no differences in [GAG] between C

and B (p = 1.0) or C+ and B+ (p = 1.0) at any time point.

Wheatgrass
There was no change in media [GAG] in T1 or T3 explants

across the 48 h sampling time course (Figure 5A). Stimulation of

T1+ explants with LPS did not result in a significant increase in
Frontiers in Animal Science 05
[GAG] at any time point. Media [GAG] was significantly lower

in T1+ (9.1 ± 1.9 mg/mL) than in B+ explants at 48 h (p < 0.001)

(Figure 5B). Stimulation of T3+ explants with LPS resulted in a

significant increase in media [GAG] between 0 (6.9 ± 0.6 mg/mL)

and 48 h (11.8 ± 1.5 mg/mL) (p = 0.04). Media [GAG] was

significantly lower in T3+ than in B+ explants at 48 h (p =

0.02) (Figure 5B).
B

A

FIGURE 3

Media [NO] (µg/mL) from explants cultured in basal media (B) or media conditioned with 5 (T1) or 15 (T3) µg/mL of Wheatgrass Extract. Explants
werer maintained without stimulation (A) or were stimulated with lipopolysaccharide (10µg/mL; denoted as’+’) (B). *denotes significant change
from baseline within treatments . Letters denote significant difference between treatments at individuals time points.
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Media [PGE2]

Controls
There was no significant change in media [PGE2] in C or B

explants across the 48 h sampling time (Figure 6). Stimulation of

C+ explants with LPS resulted in a significant increase in media

[PGE2] between 0 (204.8 ± 78.4 pg/mL) and 24 h (2133.4 ± 486.4

pg/mL) (p < 0.001), and 0 and 48 h (2160.5 ± 336.9 pg/mL) (p <

0.001). Media [PGE2] was significantly higher in C+ than in C

explants at 24 and 48 h (p < 0.001). Significant increase in

[PGE2] was also observed in B+ explants between 0 (124.7 ± 57.0

mg/mL) and 24 h (2715.3 ± 480.8 mg/mL) (p < 0.001), 0 and 48 h

(2399.1 ± 430.7 mg/mL) (p < 0.001. Media [PGE2] was

significantly higher in B+ explants than in B explants at 24

and 48 h (p < 0.001). There were no differences in [PGE2]

between C and B (p = 1.0) or C+ and B+ (p = 1.0) at any

time point.

Wheatgrass
There was no change in media [PGE2] in T1 or T3 explants

across the 48 h sampling time course (Figure 7A). Stimulation of

T1+ explants with LPS resulted in a significant increase in

[PGE2] between 0 (254.8 ± 156.9 mg/mL) and 48 h (2159.3 ±

623.9 mg/mL) (p = 0.001). Media [PGE2] was significantly lower

in T1+ than in B+ explants at 24 h (p = 0.008). Media [PGE2]

was also significantly lower in T1+ than in T3+ explants at 24 h

(p = 0.03) (Figure 7B). Stimulation of T3+ explants with LPS

resulted in a significant increase in media [PGE2] between 0

(531.0 ± 180.6 mg/mL) and 24 h (2534.2 ± 441.3 mg/mL) (p <

0.001), and 0 and 48 h (2188.2 ± 510.4 mg/mL) (p = 0.009). There
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were no differences in media [PGE2] between T3+ and B+

explants at any time point (Figure 7B).
Cell viability

There was no effect of LPS or WG on cell viability (Figure 8).
Discussion

The purpose of this experiment was to determine the effects

of an extract of WG (5 or 15 mg/mL) on porcine cartilage

responses to pro-inflammatory stimulation with LPS. We have

previously shown that LPS causes an inflammatory response in

cartilage, as evidenced by increased production of PGE2, GAG

and NO (Pearson et al., 2007; Pearson et al., 2010; Pearson and

Kott, 2019; Pearson et al., 2020). The main findings were that

conditioning of cartilage explants with both doses of WG extract

(5 and 15 mg/mL) for 24 h prior to and 48 h after stimulation

with LPS resulted in significantly reduced breakdown of

cartilage, as measured by significantly lower GAG release

following exposure to LPS in WG-conditioned explants.

Furthermore, LPS-induced inflammation was significantly

reduced by WG as measured by a significant decrease in LPS-

induced PGE2 (5 mg/mL) and NO (5 and 15 mg/mL). These

findings provide evidence for a protective effect of WG on

cartilage structure and inflammation in the presence of a pro-

inflammatory stimulus. Furthermore, WG was found to be safe

to cells within cartilage explants, as evidenced by a lack of decline

in cell viability after 72 hours of exposure.

Wheatgrass has been suggested as part of the treatment for a

variety of degenerative diseases due to its anti-inflammatory and

antioxidant properties (Kulkarni et al., 2006; Watzl, 2008;

Urbonavičiute et al., 2009; Parit et al., 2018). The effects of

WG have primarily been tested in vitro, where it has been

observed to be capable of countering all major types of

excessive radicals (Watzl, 2008; Durairaj et al., 2014). In

rodents, WG supplementation has been found to be beneficial

in the treatment and prevention of obesity (Im et al., 2015),

protect the liver against alcohol and oxidative stress (Durairaj

et al., 2015), and prevent or treat cancer (Zalatnai et al., 2001). In

rats with glucocorticoid-induced osteoporosis, 30 days of WG

extract, coupled with bisphosphonate and risedronate, were

found to increase bone mineral content and decrease bone

resporption (Banji et al., 2014). In humans, supplementation

of WG alongside standard therapy was found to improve

symptoms of rheumatoid arthritis (Bálint et al., 2006).

However, to the authors’ knowledge, no evidence exists to date

to indicate that WG may play a role in OA specifically.

PGE2 is a key biomarker for pain and inflammation and is

the compound that is targeted for inhibition by NSAIDs. PGE2 is

directly associated with the pain and inflammation that is the
FIGURE 4

Media [GAG] (µg/mL) from explants cultured in basal media (C)
or media conditioned with 1% DD20:Ethanol (0.3%) (B) in the
presence (+) or absence of lipopolysaccharide (10 µg/mL).
*denotes significant change from baseline within treatments.
Letters denote significant difference between treatments at
individuals time points.
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hallmark of arthritis, and its inhibition byWG suggests that sows

with clinical signs of OA supplemented with WG will experience

a reduction in pain. Similarly, NO is a key biochemical in the

pain signaling cascade, as well as a pyrogenic mediator of the

periarticular swelling. The strong inhibition of NO by both doses
Frontiers in Animal Science 07
of WG in the current study support a marked anti-inflammatory

potential of the plant.

GAGs are highly polarized structural sidechains of

aggregating proteoglycans within cartilage. Their high polarity

causes them to strongly attract and retain water within cartilage,
B

A

FIGURE 5

Media [GAG] (µg/mL) from explants cultured in basal media (B) or media conditioned with 5 (T1) or 15 (T3) µg/mL of Wheatgrass Extract.
Expalnts were maintained without stimulation (A) or were stimulated with lipopolysaccharide (10 µg/mL;denoted as ‘+’) (B). *denotes significant
changefrom baseline within treatments. Letters denote significant difference between treatments at individual time points.
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contributing to the ability of cartilage to resist compressive and

shear forces (Volpi, 2006). In the early stages of arthritis, GAGs

are cleaved from proteoglycans, contributing to progressive

thinning of articular cartilage and impairment of the tissue’s

ability to buffer catabolic effects of forces travelling across the

articulating joint (Zhou et al., 2018). The mechanism of action of

some useful disease modifying agents such as n-acetyl

glucosamine derivatives (Cao et al., 2016) and bioactive plant

extracts (Pearson et al., 2010; Liu et al., 2015) involves

preventing GAG loss during inflammation, resulting in

protraction of the disease process and prolonging healthy

function of cartilage. Results from the current study provide

evidence for a protective effect of WG on cartilage structure

during inflammatory stress. The molecular mechanism by which

WG exerts this effect is not known but may be associated with

the reported inhibitory effect of polyphenols on proteolytic

aggrecanases (Cudic et al., 2009) which catalyze breakdown of

proteoglycan molecules during catabolic events such as

inflammation and degenerative articular diseases. This

hypothesis should be explored in future research.

Safety of WG on cartilage cells was determined using

fluorescent dye method. We have previously validated and

applied this technique for use in cartilage explants to obtain an

estimate of the effect of dietary supplements on cartilage explants

for which the actual number of cells within the explants is not

known (Pearson et al., 2007; Pearson et al., 2010). This technique

utilizes Calcein-AM (C-AM) and Ethidium Homodimer-1

(EthD1) to differentially fluoresce in live and dead chondrocytes,

respectively. C-AM is transported into live cells across the cell

membrane. Once inside, esterases within the cytosol cleave the
Frontiers in Animal Science 08
‘AM’ portion from calcein, trapping the calceinmolecule inside the

cell and causing it to fluoresce green. Conversely, EthD1 will only

fluoresce when it is able to bind to DNA. Because intact cell

membranes are impermeable to EthD1 this binding can only

occur when the cell membrane is dead. When explants are

submerged in fluid containing C-AM and EthD1 at the

appropriate concentration and for the appropriate duration,

simultaneous measurements of fluorescence of both C-AM and

EthD1 can be obtained, which gives a good estimation of the

percent viability of cells within the individual explants. The

current study demonstrates that WG is not cytotoxic at the doses

evaluated, which approximated 18 and 54 g for a 300 kg sow.

It is concluded that conditioning cartilage explants in the

presence of a wheatgrass extract results in protection of cartilage

against LPS-stimulated decline in cartilage structure, reduces

mediators of inflammation, and is non-cytotoxic. Nutrition of

sows has previously been noted as an important predisposing

factor of sow lameness (van Riet et al., 2013). Nutritional

strategies to support bone remodeling, cartilage metabolism,

and horn production are not yet fully understood (van Riet et al.,

2013). In addition to ensuring adequate availability of nutrients

and appropriate feed intake, there is potential for functional feed

ingredients to also aid in supporting musculoskeletal health.

Due to the similarities in joint anatomy, physiology, and

biomechanics between humans and pigs, pigs are an excellent

translational model to better understanding human OA.

Additionally, pigs have large sized litters that mature quickly,

making them an excellent non-rodent model (Cruz et al., 2016).

Pigs have previously been used as an animal model to study the

physiopathology of OA and cartilage repair (Murray and
FIGURE 6

Media [PGE2] (µg/mL) from expalnts cultured in basal media (C) or media conditioned with 1% DD20:Ethanol (0.3%) (B) in the presence (+) or
absence of lipopolysaccharide (10 µg/mL). *denotes significant change from baseline within treatments. Letters denote significant difference
between treatments at individual time points.
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Fleming, 2012; Schlichting et al., 2014; Sieker et al., 2018;

Kremen et al., 2020; Zhao et al., 2021). It is possible that

similar chondroprotective and anti-inflammatory effects may

be associated with WG supplementation in humans. Further

research into this area is warranted.
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The results of this study provide evidence for a potentially

valuable role of WG in preventing joint dysfunction and pain

associated with OA, and supports its use for prolonging healthy

cartilage in sows. Further research on the effects of this

supplementation in live sows is warranted.
B

A

FIGURE 7

Media [PGE2] (µg/mL) from expalnts cultured in basal media (B) or media conditioned with 5 (T1) or 15 (T3) µg/mL of Wheatgrass Extract.
Explants were maintained without stimulation (A) or were stimulated with lipopolysaccharide (10 µg/mL; denoted as ‘+’) (B). *denotes significant
change from baseline within treatments. Letters denote significant difference between treatments at individual time points.
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