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-independent roles of PI4P in the
control of hormone secretion by
pituitary cells
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Development, National Institutes of Health, Bethesda, MD, United States, 2Section on Molecular Signal
Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development,
National Institutes of Health, Bethesda, MD, United States
Plasmamembrane and organelle membranes are home to seven phosphoinositides, an

important class of low-abundance anionic signaling lipids that contribute to cellular

functions by recruiting cytoplasmic proteins or interactingwith the cytoplasmic domains

ofmembrane proteins. Here, we briefly review the functions of three phosphoinositides,

PI4P, PI(4,5)P2, and PI(3,4,5)P3, in cellular signaling and exocytosis, focusing on

hormone-producing pituitary cells. PI(4,5)P2, acting as a substrate for phospholipase

C, plays a key role in the control of pituitary cell functions, including hormone synthesis

and secretion. PI(4,5)P2 also acts as a substrate for class I PI3-kinases, leading to the

generation of two intracellular messengers, PI(3,4,5)P3 and PI(3,4)P2, which act through

their intracellular effectors, including Akt. PI(4,5)P2 can also influence the release of

pituitary hormones acting as an intact lipid to regulate ion channel gating and

concomitant calcium signaling, as well as the exocytic pathway. Recent findings also

show that PI4P is not only a precursor of PI(4,5)P2, but also a key signaling molecule in

many cell types, including pituitary cells, where it controls hormone secretion in a PI(4,5)

P2-independent manner.
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Introduction

Eukaryotic cells are compartmentalized into organelles and have an extensive endomembrane

system that includes the endoplasmic reticulum (ER), nuclear membrane, Golgi apparatus, and

lysosomes, in addition to the plasma membrane (PM). The synchronized function of this

membrane network is critically dependent on the presence of phosphatidylinositol (PI) as the

ultimate precursor of phosphoinositides, also known as PI phosphates (PIPs), a group of signaling
Abbreviations: ER, endoplasmic reticulum; FSCs, folliculostellate cells; GPCRs, G protein-coupled receptors;

HPCs, hormone-producing cells; IP3, inositol 1,4,5-trisphosphate; PI, phosphatidylinositol; PIK, PI-kinases;

PIPs; phosphoinositides; PLC, phospholipase C; PM, plasma membrane; PRL, prolactin; RTK, receptor

tyrosine kinase.
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and structural lipid molecules involved in numerous cellular processes.

This include defining the identity of intracellular organelles, signal

transduction, cell survival and proliferation, cytoskeleton organization,

membrane trafficking, modulation of gene expression, and hormone/

neurotransmitter release. They are a set of seven lipid derivatives that

differ in the presence or absence of phosphate groups at the 3-, 4-, and 5-

positions of PI. As illustrated in Figure 1A, they include the three

monophosphates - PI3P, PI4P, and PI5P; the three bisphosphates – PI

(4,5)P2, PI(3,5)P2, and PI(3,4)P2; and one trisphosphate – PI(3,4,5)P3.

PI-kinases (PIKs) and PI-phosphatases are responsible for the conversion

of PIPs between these distinctive phosphorylation states (17).

Here we review the roles of PI4P, PI(4,5)P2, and PI(3,4,5)P3 in

pituitary cell signaling and hormone secretion. The pituitary gland is

a neuroendocrine organ consisting of six hormone-producing cells

(HPCs): corticotrophs that secrete adenocorticotropic hormone,

melanotrophs that secrete melanocyte-stimulating hormone and

beta-endorphin, gonadotrophs that secrete luteinizing hormone and

follicle-stimulating hormone, thyrotrophs that secrete thyroid-

stimulating hormone, somatotrophs that secrete growth hormone,

and lactotrophs that secrete prolactin (PRL) (18). The pituitary gland
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also contains pituicytes and folliculostellate cells (FSCs), as well as

vascular pericytes and endothelial cells (19). Pituitary HPCs secrete

their hormones by constitutive and regulated exocytosis, in response

to several hypothalamic neurohormones (18) and endogenous ligands

that act in an autocrine and/or paracrine fashion (20). The action of

these ligands is mediated by G protein-coupled receptors (GPCRs)

and receptor tyrosine kinases (RTKs), the activation of which leads to

calcium mobilization from the ER. These cells are excitable and fire

action potentials spontaneously or in response to activation of specific

GPCRs, and the firing pattern and the accompanied pattern of

calcium signaling are cell-type-specific (21).
Synthesis and distribution of PIPs
within the cell

Four PIKs contribute to the synthesis of PI4P: PI4KA, PI4KB,

PI4K2A, and PI4K2B (Figure 1B). The conversion of PI4P to PI(4,5)

P2 is mediated by three PI4P5Ks: PIP5K1A, PIP5K1B, and PIP5K1C,

the latest having several splice forms. PI5P also contributes to the
A

B

D

C

FIGURE 1

Phosphoinositide metabolism and functions. (A) Schematic representation of phosphoinositide metabolism. The concerted actions of PI-kinases (red arrows) and
PI-phosphatases (blue arrows) generate three monophosphates, three bisphosphates, and a single trisphosphate. For simplicity, reactions that are likely to
predominate in vivo are shown. (B) PI-kinases and PI-phosphatases involved in the metabolism of PI4P, PI(4,5)P2, and PI (3,4,5) P3 and kinase inhibitors discussed in
this review. Black arrows indicate the enzymes inhibited by drugs. Wortmannin (Wm), a fungal metabolite, is a cell-permeable and irreversible inhibitor of
phosphatidylinositol 4-kinases PI4KA and PI4KB, both in a micromolar concentration range (1), whereas PI4K2A and PI4K2B are inhibited by adenosine (Ade) (2).
PI4KA is specifically inhibited by GSK-A1 and PI4KB by PIK93 (3), whereas PI4K2A is inhibited by PI-273 (4). The activity of PIP5K1A is blocked by ISA2011B (5) and
PIP5K1C by UNC3230 (6). PI5P also contribute to the formation of PI (4,5) P2 by PI4K2A/B, which are inhibited by Bay-091 and Bay-297 (7). PI(4,5)P2 is a substrate
for the class I PI3-kinases, consisting of PI3KCA, PI3KCB, PI3KCG, and PI3KCD isoforms. The blockers of these enzymes are Wm (in a nanomolar concentration
range), LY294002, and a larger number of other inhibitors (8). (C) Multiple functions of PI(4,5)P2 and PI4P. Two major actions of PI(4,5)P2 are to serve as a substrate
for two signaling pathways: phospholipase C (PLC)-dependent and PI3K-dependent. PLC is activated by Gq/11 protein-coupled receptors (GPCRs) and receptor
tyrosine kinases (RTKs), leading to formation of two intracellular messengers: inositol (1,4,5)-trisphosphate (IP3) and diacylglycerol (DAG). PI(3,4,5)P3 exhibits its
intracellular messenger functions by binding to numerous PH-domain containing effectors. PI(4,5)P2 also directly regulates ion channel gating, cytoskeleton, and
membrane dynamics, including endocytosis, exocytosis, and phagocytosis. PI4P is not only a precursor of PI(4,5)P2, but also acts as an intracellular messenger that
controls cellular function independently of PI(4,5)P2, including trafficking at endosomes (endo) and lysosomes, endoplasmic reticulum (ER) and Golgi trafficking, and
lipid transfers. (D) Common and specific roles of PI4P and PI(4,5)P2 in hormone secretion. The formation of secretory vesicles and carriers at the trans Golgi
network (TGN) is dependent on PI4P (9). In contrast, PI(4,5)P2 regulates remodeling of actin cytoskeleton (10), which may contribute to secretory vesicle travel.
Both PI4P and PI(4,5)P2 can regulate ion channel gating, but differentially (11). In addition to PI(4,5)P2, PI4P is also involved in PLC signaling as a direct substrate.
However, PI(4,5)P2 hydrolysis release IP3 and DAG, whereas PI4P hydrolysis release DAG and inactive IP2, an action that could explain the prolonged production of
DAG during sustained GPCR activation (12). The last step in vesicle exocytosis was believed to be solely dependent on PI(4,5)P2 (13), but recent data suggested a
possible role for PI4P independent of PI(4,5)P2 in the final step of regulated exocytosis (14). Derived from (9, 10, 14–16).
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formation of PI(4,5)P2 by PIP4K2A/B, but probably generates only a

small local pool of this messenger. PI(4,5)P2 is a substrate for class I

PI3Ks, consisting of the catalytic units PI3KCA, PI3KCB, PI3KCG,

and PI3KCD, each controlled by one of several regulatory subunits.

PI3-phosphatases antagonize the action of PI3K by removing the 3-

phosphate from PI(3,4,5)P3; PI5-phosphatases can remove phosphate

from the 5-position of PI(3,4,5)P3, PI(4,5)P2, and PI(3,5)P2; and PI4-

phosphatases remove phosphate from the 4-position of PI(3,4)P2 or

PI(4,5)P2 (22). Figure 1B also summarizes the most used inhibitors of

these PIKs.

Movements of PIPs are spatially restricted to PM and organelle

membranes, where they are produced by enzymes associated with

these membranes. PI4KA is predominantly localized in PM (23, 24),

while PI4KB is localized on the Golgi apparatus (25, 26). PI4K2A is

also present in the Golgi complex, as well as in the endosomal

membrane and synaptic vesicles, and PI4K2B is localized to

endosomal and perinuclear membranes (27–29); both type II PI4K

enzymes have also been detected at PM (30). Three types of PIP5K1s

are localized to PM controlling the conversion of PI4P to PI(4,5)P2

(31, 32). Class I PI3Ks are recruited to PM via RTKs or GPCRs,

leading to the generation of PI(3,4,5)P3 and activation of Akt (33, 34).

Therefore, PM is highly enriched in PI4P, PI(4,5)P2, and PI(3,4,5)P3

(12); PI4P is also present at high levels in the Golgi apparatus and the

trans-Golgi network (35), and PI4P and PI(4,5)P2 in exocytic

vesicles (9).
PI(4,5)P2 and phospholipase
C signaling

PI lipids were discovered nearly seventy years ago as a minor

phospholipid species, whose turnover was activated by stimulation of

hormone secretion (36). This was followed by the discovery of

receptor-mediated activation of PLC, which hydrolyses PI(4,5)P2

into two intracellular messengers, inositol 1,4,5-trisphosphate (IP3)

and diacylglycerol (Figure 1C). IP3 binds to its receptor located in the

ER membrane and, together with calcium, controls its gating. Once

activated, IP3 receptors function as calcium channels, allowing this

cation to be released from the ER into the cytosol. Calcium flux

through IP3 receptor channels can be terminated by their inactivation

in a calcium-dependent manner. Thus, the IP3 branch of this

signaling pathway leads to calcium mobilization, while the other

branch follows the production of diacylglycerol, which together with

calcium activates protein kinase C enzymes (17). Two families of

calcium-mobilizing receptors, GPCRs and RTKs, drive the activation

of different forms of PLC (37).

Pituitary cells express several genes encoding calcium-mobilizing

GPCRs in a cell-type-specific manner: muscarinic receptors Chrm1

and Chrm3 (gonadotrophs, FSCs), angiotensin receptors Agtr1a

(corticotrophs, FSCs) and Agtr1b (lactotrophs), purinergic receptors

P2ry1 (lactotrophs) and P2ry2 (FSCs), endothelin receptors Ednra

(gonadotrophs, lactotrophs, somatotrophs, FSCs) and Ednrb (FSCs,

pituicytes), growth hormone secretagogue receptor Ghsr

(somatotrophs), gonadotropin-releasing hormone receptor Gnrhr

(gonadotrophs), serotonin receptor Htr3a (corticotrophs,

melanotrophs, somatotrophs, pituicytes), thyrotropin-releasing

hormone receptor Trhr (thyrotrophs, lactotrophs), vasopressin
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receptors Avpr1a (FSCs) and Avpr1b (corticotrophs) and PACAP

receptors Adcyap1r1 (FSCs, gonadotrophs) (18, 19). Pituitary cells are

also equipped to signal via PLC gamma. The gene for this enzyme

(Plcg1) is well expressed in all pituitary cells, as well as RTKs genes:

Fgfr1 (all cell types), Fgfr2 and Fgfr3 (FSCs, pituicytes); Egfr (all cell

types), and Erbb4 (FSCs and pituicytes) (19, 38).

Activation of these receptors in pituitary cells leads to a large and

sudden increase in cytosolic calcium, followed by a non-oscillatory

decay in calcium concentration forming a plateau phase (biphasic

response), or an oscillatory change, with a frequency of 10-30 spikes

per minute. For example, thyrotrophs and lactotrophs respond with

biphasic calcium signals and hormone secretion to TRH

administration (39, 40). In gonadotrophs, the initial rise in cytosolic

calcium is usually followed by large calcium oscillations. The

frequency of calcium spiking and the rate of secretion depend on

the GnRH level, that is, there is frequency coding of calcium signaling

and secretion. The oscillatory calcium response lasts for several hours

during continuous GnRH receptor activation (41). In contrast,

immortalized gonadotrophs respond to GnRH administration with

non-oscillatory calcium signals, which desensitizes during sustain

GnRH stimulation, reflecting a decrease in IP3 generation (42).

Calcium is the main but not the only factor controlling the

exocytosis of secretory vesicles; several other intracellular signaling

pathways triggered by activation of calcium-mobilizing GPCRs

contribute to the effectiveness of calcium-secretion coupling (18).
PI(4,5)P2 and ion channel gating

It is well established that the PM level of PI(4,5)P2 is one of the

key factors that modulates the function of voltage- and ligand-gated

channels by interacting with the cytoplasmic domains of these

proteins (43). Pituitary HPCs express a number of voltage- and

ligand-gated ion channels and fire action potentials spontaneously

and in response to application of Gq/11 and Gs-coupled receptor (18,

44) and activation of ligand-gated channels (45). These channels play

an important role in pituitary functions, including hormone synthesis

and secretion, but the role of PI(4,5)P2 in their gating has not been

evaluated. Here, we list pituitary channels that have been shown to be

regulated by PI(4,5)P2 in other cell types.

Depletion of PI(4,5)P2 in the PM results in the closure of voltage-

gated potassium channels KCNQ1-4 and increased excitability of cells

expressing these channels (46–48); pituitary HPCs express only

Kcnq2 gene (19). Inwardly-rectifying potassium channels also

control the resting membrane potential and are regulated by PI(4,5)

P2 (49, 50), and pituitary cells express Kcnj3, Kcnj5, Kcnj6, Kcnj9, and

Kcnj11 genes (19). The gating of big and small calcium-activated

potassium channels also depends on PI(4,5)P2, keeping cells

quiescent and hyperpolarized (51, 52). The Kcnma1 gene encoding

big conductance channels is expressed in all HPCs, and small apamin-

sensitive conductance channels are expressed only in gonadotrophs

and lactotrophs (18). Depletion of PI(4,5)P2 also reduced the current

amplitudes of Cav1 and Cav2 calcium-conducting channels, with

opposite physiological consequences: reduced calcium influx and

calcium-dependent synaptic neurotransmitter release. Elevation in

PI4P production did not restore the Cav channel conductance (53–

55). These channels are well expressed in pituitary cells: Cacna1a,
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Cacna1c, Cacna1d, and Cacna1h in all HPCs, and Cacna1g only in

lactotrophs and somatotrophs (19, 56). Pituitary cells also express

ATP-gated P2X2, and P2X4 channels (45), which are known to be

regulated by PI(4,5)P2 (57, 58).

The physiological mechanism of PI(4,5)P2 reduction in PM was

also studied. It has been observed that the activation of PLC signaling

pathways is accompanied with closure of PM ion channels affecting

cell excitability. Sustained activation of Gq-coupled muscarinic

receptors, closes partially open KCNQ channels (59). The same

receptor-mediated PI(4,5)P2 depletion also reduced the current

amplitudes of Cav1 and Cav2 calcium-conducting channels (60).

The lack of experimental data on this topic in pituitary cells limits our

understanding of the contribution of ion channel closure to receptor

efficacy during continuous or repeated agonist applications, a

question of great physiological and clinical importance.
PI(4,5)P2 and the exocytic pathway

Hormone secretion by pituitary cells and other neuroendocrine

cells is a multistep process, beginning with hormone synthesis in the

ER, followed by transfer to the Golgi complexes for modification,

sorting, and packaging into secretory vesicles, which bud from the

trans face of the Golgi apparatus. Secretory vesicles then move along

microtubules approaching PM for docking. The attached vesicles

undergo priming to prepare for calcium-dependent fusion with PM,

which occurs as complete fusion or as a kiss-and-run process. The

first evidence for a direct role of inositol phospholipids in this

multistep process comes from work of the Martin (61, 62) and

Holz groups (63, 64) using adrenal neuroendocrine cells. Further

work identified PI(4,5)P2 as the major PIP required for the exocytic

process (65–68). The role of PI(4,5)P2 in exocytosis was further

established by the finding that stimulation of PI4P5-kinases facilitated

secretion (68) and knockout of PIP5K1C caused a reduction in

secretory vesicle priming (69). PI(4,5)P2-dependent facilitation of

secretion in mouse pituitary melanotrophs has also been

reported (70).

During the last 10 years, several PI(4,5)P2-sensitive proteins

involved in the control of exocytosis have been identified. Calcium-

dependent activator protein for secretion (CAPS) is a dense-core

secretory vesicles-bound protein (71), which plays a role in priming of

secretory vesicles (67, 72). Rapid, regulated dense-core vesicle

exocytosis in rat pituitary melanotrophs also requires the CAPS

protein (73), suggesting that a similar role is played by PI(4,5)P2 in

pituitary cells. Munc13 proteins (74) are also effectors for PI(4,5)P2

and contribute to the priming of secretory vesicles (75, 76).

Synaptotagmin-1, another secretory vesicle protein, acts as a

calcium-sensor for regulated exocytosis, requires PI(4,5)P2 to

enhance its calcium sensitivity (77, 78), and contributes to docking,

priming and fusion (79). PM-associated syntaxin-1 (80, 81) plays a

critical PI(4,5)P2- and/or (PI(3,4,5)P3-dependent role in regulated

exocytosis as a partner for SNAP-25, another PM associated SNARE

protein (82–84). Together, these proteins contribute to secretory

vesicle fusion. Spontaneous and stimulated PRL release from rat

lactotrophs is also associated with PM regions enriched in SNARE

proteins (85). For more details on PI(4,5)P2-dependency of the

exocytic pathway see review (13).
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PI(4,5)P2 and PI3K signaling

Class I PI3Ks selectively recognize and phosphorylates PI(4,5)P2

to make PI(3,4,5)P3 (86). These enzymes are heterodimers of the

p110 catalytic subunit closely associated with a regulatory subunit,

which keeps the heterodimer catalytically inactive. There are four

catalytic subunits and five regulatory subunits in class I PI3Ks (87). In

rat pituitary cells, only the Pik3ca gene reaches the threshold for

detection by scRNAseq, as do three regulatory subunit genes: Pik3r1,

Pik3r2, and Pik3r3 (14). In general, the RTK-mediated increases in

PI3K activity led to the activation of the protein kinase, Akt, which in

turn initiates a cascade of cellular responses. There are three isoforms

of this enzyme: Akt1, Akt2, Akt3, which contribute to their diverse

cellular roles (88). PI3K is “antagonized” by PTEN, which converts PI

(3,4,5)P3 back to PI(4,5)P2 (89). The Akt1, Akt2, Akt3, and Pten genes

are expressed in all pituitary cell types (19), suggesting the common

operation of this signaling pathway in the gland.

The PI3K/Akt pathway is a key contributor to carcinogenesis in

endocrine tissues, including pituitary cells (90). PI3K/Akt has also

been implicated in the control of PRL release in mammalian

lactotrophs (91). A dual regulatory effect of this pathway was

reported: inhibition of basal PRL release and enhancement of PRL

release in IGF-I-stimulated cells. A stimulatory role for PI3K in basal

and GnRH-stimulated GH and LH release has also been shown in fish

pituitary cells (92, 93). The status of electrical activity and calcium

signaling was not assessed in these studies. However, experiments

with aT3-1 and LbT2 immortalized mouse gonadotrophs revealed

that wortmannin at a concentration that inhibits both PI3K and PI4K

has no significant effect on GnRH-induced calcium mobilization, and

that PI3K can influence the expression of gonadotroph-specific genes

(94). In contrast, we observed no effect of the PI3K inhibitor

LY294002 on PRL secretion (14). The observations that (PI(3,4,5)

P3 and not PI(4,5)P2 shows a regulatory role on Drosophila’s synaptic

vesicle exocytosis (95) may also explain the difference between fish

and mammalian pituitary cells. However, in the work with the adrenal

neuroendocrine cells also reached opposite conclusions; there was no

major role for PI(3,4,5)P3 in the control of exocytic pathway (65, 96)

compared to the inhibition of regulated exocytosis observed in

LY294002-treated cells (97). This could be related to the

concentrations of LY294002 used in the experiments, since this

compound also inhibits PI4K at higher concentrations (98, 99).
PI(4,5)P2-independent functions
of PI4P

For many years, PI4P was thought to contribute to the control of

cellular function just as the precursor of PI(4,5)P2 and PI(3,4,5)P3. A

good example is the role of PI4KA in controlling the PI4P pool at PM,

which is required for continuous activation of PLC (23, 24). However,

more recently, a large body of evidence has accumulated showing that

PI4P is also a direct regulator of cellular functions (100, 101)

(Figure 1C). At PM this includes the role of PI4P as a substrate for

PI(4,5)P2 at PLC (102, 103). Similarly, PI4P may contribute to the

regulation of PM ion channel gating (104–107). PI4P has ability to

recruit cytosolic signaling molecules containing PI4P-binding motifs.

The role of PI4P in the Golgi compartment is well established (100).
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For example, depletion of PI4P by recruiting Sac1 to the Golgi inhibits

cargo trafficking from the trans-Golgi network to PM and endosomes

(108). Several studies have elucidated the role of PI4P in cargo

budding and sorting, vesicle formation, fission and fusion, Golgi

trafficking, and non-vesicular and lipid transport [reviewed in (101)].

PI4P may also play a role in trafficking at endosomes and lysosomes

(109–111). Additionally, PI4P is required for the fusion of coat

protein complex II vesicles from ER to Golgi compartments

presumably by direct interaction with SNARE-dependent fusion

(112). The physiological roles of PI4P were further supported using

the cell-specific inactivation of Pi4ka and Pi4kb in conditional

knockout mice (113, 114).

We recently assessed the role of PI4P in PRL secretion using

cultured rat pituitary cells. Application of wortmannin at a

concentration that inhibits both PI4KA and PI4KB and GSK-A1, a

PI4KA inhibitor, completely blocked basal PRL secretion in perfused

pituitary cells within 40-60 min application (Figure 2A). Inhibition

was also observed in static cultures of pituitary cells (Figure 2B),

without affecting de novo PRL synthesis (Figure 2C). In contrast,

PIK93, an inhibitor of PI4KB, was ineffective (14). Basal PRL release is

driven by spontaneous electrical activity and accompanied voltage-

gated calcium influx (115), which was not affected by wortmannin

and GSK-A1 treatments during 2-3 h administration (14). BayK 8644,

an L-type calcium channel agonist, stimulated calcium influx was also

not affected by GSK-A1 (Figures 2D, E), whereas BayK 8644-induced

PRL release was blocked (Figure 2F). Similarly, TRH-stimulated
Frontiers in Endocrinology 05
calcium mobilization was not blocked (Figures 2G, H) in contrast

to TRH-induced PRL release (Figure 2I). PIK93 did not mimic the

effects of wortmannin and GSK-A1, further supporting a role of

PI4KA in PRL secretion (14). These results indicate that inhibition of

PRL release by depletion of PI4P at PM occurs downstream

of calcium signaling. Because of the sensitivity of the SNARE

complex to PI4P in fusion of intracellular vesicles between different

intracellular organelles (112), it is reasonable to assume that the

SNARE complex that mediates the fusion of secretory vesicles at PM

is also sensitive to PI4P.
Concluding remarks and
future perspectives

Here, we briefly reviewed the literature showing that the multistep

process of hormone secretion by neuroendocrine cells requires the

presence PI(4,5)P2 either as a substrate for PLC- and PI3K-dependent

pathways or playing a direct role in the exocytic process. These

include the role of PI(4,5)P2 in calcium signaling, a critical step in

regulated exocytosis, either as IP3-dependent calcium mobilization

and/or voltage-dependent calcium influx, priming of secretory

vesicles by CAPS and Munc13, and assembly of SNARE proteins

sintaxin-1 and SNAP25, for secretory vesicle fusion. Data also

suggests PI(4,5)P2-specific and indiscriminate roles of PIPs in

hormone secretion; PI4P could substitute for PI(4,5)P2 in PLC
A B

D E F

G IH

C

FIGURE 2

PI4KA controls basal and receptor-stimulated exocytosis in pituitary lactotrophs independently of PI(4,5)P2. (A–C). Inhibition of basal prolactin (PRL)
release by Wm and GSK-A1 in perfused (A) and static pituitary cells (B) without affecting de novo PRL synthesis (C). (D–F) GSK-A1 also does not affect
stimulated voltage-gated calcium influx by L-type calcium channel agonist BayK 8644 (BayK) in pituitary lactotrophs (D, E) but inhibits BayK-stimulated
PRL release in perfused pituitary cells (F). (G–I) GSK-A1 does not inhibit thyrotropin-releasing hormone (TRH)-stimulated calcium mobilization in pituitary
lactotrophs (G, H) but inhibits basal and TRH-stimulated PRL release in perfused pituitary cells (I). DA, dopamine. Derived from reference (14).
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activation and gating of some channels (Figure 1D), and both PI(4,5)

P2 and PI(3,4,5)P3 have been implicated in syntaxin-1 clustering. Our

recent study suggests a possible role for PI4P downstream of calcium

signaling, raising the possibility that it also plas a key role in SNARE

function. Additional studies are needed to identify the primary and

secondary roles of specific PIPs in the control of a particular step of

exocytosis. These include elucidating the kinetics of PIP pool

depletion under physiological and pharmacological conditions. The

use of kinases inhibitors, especially wortmannin and LY294002,

requires attention to distinguish between PI4Ks and class I PI3K

signaling pathways.

In general, the roles of PI(4,5)P2 in PLC and PI3K actions in

HPCs are sufficiently well characterized. However, that is not the case

for direct effects of PIPs on signaling and exocytic pathways. These

include the need to characterize the PIP-dependent properties of

pituitary voltage- and ligand-gated channels and their calcium

signaling functions using well-established protocols for these

studies. Also, pituitary cells provide suitable experimental models to

address specific questions related to the role of PIPs in hormone

secretions. For example, the contribution of PIPs to the

desensitization of stimulus-secretion coupling during sustained

activation of Gq/11-coupled GPCRs and the relevance of the

calcium signaling pattern in this process. Certainly, cell type-

specific knockout of the genes encoding these kinases could provide

additional insight into the role of specific PIPs in cellular functions,

including hormone secretion. Considering the novel finding of the

possible role of PI4P in PRL secretion, this line of future research

should include lactotroph-specific knockouts of Pi4ka and Pi4kb.
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