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Diabetes mellitus is a global public health problem with both macrovascular and

microvascular complications, such as diabetic corneal neuropathy (DCN). Using

in-vivo confocal microscopy, corneal nerve changes in DCN patients can be

examined. Additionally, changes in the morphology and quantity of corneal

dendritic cells (DCs) in diabetic corneas have also been observed. DCs are bone

marrow-derived antigen-presenting cells that serve both immunological and non-

immunological roles in human corneas. However, the role and pathogenesis of

corneal DC in diabetic corneas have not been well understood. In this article, we

provide a comprehensive review of both animal and clinical studies that report

changes in DCs, including the DC density, maturation stages, as well as

relationships between the corneal DCs, corneal nerves, and corneal epithelium,

in diabetic corneas. We have also discussed the associations between the changes

in corneal DCs and various clinical or imaging parameters, including age, corneal

nerve status, and blood metabolic parameters. Such information would provide

valuable insight into the development of diagnostic, preventive, and therapeutic

strategies for DM-associated ocular surface complications.

KEYWORDS

corneal dendritic cell, diabetic mellitus, corneal nerves, corneal epithelial cells, in vivo
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1 Diabetes mellitus and diabetic corneal neuropathy

Diabetes mellitus (DM), characterised by elevated levels of blood glucose resulting from

defective insulin secretion and/or action, has emerged to become a major global public health

problem (1). In 2021, 537 million adults were living with diabetes, and estimably 6.7 million

adults have died because of DM or its complications (2). The estimated global cost of diabetes

was projected to increase from US$1.31 trillion in 2015 to $2.1 trillion in 2030 (3). DM is

associated with both macrovascular complications, such as cardiovascular disorders, and
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microvascular complications, including diabetic peripheral

neuropathy (DPN) (4, 5). The manifestation of DPN in the cornea

is referred to as diabetic corneal neuropathy, leading to

diabetic keratopathy.

DCN is characterized by changes in corneal nerve fibres and

occurs in 47-64% of patients during their clinical course of DM (6,

7). When evaluating corneal nerve changes in DCN, in-vivo confocal

microscopy (IVCM) has been considered the gold standard. In vivo

cell imaging uses light reflected from within the tissue, gathering

information to aid the recognition of inter- and intracellular details

(8). Different from conventional microscopy where the image can be

observed directly, confocal microscopes obtain increased resolution

by limiting the illumination and observation systems to a single

point. Hence, to reconstruct a full field of view and allow for “real-

time” viewing, rapid scanning is used for IVCM (8, 9). IVCM

produces high-resolution images at a cellular level with a

magnification of 600-800 times, a lateral image resolution of 1-

2mm, and an axial resolution of 5-10 mm (10). Post-imaging

quantitative evaluations of corneal nerve plexus can be done

manually, in a semi-automated manner, or a completely
Frontiers in Endocrinology 02
automated manner using certain analytic software (5, 11).

Numerous studies have reported IVCM findings of reduced

corneal nerve fibre density (CNFD), corneal nerve fibre length

(CNFL), and corneal nerve branch density (CNBD) in patients

with type 1 diabetes mellitus (T1D) or type 2 diabetes mellitus

(T2D) (Figures 1A, B) (5). A reduction in nerve beading frequency is

also observed, indicating a decrease in nerve metabolic activity and

an increase in the risk of neuronal damage (7). In addition, patients

with T1D or T2D present with an increase in nerve fibre tortuosity,

reflecting a degenerative and subsequent attempted regenerative

nerve response (Figure 1C) (12, 13). Besides nerve changes in the

central and peripheral cornea, an earlier reduction in CNFL and

CNBD of the subbasal inferior whorl of the corneal nerves, located

in the inferonasal cornea, is also reported, serving as an imaging site

for early detection of DCN (Figures 1D, E) (5, 7, 14). Moreover,

patients with T1D have a lower corneal nerve fractal dimension

(CNFrD) compared to control subjects, suggesting a less healthy

and less evenly-distributed nerve fibre network in patients with T1D

(7). Changes in the morphology and quantity of corneal dendritic

cells (DCs) in diabetic corneas were also observed in several studies
A B
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C

FIGURE 1

Representative IVCM images of (A) subbasal nerve plexus in normal controls (image taken from the subtemporal quadrant of the cornea of a middle-
aged patient) (CNBD: 12.4992 no./mm2); (B) subbasal nerve plexus with decreased corneal nerve fiber length and density in patients with DM, and the
presence of dendritic cells (arrows) (CNBD: 0 no./mm2) (C) subbasal nerve plexus with increased tortuosity and the presence of dendritic cells (arrows) in
patients with DM (CNBD: 18.7488 no./mm2) (D) inferior whorl of corneal nerves in normal controls (CNBD: 43.7472 no./mm2); and (E) inferior whorl of
corneal nerves in patients with DM showing the reduction in corneal nerve fiber length and density and the presence of dendritic cells (arrows) at the
inferior whorl (CNBD: 6.2496 no./mm2). Images were produced via the Heidelberg retina tomograph (HRT) Corneal Module (Heidelberg Engineering,
Heidelberg, Germany), laser scanning confocal microscopy.
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(15). However, the role and pathogenesis of the accumulation of the

DCs have been not well understood.
2 Dendritic cells in normal corneas

DCs are bone marrow-derived antigen-presenting cells (APCs)

that act as the initiator and modulator of immune responses (16).

They are distinguished from other immune cell types through their

cytoplasmic extensions (the dendrites), poor phagocytic activity, and

the scarcity of their intracellular organelles (16). The most notable

function of the DC family is to initiate primary T-lymphocyte-

mediated immunity in response to an antigenic stimulus (17). This

is achieved mainly through three functions of DCs: (a) capturing and

presentation of antigens as sentinel cells; (b) migrating and binding to

the antigen-specific T cells in lymphoid organs, and (c) activating T-

cells and inducing their growth and proliferation (17).
2.1 Distributions of corneal dendritic cells

Naïve corneas were originally considered to lack the antigen-

presenting system of DCs, contributing to their immune-privileged

nature (18). However, more recent studies have shown a significant

population of different subtypes of DCs residing in the cornea, with

the number of which decreasing from the periphery towards the

centre (19–22). Among the peripheral regions of the cornea,

the inferior region has the highest density of DCs, followed by the

superior region and the nasal region, while the temporal region has

the lowest (22). In general, DCs can be subdivided into three main

groups: the conventional DCs (cDCs), the plasmacytoid DCs (pDCs),

and the monocyte-derived DCs (moDCs) (23). Such DCs

subpopulations are defined based on their ontogeny, functional

specialisation, and the requirement of specific transcription factors

(TF) for the development (24). Different subtypes of corneal DCs are

found in corneal epithelium and anterior stroma respectively (25, 26).

Langerhans Cells (LCs), historically considered a subtype of

conventional DCs (cDC), are observed in the periphery and centre

of both human and murine corneal epithelium (25–29). However, the

classification of LCs remains a topic with ongoing debate, since LCs

were found to share properties with both DCs and macrophages. It

has been argued by some that LCs may be considered a pecialized

subset of tissue-resident macrophages based on their shared

developmental origin (30, 31). Indeed, common DC precursors

were found not to give rise to epidermal LCs. However, LCs share a

remarkable number of functions with DCs, including migration to

lymph nodes, and T-cell stimulation (31). The use of the term “LCs”

has not been consistent across IVCM studies, and some other terms,

such as APCs, dendritiform cells, or immune cells have also been used

(28). Besides corneal epithelium, the anterior corneal stroma is also

endowed with a different population of cDCs, namely the interstitial

DCs. The interstitial DCs are primarily located in peripheral and

paracentral regions of the anterior stroma with some toward the

central anterior stroma in both murine and human cornea (25, 26, 29,

32). More recently, plasmacytoid dendritic cells (pDCs) have also

been observed in the anterior stroma as well as epithelium in both the
Frontiers in Endocrinology 03
central and peripheral cornea of mice and human cadaver (29,

33–35).
2.2 Functions of corneal dendritic cells

Normally, mature DCs have developed dendrites that are absent

in immature DCs (28). Unlike mature DCs, immature DCs lack the

requisite accessory signals for T-cell activation, such as CD40, CD80,

and CD86. To induce maturation of the dormant immature DCs,

signals in the extracellular milieu through inflammatory mediators

are needed (32). The distribution of corneal DCs at different

maturation stages in the human cornea remains an issue of ongoing

discussion. Some are consistent with the murine studies, which

reported immature LCs in the centre of corneal epithelium, and

both mature and immature LCs in the peripheral corneal epithelium

(22, 27). Others demonstrated few mature LCs and interstitial DCs in

epithelium and stroma respectively in both the peripheral and central

cornea (25). The differences may have arisen from several reasons,

potentially including different maturation markers and different

models (in-vivo or ex-vivo) used (25, 27).

DCs serve both immunological and non-immunological roles in

human cornea. The primary function of DCs in the cornea is to induce

and amplify immunoinflammatory responses (18, 36). During the

inflammatory process triggered by infection or allergy, the release of

pro-inflammatory cytokines, such as interleukin (IL)-1, tumour necrosis

factor (TNF)-a, CD40L, and lipopolysaccharide, or heat-shock proteins
from dying cells, facilitates the activation of LCs/DCs in the cornea (20,

21). Resultingly, surface expression of co-stimulatorymolecules (CD80/

CD86) and CD40 is increased by DCs/LCs in the peripheral cornea, as

well as acquireddenovoby immatureDCs/LCs in the central cornea (37).

The activated corneal LCs/DCs function as APCs by transporting the

antigens to lymphoid organs and presenting them to effector ormemory

T cells, priming the T cells for the antigen-specific adaptive immune

response (18, 36, 37). Resident corneal DCs are considered long-lived,

though it is still uncertain whether during the steady state, the corneal

DCs self-regenerate through mitosis, emerge from tissue-resident

precursors, or are recruited from the circulating blood (38–40).

Nonetheless, in the presence of inflammatory stimuli and increased

chemokine/cytokine levels in the cornea, corneal DCs are increased, at

least partially through the recruitment of DC precursors from the blood

(26, 38).

The non-immunological function of LCs/DCs is associated with

tissue repair, through partnering with surrounding corneal epithelial

cells. Upon injury, corneal intraepithelial LCs/DCs are activated either

directly through recognition of danger signals, or indirectly from

cytokines and chemokines secreted by epithelial cells in the injury site.

The activated LCs/DCs modulate the migration, proliferation, and

survival of epithelial cells in the wounding area via either cell-to-cell

contact or the release of survival and growth factors (41). The epithelial

cells, in turn, further activate corneal LCs/DCs and recruit them into the

wound bed via epithelia-generated mediators (41).

It Is worth noting that although DCs and macrophages were

historically regarded as two distinct types of immune cells, the

classifications of DCs and macrophages have recently been

challenged and remain a topic of ongoing discussion (42, 43). Due
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to some shared surface markers and functional parameters between

renal DCs and macrophages in both acute renal injury and chronic

immune-mediated kidney disease (42–46). It was argued that the

functional and phenotypic definitions of these two cell types,

especially in the kidney, overlap greatly (42). Therefore, an

improved classification system may be needed to better facilitate

future research work (42, 44).
3 In-vivo confocal microscopy (IVCM)
evaluation on corneal DCs

As IVCM can provide images at the cellular level, it has been used

to evaluate the DC morphology and distribution (27, 47). Using

IVCM, changes in corneal DCs have been observed in ocular surface

diseases including dry eye disease and infectious keratitis, as well as

systemic disorders including DM, multiple sclerosis, rheumatoid

arthritis, ankylosing spondylitis, and systemic lupus erythematosus

(15, 48–51). On IVCM evaluation, corneal epithelial DCs present as

bright corpuscular particles and a diameter of up to 15mm (27). The

presence of Birbeck granules, a type of cytoplasmic marker granules,

distinguishes LCs from other DCs (27). Currently, phenotypic

classification of corneal epithelial DCs is achieved mainly through

morphological differences (49). The DCs morphology can be

evaluated according to a 0-3 scale based on the size of the
Frontiers in Endocrinology 04
dendrites compared to the largest diameter of the cell body

(Figure 2): A score 0 indicates an absence of DCs; a score 1

indicates the presence of DCs without processes; a score 2

indicates the presence of DCs with small processes, the length of

which does not exceed the largest diameter of the cell body; a score 3

indicates the presence of DCs with long processes, the length of

which exceeds the largest diameter of the cell body (48, 52). Longer

processes and smaller cell bodies in DCs indicate a higher level of

maturation and potential activity (48, 52).
4 Search strategy and selection criteria

The authors conducted a search on the online database PubMed

Central, Google Scholar, and Science Direct for relevant articles that

describe the changes in corneal dendritic cells in subjects with T1D/

T2D or the relationship between corneal DCs and clinical or corneal

imaging parameters in patients with T1D/T2D.

Articles were included up to May 2022. Keywords included but

were not limited to “diabetes” AND “hyperglycaemia” AND “corneal

dendritic cells” OR “corneal Langerhans cells” AND “corneal nerve”

AND “corneal neuropathy”AND “corneal epithelial cells”AND “ag”“

AND “diabetes duration” AND “blood metabolic profile”. Our review

only examined papers written in English, and we restricted the date of

publication to the most recent ten years as much as possible. We have
FIGURE 2

IVCM images showing grading of DC morphology. DCs are indicated by the arrow in respective IVCM images. Images were produced via the Heidelberg
retina tomograph (HRT) Corneal Module (Heidelberg Engineering, Heidelberg, Germany), laser scanning confocal microscopy.
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also extracted relevant articles from the bibliographies of the existing

articles. The authors then manually screened the abstracts and

shortlisted papers based on our inclusion criteria. The full-text

version of all selected articles was further examined.
5 Changes in corneal dendritic cells in
patients with DM

DMaffectsmultiple ocular tissues, including the cornea (49). Studies

have examined the changes in DCs, including the DC density,

maturation stages, as well as relationships between the corneal DCs,

corneal nerves, and corneal epithelium, in subjects with T1D/T2D (15,

53–60).CornealDCsmay serve as a biomarker forDM-associated ocular

surface complications, such as diabetic corneal neuropathy (54).
5.1 Changes of corneal DC density in DM

Changes in DCs density in subjects with T1D/T2D have been

investigated and remain a topic of ongoing discussion. The majority

of animal and clinical studies reported an increase in DCs density in
Frontiers in Endocrinology 05
subjects with T1D/T2D, while a few presented the opposite (15, 53–

59). The literature review on this topic is summarised in Table 1.

Whenmice models are used to investigate T1D, streptozotocin (STZ)

is commonly used to induce hyperglycemia through the destruction of

pancreatic b-cells (15, 59, 62). Via corneal IVCM and corneal in vitro

whole-mounts confocal microscopy (WMCM), a constant increase of

corneal DC density over 9 weeks upon diabetes inductionwas observed in

one murine study (15). Contrastingly, another study using WMCM

observed a significantly lower number of DCs in corneas from STZ-

induced mice with T1D compared to controls (59). On the other hand,

Lepob/ob mice are often used as mouse models of T2D (62). One murine

study investigating mice with T2D reported that the dendritic cell density

in type 2 diabetic mice was 3-fold higher than in non-diabetic mice (15).

In clinical studies, the DC density was quantified in patients with

T1D or T2D using IVCM. Compared to healthy controls, significantly

higher DC density was observed in patients with T1D or T2D, as well as

in patients with T1D/T2D and peripheral/somatic neuropathy or

corneal punctate epitheliopathy (53–58). Among patients with T1D/

T2D and peripheral/somatic neuropathy, DC density was significantly

higher in patients with no or mild peripheral/somatic neuropathy

compared to non-diabetic controls. However, with the progression of

peripheral neuropathy, the DC density was reduced in patients with
TABLE 1 Studies reporting the changes in DC density in DM.

Authors Study population DC quantification
technique

Findings

Literature reporting increased DC density in DM:

Leppin
et al. (15)

Streptozotocin (STZ)-induced T1D
mice and Lepob/ob mice with T2D

IVCM and in-vitro corneal whole-
mounts confocal microscopy
(WMCM)

Both STZ-induced mice and Lepob/ob mice experienced increased corneal DC
density.

Colorado
et al. (53)

Patients with T1D Time-lapsed IVCM A higher density of DC without dendrites was observed in subjects with T1D
compared to healthy controls.

D’Onofrio
et al. (54)

Patients with T1D, T2D, or latent
autoimmune diabetes of adults
(LADA)

Laser scanning IVCM A higher DC density was observed in patients with T1D, T2D, and LADA
compared to controls.

Tavakoli
et al. (55)

Patients with T1D/T2D and varying
severities of diabetic peripheral
neuropathy

IVCM A significant increase in DC density was observed in patients with T1D/T2D
and no or mild peripheral neuropathy
A decrease in DC density was reported in patients with T1D/T2D and moderate
or severe peripheral neuropathy, yet DC density still remained higher than
control values.

Ferdousi
et al. (56)

Children with T1D IVCM A significantly higher total DC density was observed in individuals with T1D
compared to controls.

Qu et al.
(58)

Patients with T2D diagnosed with
corneal punctate epitheliopathy

IVCM A significantly higher LC density was reported in punctate epitheliopathy
patients with T2D compared to punctate epitheliopathy resulting from other
causes.

Qu et al.
(57)

Patients with T2D without and with
cornea fluorescein staining

IVCM A significantly higher LC density existed in T2D patients compared to healthy
controls in all corneal areas.
A significantly higher LC density was reported in T2D patients with punctate
epitheliopathy compared to those without in the central and inferior zones of
the cornea.

Literature reporting decreased DC density in DM:

Gao et al.
(59)

STZ-induced T1D mice Whole-mount confocal
microscopy (WMCM)

A reduced number of intraepithelial DCs was reported in diabetic corneas
compared to non-diabetic corneas.

Literature reporting no significant change in DC density in DM:

Chao et al.
(61)

Patients with prediabetes or T2D IVCM No significant difference in DC density among patients with prediabetes, T2D,
and healthy controls was observed.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1078660
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2023.1078660
T1D/T2D and moderate or severe neuropathy, though remained above

control values. The authors proposed that DCs might be only involved

in the early phases of nerve degeneration whereas the later phase of

nerve damage in DM may be maintained by other factors, including

glucose neurotoxicity (55, 63). The DC density in patients with T2D

and corneal punctate epitheliopathy was also investigated (57, 58). A

significantly higher DC density in all corneal areas was observed in both

groups of type 2 diabetic patients with and without punctate

epitheliopathy compared to healthy controls. In another study where

the authors compared the DC density in patients with punctate

epitheliopathy resulting from T2D or other causes, a significantly

higher DC density was found in the former group, suggesting an

association between T2D status and DC density (58).

There are several mechanisms proposed for the increase of DC

density in DM populations. Though DM is characterised by elevated

levels of blood glucose, it is suggested that the increase in DC might be

unrelated to hyperglycaemia as no correlation between DC density and

glycaemic control was observed (57). Instead, the increase of DCs in

patients with T1D/T2D may be deemed as a cellular response to

inflammation. Diabetes, especially T2D, has been suggested to be a

pro-inflammatory cytokine-associated disease, involvingboth the innate

and adaptive immune systems (60). There are several pathogeneses

involved in the inflammatory state of T2D, including tissue hypoxia, cell

death of expanding adipose tissue, activation of interleukins, and nuclear

factor (NF)-kB pathways, contributing to the recruitment and activation

of immune cells (5, 7, 64). For example, the NF-kB signaling pathway

may be activated via the interaction of advanced glycation end-products

(AGEs) and its cognate receptor for advanced glycation end-products

(RAGE), subsequently promoting the secretion of TNF-a, IL-1b, IL-6,
and other pro-inflammatory cytokines (65–68). Significantly increased

levels of variousAGEs compoundshave been reported inboth type1 and

type 2 diabetic patients, resulting from non-enzymatic glycation and

oxidation of proteins and lipids (65, 69–75). The mechanism for the

increased DC density is supported by the observations that corneal DC

infiltration and maturation are induced when inflammatory stimuli like

electric cautery, lipopolysaccharide, and tumour necrosis factor-a are

applied to the ocular surface (26, 76). Findings by another study are also

in linewith this proposedmechanismwhere theDCdensity in the cornea

increased by a factor of approximately eight during immune-mediated

corneal inflammation secondary to an infection, allergy, or corneal graft

rejection (77).

On the contrary, some literature showed the opposite findings in

which decreased corneal DCs were observed in both animal models

and patients with T1D/T2D (59, 78, 79). One proposed explanation is

that prolonged exposure to hyperglycaemia may cause DC apoptosis,

reducing the DCs density (80). Similar observations in other immune

cells, such as increased apoptosis in neutrophils as well as impaired

antigen presentation by monocytes, have also been reported under

chronic hyperglycaemic conditions (81). Such observation might also

be attributed to the different imaging techniques used.
5.2 Changes in maturation stages of corneal
DCs in DM

Besides the density changes, changes in the maturation stages of

DCs are reported in DM. Through wide-area three-dimensional
Frontiers in Endocrinology 06
mosaic projections of the corneal subbasal nerve plexus, a doubling

in mature DCs (mDCs) proportion, as well as a proportional decrease

in immature DCs (imDCs), were observed in patients with T2D (60).

This finding suggests that the maturation of corneal DCs occurs as

T2D develops. This is also supported by another study where the

authors reported a higher percentage of patients with T1D/T2D/

latent autoimmune diabetes of adults (LADA) (95%) with mature

DCs in their central cornea compared to healthy controls (65%), while

immature DCs can be found in all participants, including patients

with T1D/T2D/LADA and controls (54).

It is proposed that tumour necrosis factor receptor super family

member 9 (TNFRSF9) acts as a key contributor to the changes in the

maturation stages of corneal DCs, by promoting the maturation and

survival of DCs (60). Out of 92 plasma proteins analysed in a clinical

study, TNFRSF9 was associated with the observed maturation of DCs

from an immature to mature antigen-presenting phenotype. There

was a significant association between TNFRSF9 and the proportion of

mDC, and TNFRSF9 was also inversely correlated with the imDC

proportion (60). TNFRSF9 is found to be expressed on immune cells

including activated and regulatory T-cells and activated natural killer

(NK) cells (82–84). Hence, when T cells are activated with the onset of

T2D, it subsequently induces the expression of TNFRSF9, which

further promotes the maturation of the DCs (60). Besides TNFRSF9,

the involvement of AGEs in regulating the maturation of DCs has also

been reported in both in vitro studies of human tissue and in vivo

studies of diabetic mice with myocardial infarction (85, 86). The

maturation of DCs in patients with T1D/T2D may be induced by the

increased level of AGE through promoting the expressions of

scavenger receptor-A (SR-A) and RAGE, via the Jnk pathway. Such

a mechanism has been proposed in patients with atherosclerosis (86).
6 Relationship between corneal DCs
and clinical or corneal imaging
parameters

Studies have reported the associations between the changes in

corneal DCs and various clinical or corneal nerve imaging

parameters, including age, corneal nerve status, and blood

metabolic parameters (15, 53–58, 87). Such associations may

contribute to the current understanding of DM, further helping the

development of diagnostic measures and biomarkers, as well as

preventive and therapeutic strategies (54, 88, 89).
6.1 Relationship between corneal DCs
and age

In healthy individuals, corneal DC density was reported to be

independent of age by a meta-regression analysis (90). On the

contrary, a significant and positive correlation between the DC density

and age was observed in patients with T1D/T2D (55) (56). Moreover,

specific to childrenwithT1D, a significant positive correlationwas found

between the pubertal stage and the mature DC density, immature DC

density, as well as to total DC density (56). These findings indicate that

agemay be a potential differential risk of DM andDM-associated ocular

surface complications (56).
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Besides the DC density, the age of the patients with T1D was also

reported to be inversely correlated with the displacement of DCs

without dendrites (woDCs), as well as the woDCs’ persistence ratio

(53). DC displacement was calculated as the straight-line distance

between the start and end positions of a DC divided by the total time

of movement. The authors further proposed that faster DC

movements represent healthier DC behaviour and that reduced DC

migration in older patients may contribute to age-associated immune

dysfunction (53, 91, 92).

However, it is not entirely known how or whether the observed

correlations between age and the corneal DC parameters in patients

with T1D/T2D are involved or if they are influenced by the

pathogenesis of diabetes. Aging has been linked to diabetes through

several mechanisms, including age-associated insulin resistance and

age-dependent disruption of insulin production (93, 94). Given that

both the prevalence and incidence of T2D have been reported to

increase dramatically as a function of age, further understanding of

the mechanisms underpinning this differential risk is of great

importance in the development of age-appropriate preventive and

therapeutic strategies (88, 89).
6.2 Associations between corneal DCs and
corneal nerves

Diabetes may perturb the interaction between DCs and other

structures, especially corneal nerves (80). In the confocal images of

mouse corneas stained with CD11c (inflammatory marker) and b-
tubulin 3 (neuronal marker), intimate contacts between the DC body

and its processes with sensory nerve endings were observed (59). It

has also been demonstrated that DCs may be involved in diabetic

nerve degeneration, yet whether DCs are neuroprotective or

neurotoxic remains unclear with contrasting findings (49, 55).

Corneal nerve degeneration in DM may be associated with an

increased DCs density (15). In STZ-induced type 1 diabetic mice, a

significant negative correlation was reported between the corneal

nerve fiber length and DC density (15). It was also observed that the

density of DCs was higher in patients with T1D/T2D and no or mild

peripheral neuropathy compared to those with moderate and severe

peripheral neuropathy. The authors then proposed that DCs might be

involved in the initial phase of nerve damage (55). This theory was

further evidenced by the findings of other clinical studies. In patients

with T1D/T2D, a significant negative correlation between increased

DC density and corneal nerve fibre density, branch density, as well as

fibre length was observed, suggesting a potential interaction between

activated DCs and corneal nerve fibre degeneration (54, 58).

Moreover, in adults with T1D or T2D with or without punctate

epitheliopathy, a significant negative correlation was reported

between the corneal nerve fiber length and DC density, specifically

immature DC density for type 1 diabetic patients (15, 54, 57–59). An

inverse correlation between the total DC density and corneal nerve

total branch density was also reported in patients with T1D (54). In

the immune-neuron crosstalk between nerves and DCs, cells from the

neuroendocrine systems recognise the cytokines produced by

immune cells. Reciprocally, the immune cells recognise the

neurotransmitters and neuropeptides produced by the corneal

nerves (95). It is speculated that the DC-nerve interaction in the
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cornea may be analogous to the neuro-immune axis in the skin and

the gut (49, 80). For example, it was demonstrated that calcitonin

gene-related peptide (CGRP)-containing nerve fibres were intimately

associated with DCs and that CGRP could inhibit antigen

presentation by epidermal DCs (96). The tolerogenic and

immunomodulatory effects of many neuropeptides have also been

previously indicated, which, in their absence due to damages to

corneal nerves could lead to enhanced immune response, including

increased DC density (97).

Contrary to the previous discussion, some studies found that

nerve degeneration in DM may be associated with reduced DCs

density (59). In STZ-induced type 1 diabetic mice with corneal

epithelial debridement wounds, a reduced number of infiltrating

DCs, as well as delayed sensory nerve regeneration, were observed

(59). Though these observations were opposite from the findings of

most other studies reporting on the same matter, the authors

suggested a possible explanation (15, 54, 58). It is postulated that

DCs may mediate corneal nerve innervation and regeneration

through ciliary neurotrophic factor (CNTF). In the cornea, DCs are

the major source of CNTF (59). It was demonstrated in mice with

T1D that injection of CNTF-neutralising antibodies delayed nerve-

ending regeneration, while exogenous CNTF accelerated nerve

regeneration in corneas with local DCs depleted (59). Moreover,

blocking the CNTF-specific receptor, CNTFa, induced corneal

sensory nerve degeneration and delayed nerve regeneration,

demonstrating the importance of CNTFa in the maintenance and

regeneration of subbasal nerve plexus (59). Hence, in the case of the

STZ-induced type 1 diabetic mice with corneal epithelial debridement

wounds, decreased number of DCs on the cornea would lead to a

decreased CNTF level, impairing corneal sensory nerve innervation

and regeneration (59). Besides the involvement of CNTF, DCs may

also be involved in the regeneration of neurons through the clearance

of axonal debris. It was suggested that the clearance of axonal debris is

a critical process in axonal regeneration in the peripheral nervous

system (98). Besides murine studies, a clinical study has also reported

similar observations where in children with T1D, a significant positive

correlation was observed between the density of mature DCs and the

corneal nerve fiber density (56).

However, the relationship between the DC density and corneal

nerve parameters in subjects with T1D/T2D remains a topic for more

investigation. There were also studies reporting no significant

correlation to exist between the DC density and corneal nerve

morphology in either T1D or T2D (54, 55). The analysis of the

relationship may be confounded by several factors, such as variations

in the type, stage, and duration of DM. It is also possible that corneal

nerve fibre changes and DC density are different and independent

phenomena that occur coincidentally at the same time, and other cells

also play a role (15). For example, vascularisation that develops after

denervation may also lead to the influx of DCs (15). Moreover, in

patients with T1D/T2D, increased levels of AGE/RAGE signaling in

neurons may induce the activation of inflammatory and oxidative

stress pathways, including the NF-kB pathway, potentially causing

damage and death of neuronal cells (99–101).

The associations reported may further help explore surrogate

imaging markers for diabetic corneal neuropathy (54). For example, a

significant correlation between DC density and the severity of diabetic

peripheral neuropathy has been described (55). Moreover, the
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reported associations between the DC density and various nerve

parameters may provide evidence for a potential therapeutic

strategy to promote corneal nerve regeneration. For example, given

the fact that DCs are the major source of CNTF, using DCs as

therapeutic targets for the repair of injured corneal nerves in patients

with T1D/T2D may open a new avenue for treatment (49, 59).

The literature review on the association between corneal DCs and

corneal nerve parameters is summarised in Table 2.
6.3 Interaction between corneal DCs and
corneal epithelium in DM

Besides the interaction with the nerve, the interaction between

DCs and epithelial cells may be perturbed in subjects with T1D/T2D,

potentially affecting the corneal wound healing (80).

In both murine and clinical studies, it was observed that subjects

with T1D/T2D had delayed corneal wound healing compared to

healthy controls (59, 102–105). A decrease in basal epithelial cell
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(BEC) density in patients with T2D has also been reported by several

clinical studies (57, 106, 107). Furthermore, a negative correlation

between the BEC density and DC density in the cornea was observed

in patients with T2D (57). Hence, it was speculated that DCs may be

involved in the early stages of BEC proliferation and differentiation in

DM (57). Epithelial wound closure requires cell reverse differentiation

of wing cells to basal cell like cells, cell migration, and cell proliferation

to replenish the lost cells (108, 109). Besides epithelial cells, immune

cells, such as DCs, were also directly involved in accelerating epithelial

wound healing (80). The anatomical proximity and structural

intertwinements between DCs and epithelial cells have led to the

suggestion that corneal epithelial cells and corneal intra-epithelial

DCs interact with each other to form coordinated actions against

adverse challenges, such as tissue injury and infection (41, 80). It was

demonstrated in non-diabetic corneas that migratory epithelial cells

during wound healing would express an elevated level of DC-targeting

cytokines, to activate DCs around the injury site (41). Reciprocally, DCs

would secrete growth factors, cytokines, and/or through cell-to-cell

contact to facilitate migration and proliferation of epithelial cells,
TABLE 2 Studies reporting on the correlation between DC density and various corneal nerve imaging parameters.

Authors Study population Nerve
imaging
parameters
assessed

Findings

Ferdousi
et al. (56)

Children with T1D (Age: 14.6 ± 2.5; Diabetes duration: 9.1 ± 2.7 years) Corneal nerve
fibre density

↑ density of mature DCs density, ↑ corneal
nerve fibre density (r = 0.2, P = 0.01) in
patients with T1D

D’Onofrio
et al. (54)

Patients with T1D (Age: 53.3 ± 11.7; Diabetes duration: 19.4 ± 7.6 years), T2D (Age: 57.7
± 7.5; Diabetes duration: 15.1 ± 4.9 years), or latent autoimmune diabetes of adults
(LADA) (Age: 50.5 ± 11.5; Diabetes duration: 11.6 ± 9.6 years)

Corneal nerve
fibre density

No significant correlation between DC
density and corneal nerve fibre density in
patients with T1D, T2D, or LADA.

D’Onofrio
et al. (54)

Patients with T1D (Age: 53.3 ± 11.7; Diabetes duration: 19.4 ± 7.6 years), T2D (Age: 57.7
± 7.5; Diabetes duration: 15.1 ± 4.9 years), or latent autoimmune diabetes of adults
(LADA) (Age: 50.5 ± 11.5; Diabetes duration: 11.6 ± 9.6 years)

Corneal nerve
branch density

↑ mature DC density, ↓ corneal nerve
branch density (r = –0.5; P = 0.008);
↑ immature DC density, ↓ corneal nerve
branch density (r = –0.4; P = 0.02);
↑ total DC density, ↓ corneal nerve branch
density (r = –0.5; P = 0.01) DC density in
patients with T1D but not in patients with
T2D and LADA.

Ferdousi
et al. (56)

Children with T1D (Age: 14.6 ± 2.5; Diabetes duration: 9.1 ± 2.7 years) Corneal nerve
branch density

No significant correlation between DC
density and corneal nerve branch density in
children with T1D.

D’Onofrio
et al. (54)

Patients with T1D (Age: 53.3 ± 11.7; Diabetes duration: 19.4 ± 7.6 years), T2D (Age: 57.7
± 7.5; Diabetes duration: 15.1 ± 4.9 years), or latent autoimmune diabetes of adults
(LADA) (Age: 50.5 ± 11.5; Diabetes duration: 11.6 ± 9.6 years)

Corneal nerve
fibre length

↑ immature DC density, ↓ corneal nerve
fibre length (r = –0.4; P = 0.03) in patients
with T1D but not in patients with T2D and
LADA.

Qu et al.
(58)

Patients with T2D diagnosed with corneal punctate epitheliopathy (Age: 59.8 ± 11.6;
Diabetes duration: 13.4 ± 8.30 years)

Corneal nerve
fibre length

↑ DC density, ↓ corneal nerve fibre length
(r = 0.350; R2 = 0.1225; P = 0.034) in
patients with T2D diagnosed with corneal
punctate epitheliopathy

Qu et al.
(57)

Patients with T2D without (Age: 60.51 ± 8.37; Diabetes duration: 13.40 ± 8.30 years) and
with (Age: 63.75 ± 10.91; Diabetes duration: 13.90 ± 5.20 years) cornea fluorescein staining

Corneal nerve
fibre length

↑DC density, ↓ corneal nerve fibre length
in all corneal zones except the superior
zone in patients with T2D.

Leppin
et al. (15)

Streptozotocin (STZ)-induced T1D mice Corneal nerve
fibre length

↑ DC density, ↓ corneal nerve fibre length
existed in STZ-induced diabetic mice.
No such correlation was observed in non-
diabetic controls.

Ferdousi
et al. (56)

Children with T1D (Age: 14.6 ± 2.5; Diabetes duration: 9.1 ± 2.7 years) Corneal nerve
fibre length

No significant correlation between DC
density and corneal nerve fibre length in
children with T1D
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modulating wound healing (41, 59). However, the specific role of DCs

in delayed epithelial wound healing in patients T1D/T2D remains

unclear, and several explanations have been proposed (41).

One explanation is that prolonged corneal wound healing

response in subjects with T1D/T2D may lead to increased

recruitment of DCs to the corneal wound through chemokines

released by the injured site (41, 103). Several factors were reported

to contribute to the delayed recovery of corneal epithelial wounds in

DM, including nerve degeneration, accumulation of AGEs, and direct

damage caused by hyperglycaemia to the corneal epithelial basement

membrane (110). In particular, it was suggested that AGEs may delay

corneal epithelial wound healing through the production of reactive

oxygen species (111). In a wounded cornea, the corneal epithelial cells

can further facilitate wound healing through the release of various

cytokines, including the C-X-C motif chemokine ligand 10 (CXCL10)

(41). CXCL10 acts as a chemokine to DCs, activated T cells, and NK

cells, and it was reported to be highly expressed in migrating epithelial

during corneal wound healing (41, 112). Hence, it was suggested that

epithelia-released CXCL10 may facilitate the recruitment of resident

corneal epithelial DCs and even the circulating DCs to the wound bed

in the cornea (41). It is possible that, in diabetic cornea where the

wound healing process is altered and prolonged, more chemokines

may be released by the epithelia, resulting in increased recruitment of

DCs into the cornea (103, 113). Similarly, clinical studies on the

epidermis of diabetic foot ulcers have reported an accumulation of

DCs at the edge of diabetic foot ulcers (113, 114).

Contrary to the aforementioned explanation of increased DCs in

diabetic wound healing, a murine study examining subjects with T1D

has reported a decreased number of infiltrating DCs in diabetic

healing cornea compared to healthy controls. It was proposed that

such a decrease in DCs population may hinder the proliferation of the

epithelial cells, contributing to the impaired wound healing process

(59, 115). As discussed previously, CNTF originates from DCs and is

involved in sensory nerve survival and regeneration (59). Recently,

CNTF was also discovered to be able to promote epithelial wound
Frontiers in Endocrinology 09
healing by stimulating the mitogenic activation of corneal epithelial

stem/progenitor cells (115). In the corneas of mice with T1D, the level

of CNTF was significantly downregulated, potentially due to the

decreased infiltrating DCs population, contributing to the impaired

proliferation of epithelial cells during wound healing in diabetic

corneas (59, 115).
6.4 Correlations between corneal DCs and
blood metabolomic profiles

Associations between the DC density and several metabolic

parameters, including lipid profiles, glycaemic control, as well as

renal function, have also been assessed in patients with T1D/T2D, as

shown in Table 3 (55, 56, 87).

In patients with T1D, significant associations were found between

the DC density and lipid parameters (87). The density of corneal DCs

without dendrites (woDCs) was positively correlated with the HDL

cholesterol level and was inversely correlated with the triglycerides level

(87). Such observations suggest that woDCmay be associatedwith better

health since both a higher HDL level and a lower triglyceride level

potentially indicate lower cardiovascular risks (116, 117). However,

another clinical study demonstrated that rounded corneal DC density

was correlated inversely with the HDL level in patients with T1D (87).

Such disparity reported may signal that different DC subsets exert

different immune activities on the cornea in patients with T1D (87).

For the renal function of patients with T1D, a significant positive

correlation was detected between the eGFR and the displacement,

trajectory, and persistency of corneal DCs in patients with T1D (87).

These three parameters are indicative of DCs’ mobilisation capacities

which are critical for the role of the DCs in activating and mediating

immune responses (87, 118). It has been proposed that the resident DCs

in the cornea may function similarly to those in the kidney. eGFR was

also negatively correlated with the number of DCs in the kidney for both

healthy individuals and those with chronic kidney disease (119).
TABLE 3 Studies reporting on the correlation between corneal DC parameters and blood metabolic parameters.

Author
(year)

Study population Blood metabolic
parameters
assessed

Findings

Colorado
et al. (87)

Patients with T1D (Age: 55.0 ± 11.0; Diabetes duration: 29 ± 14
years)

Lipid profile ↑ corneal DCs without dendrites (woDCs) density, ↑ the
HDL level (r = 0.59, p = 0.007);
↑ corneal DCs without dendrites (woDCs) density, ↓ the
triglyceride level (r = −0.61, p = 0.005);
↑ rounded corneal DC density, ↓ the HDL level (r = −0.54,
p = 0.007) in patients with T1D.

Colorado
et al. (87)

Patients with T1D (Age: 55.0 ± 11.0; Diabetes duration: 29 ± 14
years)

Glycaemic control No significant association between HbA1c and corneal DC
density as well as DC dynamics in patients with T1D.

Tavakoli
et al. (55)

Patients with T1D/T2D and varying severities of peripheral
neuropathy (Age: 58 ± 1; Diabetes duration: 15 ± 1 years)

Glycaemic control No significant correlation between DC density and HbA1c.

Ferdousi
et al. (56)

Children with T1D (Age: 14.6 ± 2.5; Diabetes duration: 9.1 ± 2.7
years)

Glycaemic control No significant correlation between DC density and HbA1c

Colorado
et al. (87)

Patients with T1D (Age: 55.0 ± 11.0; Diabetes duration: 29 ± 14
years)

Renal function ↑ displacement of corneal DCs, ↑ eGFR (r = 0.74, p <
0.001);
↑ trajectory of corneal DCs, ↑ eGFR (r = 0.48, p = 0.031);
↑ persistency of corneal DCs, ↑ eGFR (r = 0.58, p = 0.008)
in patients with T1D.
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Contrasting to lipid parameters and renal function, glycaemic

control has not been reported to be significantly associated with DCs

parameters (density and dynamics) (55, 56, 87). The increase in DC

density observed in patients with T1D/T2D may be independent of

hyperglycaemia (55).

7 Future work

The changes in corneal DCs in patients with T1D/T2D have

attracted much attention and discussion in recent years. Despite the

current progress toward understanding the DC changes and underlying

mechanisms, many questions remain and are to be addressed.

Firstly, continued improvement in imaging technologies, aswell as the

identification and quantification techniques used for corneal DCs on

IVCM images are required, to ensure accurate analysis across the studies.

Secondly, it is possible that the identification and characterisation of

corneal DCs in vivo may be further refined, to contribute to a deeper

understanding of corneal DCs changes, as well as the roles played by

cornealDCs in the diabetic corneas (49). Thirdly,DCs, corneal nerves, and

corneal epithelium were previously considered to form an

“epineuroimmune” function unit (80). However, it remains unclear

which of the three components is the initial “sentinel” that detects the

physiological changes inpatientswithT1D/T2Dandsubsequently induces

the changes in the other two components of the “epineuroimmune”

function unit. Furthermore, the initial “trigger” (e.g. hyperglycaemia,

intracellular reactive oxygen species, or extracellular AGEs) in the

diabetic cornea that causes the physiological and functional changes in

the “epineuroimmune” functionunit also requires elucidation (80).Hence,

furthermechanistic studies are needed to define the basis of the changes in

the “epineuroimmune” function unit in the diabetic cornea, potentially

adding value to the development of preventive and treatment strategies for

DM-associated ocular surface complications (55).
8 Conclusions

This article has reviewed current clinical and animal studies reporting

the changes in corneal DCs in diabetic corneas, as well as the potential

mechanisms underlying the changes. For the changes in DC density, the

majority of animal and clinical studies reported an increase in corneal

DCs density in DM, while a few presented the opposite (15, 53–59). The

increase in DC density may be explained as a cellular response to

inflammation while the decreased density may be explained as a result

of apoptosis caused by prolonged exposure to hyperglycaemia (60, 80).

Thematuration of corneal DCs in tandemwith the disease course of T2D

was indicated (60). DCs were also found to be involved in diabetic nerve

degeneration, yetwhetherDCsareneuroprotectiveorneurotoxic remains
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unclear with contrasting findings (49, 55). The association between

increased DCs density and corneal nerve degeneration in DM may be

explained by an enhanced immune response caused by the absence of

tolerogenic and immunomodulatory neuropeptides following corneal

nerve damage (95). On the other hand, the association between decreased

DCs density and corneal nerve degeneration in diabetic corneas may be

explainedby thedecreasedCNTF level expressedby the cornealDCs (59).

Corneal DCs are also involved in delayed epithelial wound healing in

diabetic corneas (80). One suggested mechanism is that prolonged

corneal wound healing response leads to increased recruitment of DCs

to the corneal wound bed through chemokines released by epithelia

around the injury site (41, 103).We also further reviewed the association

between the changes in the corneal DCs and various clinical or corneal

nerve imaging parameters, including age, corneal nerve status, and

metabolic parameters (15, 53–58, 87). Such associations contribute to

our current understanding of DM-associated ocular surface

complications, potentially further assisting the development of

diagnostic, preventive, and therapeutic strategies.
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