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Development and validation of
questionnaire-based machine
learning models for predicting
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representative population of China
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Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking

Union Medical College, Beijing, China

Background: Considering that the previously developed mortality prediction models

have limited applications to the Chinese population, a questionnaire-based prediction

model is of great importance for its accuracy and convenience in clinical practice.

Methods: Two national cohort, namely, the China Health and Nutrition Survey (8,355

individual older than 18) and the China Health and Retirement Longitudinal Study

(12,711 individuals older than 45) were used for model development and validation.

One hundred and fifty-nine variables were compiled to generate predictions. The Cox

regressionmodel and sixmachine learning (ML)models were used to predict all-cause

mortality. Finally, a simple questionnaire-based ML prediction model was developed

using the best algorithm and validated.

Results: In the internal validation set, all the ML models performed better than the

traditional Cox model in predicting 6-year mortality and the random survival forest

(RSF)model performed best. The questionnaire-basedMLmodel, which only included

20 variables, achieved a C-index of 0.86 (95%CI: 0.80–0.92). On external validation, the

simple questionnaire-based model achieved a C-index of 0.82 (95%CI: 0.77–0.87),

0.77 (95%CI: 0.75–0.79), and 0.79 (95%CI: 0.77–0.81), respectively, in predicting 2-,

9-, and 11-year mortality.

Conclusions: In this prospective population-based study, a model based on the RSF

analysis performed best among all models. Furthermore, there was no significant

di�erence between the prediction performance of the questionnaire-based ML

model, which only included 20 variables, and that of the model with all variables

(including laboratory variables). The simple questionnaire-basedML predictionmodel,

which needs to be further explored, is of great importance for its accuracy and

suitability to the Chinese general population.
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mortality, machine learning, prediction model, personalized prediction, questionnaire-based

Introduction

Accurate identification of individuals at high risk of mortality is valuable for both medical
care and public health policymaking (1). Recently, a few prognostic indices and prediction
models with variable predictors have been developed to predict an individual’s probability of
death (2–6). However, most of the current mortality prediction models have been developed
using data from the United States and Western Europe (5–7), which may greatly limit their
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validity for Chinese. With the change of lifestyle in recent years, the
number of premature deaths caused by non-communicable diseases
has increased. However, the limited mortality prediction research on
Chinese mostly focuses on elderly or those suffering from specific
diseases, which may not be suitable for the general population (8–
10). Prediction of young people’s death is also noteworthy for early
death of youngers brings more losses to individuals, families, and
society. The need for laboratory test data is another reason that
limits the application of the current mortality prediction models
(2). As a country with a large population and lack of medical
resources, the death prediction model based on questionnaire may
be more valuable. Thus, developing a questionnaire-based all-cause
mortality prediction model for the general population of China is of
great significance.

Traditionally, mortality prediction models have only applied
logistic or Cox regression models on limited variables, resulting
in low predictive performance (6, 11). Over the past decades,
many advanced machine learning (ML) techniques have further
expanded the traditional medical prediction owing to their ability
in processing large-scale data and identifying hidden risk factors of
diseases (12). A large number of variables can be simultaneously
included in prediction models using ML algorithms. The ability
to automatically model non-linear correlations and interactions
between different risk factors may allow ML models to outperform
statistical models in terms of calibration and discrimination (13,
14). Despite claims that the ML algorithm can revolutionize
risk prediction and replace traditional statistical models, the
performances of ML algorithms may differ in different areas (15,
16). At present, all-cause mortality prediction models developed
using the ML algorithm are still rare. Moreover, studies comparing
the performances of different ML algorithms with those of
traditional Cox regression models in predicting all-cause mortality
are still lacking.

To address these important knowledge gaps, the present study
aimed to develop a questionnaire-based mortality prediction model
for Chinese by comparing the performances of six ML approaches
with that of the commonly used Cox regression model using data
from the China Health and Nutrition Survey (CHNS).

Materials and methods

Study design and participants

Two national surveys, namely, the CHNS and the China Health
and Retirement Longitudinal Study (CHARLS) were used for model
development and validation. The details of the CHNS and CHARLS
design have been described previously and are discussed in the
Supplementary Data (17, 18). Briefly, the CHNS is a national,
longitudinal, open cohort study that started in 1989 and has been
followed up every 2–4 years. In the 2009 record of the CHNS, the
data of subjects included both questionnaire and laboratory variables.
The CHARLS is a nationally representative longitudinal survey of the
social, economic, and health circumstances of individuals older than
45 in China.

To compare the predictive effect of the laboratory and
questionnaire variables on mortality, the model development data
of this study were extracted from the 2009 to 2015 survey of the
CHNS, which included 12,178 participants. The exclusion criteria

were as follows: age <18 years; no follow-up data; pregnant or
breastfeeding; with a history of myocardial infarction, stroke, or
any type of tumor; and with more than 30% missing variables. The
CHNS cohorts were randomly split into training (80%) and internal
validation (20%) datasets to develop the 6-year mortality prediction
models. The 2004–2015 CHNS dataset, 2006–2015 CHNS dataset,
and the dataset derived from CHARLS were used to externally
validate the performance of themodel in predicting 11-, 9- and 2-year
mortality, separately.

Mortality ascertainment

The mortality status and date of mortality were confirmed
according to the information reported by household members. Years
of follow-up were calculated from the time of the baseline to death or
censoring in the end survey wave, whichever came first.

Predictors

All candidate predictors were extracted from the CHNS data.
Trained staff administered a standardized questionnaire to collect
information on individuals, households, and communities. Trained
clinicians performed physical examinations, includingmeasurements
of height, weight, and blood pressure. Blood samples were collected
from an empty stomach after the participants maintained a regular
pattern of life for at least 3 days. The details of all candidate
predictors can be found on the following website: http://www.cpc.
unc.edu/projects/china/data/datasets. Variables that were missing in
more than 30% of the participants were excluded. Ultimately, 159
independent predictors, selected from 11 commonly investigated
domains, were measured in the present study. The 11 domains were
as follows: (i) demographics, (ii) family relations, (iii) community
score, (iv) activity and time spent, (v) socioeconomic status, (vi)
macronutrient intakes and dietary behaviors, (vii) lifestyle, (viii)
diet and exercise knowledge, (ix) health condition, (x) physical
examination, and (xi) laboratory examination. Complete details are
provided in the Appendix.

Development and comparison of models

The Cox regression model and six ML approaches, namely, the
least absolute shrinkage and selection operator (LASSO) regression
(17), survival tree (19), random survival forest (RSF) (20), conditional
inference forest (CIF) (21), boosted generalized linear model
(glmBoost) (22), and gradient boosting (GBM) (23, 24), were
developed separately to predict the risk of 6-year all-cause mortality.
The description of ML algorithms has been described previously and
are provided in the Supplementary Data (25, 26). Cross-validation
was used to limit mean cross-validation error. To evaluate the
performance of the model with different variables, three different
sets of variables were separately compiled to generate predictions.
The three sets of variables included the 159 variables, all laboratory
variables, and all variables except laboratory variables. To develop
the questionnaire-based prediction model, the performance of the
best ML algorithm was further compared with those of models
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TABLE 1 Baseline characteristics of the study sample stratified by mortality

status.

Total Died Alive

No. of subjects 8,355 177 8,178

Follow-up, day 1,864 (627) 1,445 (459) 1,873 (627)

Age, year 50.18 (14.65) 67.91 (11.88) 49.79 (14.46)

Men 4,004 (47.92%) 92 (51.98%) 3,912 (47.84%)

Diabetes 213 (2.55%) 11 (6.21%) 202 (2.47%)

Hypertension 997 (11.93%) 50 (28.29%) 947 (11.57%)

Smoking 2,629 (31.47%) 75 (42.37%) 2,554 (31.20%)

Drinking 2,808 (33.61%) 55 (31.07%) 2,753 (33.62%)

Mean ± standard deviation (SD) or median with interquartile range (IQR) were calculated for
continuous variables. Totals and percents were calculated for categorical variables. Smoking,
individuals still smoke cigarettes now. Drinking, drinking beer or any alcoholic beverage more
than once a month.

derived using a similar approach: (1) with the top 20 questionnaire
variables, (2) with the top 10 questionnaire variables, and (3) with
all variables. Each variable was ranked using the variable importance
(VIMP) metric in the RSF algorithm (20). To achieve a simple model,
the variables that could be directly obtained through questionnaires
without calculation were compiled to generate predictions.

Sensitivity analysis

To assess the generalizability of the ML-based algorithms in
predicting long-term mortality, sensitivity analyses were performed
on data that were followed up for 9 and 11 years. Two cohorts were
recruited separately from the 2004 and 2006 surveys of the CHNS,
followed to the 2015 survey. The inclusion and exclusion criteria
used in the sensitivity analysis cohorts were the same as those used
in the model development cohort. The variables in the two cohorts
were all the questionnaire variables, which were the same as those
in the model development cohort. All variables were used to develop
the Cox regression model and six ML models to separately predict
9- or 11-year all-cause mortality. The performances of all models
were compared.

Model validation

All models were validated in the 2009 CHNS internal validation
cohort to predict the risk of 6-year all-cause mortality. The simple
questionnaire-based model was further externally validated in three
independent cohorts, namely, the 2004–2015 CHNS dataset, 2006–
2015 CHNS dataset, and the dataset derived from the CHARLS.

Statistical analysis

The missing values for each predictor were imputed using an
iterative imputation method based on a random forest algorithm
(23). The mean ± standard deviation or median with interquartile
range was calculated for continuous variables. Totals and percentages
were calculated for categorical variables.

The model discriminatory performance was measured using the
time-dependent receiver operating characteristic (ROC) curve and
Harrell concordance index (C-index) (27, 28). The ROC curve is
a statistical tool used to evaluate the discriminative capacity of a
diagnostic test. C statistics, ranging from 0.5 to 1, measure the ability
of a model to rank patients from high to low risk. The differences
between the C-indices of the different models were determined using
the DeLong test (29). Calibration of the mortality prediction model
was assessed with the Brier score, with a value of Brier score < 0.25
indicating adequate calibration (30, 31).

All analyses were conducted using the R software (version 4.1).
The R packages used included “survival,” “gbm,” “grid,” “party,”
“pec,” “mboost,” “glmnet,” and “randomForestSRC.” The statistical
significance was set at P < 0.05.

Results

Participants and predictors

A total of 8,355 individuals recruited in the development cohort
of 2009–2015 CHNS and 177 participants died during the 6-year
follow-up (Supplementary Figure 1, Table 1). The validation cohort
of 2006–2015 CHNS, consisted of 8,126 individuals, and 495 died
after 9 years of follow-up. The validation cohort of 2004–2015 CHNS,
consisted of 8,827 individuals, and 665 died after 11 years of follow-
up. The validation cohort of CHARLS consisted of 12,711 individuals,
and 262 died during the 2-year follow-up.

In total, 159 variables collected at the baseline were considered
candidates for developing the models. The descriptive statistics for
variables are presented in Supplementary Tables 1, 2.

Model performance

Supplementary Table 3 displays the discrimination and
calibration of models in the training cohort. The performance
metrics in the internal validation cohort of all models are listed
in Table 2. All ML models performed better than the traditional
Cox model. The RSF model had the highest C-index [0.86 (95%CI:
0.80–0.92)] and area under the ROC curve (0.85) (Figure 1). And
there were significant differences between the C-index of RSF
and that of other models which indicating that the RSF model
has the best discrimination ability in the present study. The C-
indices of models without laboratory variables did not significantly
decrease compared with the models with all variables (p > 0.05).
Compared with the performance of the models that included
all variables, those of the models that only included laboratory
variables decreased significantly. The ML models demonstrated
improved calibration compared with the Cox model (Table 2 and
Supplementary Figures 2–4).

Sensitivity analyses

In the dataset of the 2006–2015 CHNS, the best performer was the
RSF model, which had the highest C-index value 0.85 (95%CI: 0.82–
0.88), and the C-index for the Cox regression model was only 0.79 for
estimation of the risk of 9-year all-cause mortality. Similarly, the RSF
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TABLE 2 Performance of the models for predicting all-cause mortality in internal validation cohort.

COX Lasso glmBoost ST RSF CIF GBM

All C-index 0.72(0.64–0.80) 0.82 (0.75–0.89) 0.82(0.74–0.88) 0.79 (0.70–0.88) 0.86(0.80–0.92) 0.82 (0.71–0.93) 0.83(0.76–0.90)

Time-ROC 0.73 0.83 0.73 0.78 0.85 0.82 0.79

Brier 0.12 0.08 0.08 0.08 0.07 0.06 0.07

Without laboratory
variables

C-index 0.73(0.64–0.82) 0.82 (0.74–0.90) 0.82(0.76–0.88) 0.78 (0.74–0.82) 0.86(0.79–0.92) 0.82 (0.75–0.89) 0.80(0.74–0.86)

Time-ROC 0.73 0.84 0.73 0.75 0.86 0.81 0.81

Brier 0.12 0.08 0.07 0.08 0.06 0.08 0.08

Laboratory variables C-index 0.63(0.53–0.73) 0.66 (0.56–0.76) 0.63(0.54–0.72) 0.66 (0.57–0.75) 0.72(0.65–0.79) 0.70 (0.62–0.78) 0.69(0.61–0.77)

Time-ROC 0.63 0.65 0.62 0.66 0.73 0.70 0.56

Brier 0.15 0.15 0.13 0.15 0.12 0.12 0.12

COX, Cox proportional hazards regression model; Lasso, least absolute shrinkage and selection operator regression model; glmBoost, boosted generalized linear model; ST, survival tree model; CIF,
conditional inference forest model; RSF, random forest survival analysis model; GBM, gradient boosting model. All: Models with all variables; Without laboratory variables: Models with variables
excluding laboratory variables; Laboratory variables: Models with only laboratory variables.

FIGURE 1

Receiver operating characteristic curves of di�erent models for predicting 6-year all-cause mortality in Internal Validation Cohort. (A) Models with all

variables. (B) Models with variables excluding laboratory variables. (C) Models with only laboratory variables. COX, Cox proportional hazards regression

model; Lasso, least absolute shrinkage and selection operator regression model; GLMBoost, boosted generalized linear model; ST, survival tree model;

CIF, conditional inference forest model; RSF, random forest survival analysis model; GBM, gradient boosting model.

algorithm had the highest C-index value, and the Cox model had the
lowest C-index when predicting the 11-year all-cause mortality in the
dataset of the 2004–2015 CHNS (Supplementary Tables 4, 5).

Derivation of questionnaire-based ML
models

Considering its best performance among all the algorithms, the
RSF algorithm was used to develop questionnaire-based models.
Supplementary Figure 5 and Supplementary Table 6 show the relative
importance of the top 20 variables in the RSF model (without
laboratory variables). The C-index for the RSF with the top
20 self-reported predictor model was 0.86 (95%CI: 0.80–0.92),
which was higher than the model with 10 variables. Meanwhile,
the discrimination and calibration of the RSF with the top 20
self-reported predictor model was similar to that of the RSF
model with all predictors (Table 3 and Supplementary Figure 5).
To improve the clinical utility of the prediction model, we
implemented the simple ML model which included 20 variables

on a publicly available website (https://chnsmortalityprediction.
shinyapps.io/mortality-20/) (Supplementary Figure 7). Furthermore,
simple ML model which included 10 variables was also implemented
on a publicly available website (https://chnsmortalityprediction.
shinyapps.io/mortality-10/) (Supplementary Figure 8).

External validation of the
questionnaire-based ML prediction model

In the present study, three external cohorts were used to
validate the questionnaire-based model. In the CHNS 2004–2015
cohort, the overall C-index for 11-year mortality was 0.79 (95%CI:
0.77–0.81) and the time-dependent ROC value was 0.81. The
overall C-index for 9-year mortality in the CHNS 2006–2015
cohort was 0.77 (95%CI: 0.75–0.79) and the time-dependent ROC
value was 0.78. The overall C-index for 2-year mortality in the
CHARLS was 0.82 (95%CI: 0.77–0.87). The calibration of all three
external validations was acceptable, with a Brier score of <0.6
(Table 4 and Supplementary Figures 9–11).
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Discussion

In the present study, we compared the performances of six
ML approaches with that of the commonly used Cox proportional
hazards regression model for predicting all-cause mortality in
Chinese and developed a questionnaire-based ML prediction model
based on the best-performing approach. Several key inferences can be
drawn from the results. First, ML algorithms can improve traditional
approaches used for creating all-cause mortality prediction tools, and
the RSF model has the best performance among all models in the
present study. Furthermore, the performance of the model based
on only 20 questionnaire variables is similar to that of the model
with all variables which included laboratory variables. Finally, the
questionnaire-based ML model developed from the CHNS data can
estimate all-cause mortality with good discrimination for Chinese.

To limit the burden on already strained health systems and
improve efficiency, identifying individuals with a high risk of death
to provide more targeted prevention and treatment is of great
significance. Most of the available mortality prediction models are
constructed using traditional statistical techniques (2, 3, 5, 7, 10, 32).
Because of the limited variables included and the simple model fitting
method, the performances of the prediction models constructed
using traditional methods may be greatly limited. Recently, ML
has gradually attracted interest because of its powerful ability to
identify potential variables and fit models (33–36). Many studies
have found that prediction models constructed using ML algorithms
have higher performances than traditional statistical methods in
predicting the occurrence of clinical events, such as hypoglycemia
and cardiovascular events, and prognosis of tumors (20, 37–39).
However, it is worth noting that ML techniques are not always
better than “classical” statistical methods (40). The effectiveness of
ML algorithms on specific data and problems must be evaluated
separately. Recently, some studies on the application of ML in
determining all-cause mortality have been conducted (41–45).
However, most of these studies regarded death as a binary event
rather than a time-to-event survival outcome. Directly applying
popular ML models to data without censoring substantially biases
risk predictions (16). To the best of our knowledge, there is
no comprehensive comparative study between ML and traditional
methods on the premise of taking death as a time-to-event outcome.
In the present study, six ML algorithms derived from three major
approaches to predict survival events were compared with the
traditional Cox model in the prediction of all-cause mortality. The
results indicated that all ML methods performed better than the
traditional Cox model. This finding suggests that ML algorithms
can improve traditional approaches if the same data are used for
mortality prediction. Meanwhile, the RSF model has the highest C-
index, which is higher than those of the CIF and GBD models,
indicating that a complex model does not necessarily result in a
higher predictive power.

Another important advantage of ML algorithms is that they
rely on machine-guided data-driven methods instead of experience-
guided data analysis to identify risk factors and generate the best fit
for the data. Traditional mortality predictionmodels only empirically
incorporate a limited number of variables. Even if more factors are
included, the non-linear relationship cannot be identified because of
the characteristics of the algorithm. Therefore, it is possible to ignore
factors that have important impacts on death. ML algorithms have

TABLE 3 Performance of the RSF models in the internal validation cohort.

All
predictors

Self-
reported
top 10

predictors

Self-
reported
top 20

predictors

Laboratory
variables

C-index 0.86
(0.80–0.92)

0.84
(0.76–0.92)

0.86
(0.80–0.92)

0.72
(0.65–0.79)

Time-
ROC

0.85 0.83 0.84 0.73

Brier 0.07 0.06 0.06 0.12

Data presented are C-index values (95% CIs). The following models were analyzed: RSF with all
159 laboratory variables, RSF with self-reported predictors among top 20/10 variables.

TABLE 4 Performance of the predictive model on the external validation

cohorts.

C-index Time-ROC Brier

CHARLS 0.82 (0.77–0.87) 0.83 0.06

CHNS (2004–2015) 0.79 (0.77–0.81) 0.81 0.04

CHNS (2006–2015) 0.77 (0.75–0.79) 0.78 0.05

CHARLS, China Health and Retirement Longitudinal Study. CHNS, China Health and
Nutrition Survey.

great advantages in dealing with a wide range of complex datasets
with multifactor causality and potentially non-intuitive interactions
(46). In the present study, we used an ML algorithm to incorporate
159 factors and explored the potential factors that might affect death.
The results lay a foundation for further exploration of the risk factors
of all-cause mortality.

Recently, many clinical prediction models have been developed.
However, the applications of these tools are limited. One major
reason is the inclusion of laboratory variables in the current
prediction models (4, 5). Simple questionnaire questions may be
closely related to all-cause mortality. Recently, there have been
a few questionnaire-based all-cause mortality prediction model
which the C-indexes of model is higher than 0.7 (4, 5). However,
these prediction models are established by traditional COX model.
At present, there is no questionnaire-based all-cause mortality
prediction model based on machine learning algorithm for the
general population in China. In the present study, there is no
significant difference between ML-based models with and without
laboratory variables. There may be several reasons for this. First,
although laboratory variables, such as glucose, are closely related with
disease which are associated with mortality, the level of laboratory
variable included in the study cannot fully reflect the situation of
diseases for that patients might have normal level of laboratory
variable during treatment. Second, the laboratory examination
indicators involved in our study only include basic blood indexes
(such as glucose, red blood cell count, hemoglobin, index for lipid
metabolism). The prediction efficiency of a single variable may be
limited in the general population when predicting all-cause mortality.
Therefore, the prediction effect of basic blood indicators involved in
our study on all-cause mortality may be limited. Previous studies
indicated that the c-index for predicting all-cause mortality using
basic blood indicators only reached 0.7 (2, 47). Third, in terms of
predicting all-cause death, the prediction ability of socioeconomic
indicators, lifestyle and disease history is not weaker than that of
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basic blood indicators (7). Consistent with previous reports, the
present results in our study suggest that the prediction performance
of a model may not be significantly improved by further adding
laboratory variables when sufficient variables are included in the
process of fitting the model with an ML algorithm. To reduce the
complexity of the model and increase its clinical practicability, we
further developed a simple prediction model that only included 20
variables. The performance of the simple questionnaire-based ML
model was not significantly different from those of models with all
variables. To further improve the application of the model, a web
page for our simple questionnaire-based ML model was developed.
Therefore, anyone can use this ML-based model to improve their
self-awareness of health status.

Another important factor that affects model application is the
development data of the model. No predictive model can be used
in clinical practice if its effectiveness is not yet tested in other
populations (48). The prediction model developed for a certain
population may not achieve a good performance when applied
to other populations. For example, the performance of a model
developed using data from the United States may deteriorate when
it is applied to Britons (49). Therefore, most of the available
mortality prediction models developed using data from European
and American countries may not be suitable for China because
of the large differences in lifestyle, culture, and genes (4, 25, 32).
In this mortality prediction model study, to develop a prediction
model for Chinese, data from the CHNS, which comprehensively
contain information on diet, exercise, and lifestyle of Chinese,
were used. To the best of our knowledge, previous all-cause
mortality prediction models for Chinese have mostly focused on
specific groups, such as the elderly and those with diabetes (8–10).
There is no all-cause mortality prediction model for the general
population in China. In this study, we used data from all adults
to predict all-cause mortality for the general population. More
importantly, our prediction model was further validated using
external datasets. Owing to the limited follow-up time and size of
the cohort, the number of deaths in the development cohort of the
questionnaire-based model was small, which might have influenced
the accuracy of the model. To further evaluate the effectiveness
of the questionnaire-based model, cohorts with longer follow-up
times and larger number of deaths were used as external validation
datasets. The questionnaire-based model performed well-during the
external validation. Moreover, the model satisfactorily performed
in predicting short-term mortality in the external validation.
These results indicate that the questionnaire-based ML model can
estimate all-cause mortality with good discrimination for Chinese.
Compared with previous death prediction models, our prediction
model comes from the general Chinese population and improves
the prediction ability of questionnaire variables through machine
learning algorithm, which may be more suitable for application in
primary health care of China.

Strengths and limitations

Our study has several strengths. First, although a few ML
prediction studies have been conducted on all-cause mortality, most
of them considered death as a binary outcome rather than a time-
to-event outcome. Our study considered the censoring of death,

which reduced the miscalibration of the models. Second, all three
approaches mainly used for predicting survival events, namely,
penalized regression, boosting, and tree or forest, were included in
this study. Furthermore, we comprehensively comparedMLmethods
with traditional ones. Third, owing to the characteristics of the
CHNS data, many variables for Chinese, such as lifestyle, activities,
and health status, are considered in the process of developing the
model. Therefore, the prediction model may be more suitable for
Chinese. Fourth, to be more convenient to use, we developed a
simple predictionmodel with only 20 questionnaire variables, and the
performance of this model was not significantly different from those
of the models with all variables. Fifth, although the development
of our model was based on 6-year mortality data, three external
validation cohorts were used to assess the predictive effectiveness of
themodel on long- and short-termmortalities, which showed that the
model has good application potential for Chinese. Finally, we created
a webpage for the ML-based model to enhance its application.

The present study has some shortcomings. First, although we
included as many candidate factors as possible in the CHNS, several
factors that cause important death burdens, such as environmental
factors, were not included because of the research design of the
CHNS. Second, there were no causes of death in this study due to
data limitations. The issue on whether there are differences in the
prediction of different types of death by the prediction model still
needs to be further explored. Third, because we excluded pregnant
and nursing women and individuals with myocardial infarction,
stroke, or tumor during the model development, our model is only
applicable to the general population of China. Although our model
has been validated in the CHARLS cohort of people over 45 years of
age, further study is still necessary to determine whether the model is
applicable to other special populations. Fourth, this model has not
been verified based on data in other countries; therefore, it is not
certain whether it can be applied to other populations. Fifth, the cause
of death in our study including accidents or unnatural death which
may add a degree of randomness.

Conclusions

In this prospective population-based study, ML algorithms were
shown to improve traditional approaches used for creating all-cause
mortality prediction tools, and the model based on RSF analysis
performed best among all models. Furthermore, no significant
difference between the prediction performance of the questionnaire-
based ML model, which only included 20 variables, and that of
the model with all variables that included laboratory variables
was found. The simple questionnaire-based ML prediction model,
which needs to be further explored, is of great importance for
its accuracy and suitability to the Chinese general population.
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