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Recently, incorporating renewable energy resources (RERs) like wind turbines (WTs)
in a distribution network is rapidly increased to meet the load growth. However,
distribution networks have been facing many challenges to withstand the
intermittent output power of RERs. Battery energy storage (BES) is used with
RERs to smoothly inject the output power to the grid by RERs. Therefore, this
paper proposes an effective strategy for optimal allocation of WT and BES in RDS to
decrease the total system losses. In addition, a modified bald eagle search (BES-
optimizer) is proposed to obtain the preferable allocations of WT and BES
simultaneously in the radial distribution system (RDS) considering the probabilistic
distribution of the WT and load demand. IEEE 69-bus RDS is utilized as a test system.
Based on the obtained results, installing WTs with BES gives better results than
installing WTs alone in the RDS. However, the proposed algorithm proved its
efficiency to obtain the best global results compared with other well-known
techniques.
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1 Introduction

Increasing uncertainty in energy flow in power grids today is due to intermittent production
of renewable resources and time-varying load (Ashfaq and Ianakiev, 2018; Ludin et al., 2018; Liu
et al., 2019; Peng et al., 2019; Sun et al., 2019). Therefore, power grids are facing a period of
change caused by many issues such as reliability (Schienbein and DeSteese, 2002; Islam et al.,
2015) and expansion of the power system (Carrano et al., 2007), power quality improvement
(Short, 2018), load growth management (Das et al., 2013a; Hossain et al., 2015; Van Der Stelt
et al., 2018; Mousavi et al., 2019), penetration of renewable resources (Das and Alam, 2012; Das
et al., 2013b; Das et al., 2016; Yan et al., 2017), and minimization of greenhouse gas emission
(Mazumder et al., 2014; Nemet et al., 2016). Incorporating battery energy storage (BES) in the
distribution system is rapidly increasing to provide many benefits to environmental, technical,
and economic issues (Das et al., 2018a; Das et al., 2018b). These provide facilitation to RER
(renewable energy resource) integration (Solomon et al., 2014; Zhang et al., 2016; Parra et al.,
2017), reduction of greenhouse gas emission (De Sisternes et al., 2016; Lin et al., 2016;
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Ogunjuyigbe et al., 2016), network expansion (Go et al., 2016; Sardi
et al., 2017), power equality enhancement (Wen et al., 2014; Nick et al.,
2015), reliability improvement (Awad et al., 2014), and load
management (Marini et al., 2015; Parra et al., 2016; Zhang et al.,
2017a; Zhang et al., 2017b; Li et al., 2017; Zhu et al., 2018).

Installation of RERs like wind turbines in a distribution system
is commonly used due to its clean energy that depends on the
natural source and its inertia capable of carrying a load in a
transient condition (Bevrani et al., 2010). WTs (wind turbines)
are used to convert the kinetic energy that is based on wind
velocity into electrical energy. The WT generates power when
the wind speed reaches its rated magnitude and stops and starts
running when the wind speed exceeds the cut-out and cut-in
magnitudes of wind speed, respectively (Abdel-Mawgoud et al.,
2021a). Therefore, the output power of WTs is intermittent as they
depend on wind speed which is varied during the day. BES has a
technology that can produce fast response for discharging and
charging power. The main advantages of installing BES in the RDS
(radial distribution system) are reducing the electricity cost by
charging the electricity at light load as long as its price is low and
discharging the electricity at peak load as long as its price is high
(Saboori et al., 2015). In addition, BES is utilized to enhance the
penetration of RERs in the RDS by smoothing the intermittent
output power of RERs (Zhang et al., 2017a; Ahmad et al., 2018;
Arani et al., 2019; Gan et al., 2019; Hlal et al., 2019; Murty and
Kumar, 2020).

In recent years, many researchers studied the optimal
allocation of the WT and BES in the RDS. In Saboori et al.,
(2015), the optimal placement and sizing of BES in the RDS has
been determined to minimize the system annual cost using the
particle swarm optimization (PSO) algorithm. In Kalkhambkar
et al., (2017), the optimal allocation of BES with PV and WT in the
RDS has been determined to decrease the annual energy loss using
gray wolf optimizer (GWO). Also, GWO has been applied for
obtaining the sizing of BES in the RDS by decreasing the system
annual cost (Fathy and Abdelaziz, 2017) and for determining the
sizing of the inverter with the WT and electric vehicle by
decreasing the system energy loss (Ali et al., 2020). The best

sizing and locations of BES with the PV and WT to minimize the
line loading, power loss, and voltage deviation in RDS using the
artificial bee colony (ABC) algorithm have been presented in Das
et al., (2018b). In Abdel-Mawgoud et al., (2021b), the optimal
placement and sizing of PV with BES in the RDS has been studied
to decrease the system loss using the modified Henry gas solubility
optimization algorithm (modified HGSO). The whale
optimization algorithm (WOA) has been utilized to determine
the sizing of BES in the RDS by decreasing the system losses
(Wong et al., 2019) and for determining the optimal allocation of
BES with PV by decreasing the system cost (Kasturi and Nayak,
2017). The genetic algorithm (GA) has been applied to obtain the
optimal allocation of the WT and BES by minimizing the costs of
integrated sources and system losses (Khaki and Das, 2019).The
GA has also been utilized to calculate the best sizing of BES and
PV in the RDS by minimizing the voltage deviation, system loss,
and cost of energy generated (Teng et al., 2012; Chedid and
Sawwas, 2019). Recently, creating metaheuristic hybrid
algorithms by hybridizing two algorithms is becoming more
popular in most recent research works (Blum and Roli, 2008;
Ehrgott and Gandibleux, 2008; Duan et al., 2012; Wang et al.,
2012; Wang et al., 2013; Wang and Guo, 2013; Wang et al., 2014a;
Wang et al., 2016; Elgamal et al., 2020; Abdel-Mawgoud et al.,
2021a; Abdel-Mawgoud et al., 2021b). Several hybrid methods are

FIGURE 1
Section of the distribution network.

FIGURE 2
Time-varying commercial load curve via the day.

FIGURE 3
Output of the WT with the BES and load demand via the day.

Frontiers in Energy Research frontiersin.org02

Kamel et al. 10.3389/fenrg.2023.1100456

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1100456


utilized in different optimization problems, such as the ant colony
optimization–genetic algorithm (ACO-GA) (Nemati et al., 2009),
particle swarm optimization–differential evolution (PSO-DE)
algorithm (Niu and Li, 2008), particle swarm
optimization–genetic algorithm(PSO-GA) (Shi et al., 2005),
particle swarm optimization–ant colony optimization (PSO-
ACO) algorithm (Holden and Freitas, 2008), ant colony
optimization–differential evolution (ACO-DE) algorithm (Duan
et al., 2010), genetic algorithm–differential evolution (GA-DE)
algorithm (Lin, 2010), cuckoo search krill herd (CSKH) method
(Wang et al., 2016), and biogeography-based krill herd (BBKH)
approach (Wang et al., 2014b).

Bald eagle search (BES-optimizer) is an efficient metaheuristic
algorithm that mimics the intelligent social behavior or hunting
strategy of the bald eagle when it seeks for fish (Alsattar et al.,
2020). The hunting behaviors of BES are represented by three
stages: (1) selecting the search space to determine the best
promising area that contains the greatest number of fishes, (2)
searching for a fish (prey) inside the best promising area that is
selected before, and (3) starting swooping to determine the best
position to hunt. The sine cosine algorithm (SCA) is a
metaheuristic algorithm based on cosine and sine functions
(Mirjalili, 2016). Also, the SCA has an effective exploration
phase to be used in different optimization problems by many
researchers (Biswal and Shankar, 2018). This paper proposes a
modified BES-optimizer for improving the performance of the
original BES-optimizer by avoiding local minima and enhancing
its exploration phase. This modified algorithm is utilized to obtain
the optimal allocation of the WT and BES in the RDS to minimize
the real loss as a single function. The simulation results are
obtained by installing the WT alone or simultaneously with the
BES in the RDS considering the probabilistic distribution of WT
and system load demand. Installing the BES and WT in the RDS
enhances the minimum voltage, decreases system loss, improves
the power equality, enhances system reliability, increases system
capacity, and decreases greenhouse gas emission. The paper´s
contributions are outlined as follows:

✓ Proposing the modified BES-optimizer with the aim of
improving the performance of the original BES-optimizer.
✓ Applying the original BES-optimizer, the modified version, and
the SCA algorithm for determining the best placement and sizing of
the WT and BES in the RDS.
✓ The preferable allocation of the WT and BES is utilized to
minimize the total power losses of the system.
✓ Determining the placement and sizing of the WT and BES in the
RDS considering the generation uncertainty and time-varying load.

FIGURE 4
Flowchart of the modified BES-optimizer.

FIGURE 5
IEEE 69-bus RDS.
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✓ The high efficiency of the modified BES-optimizer is
confirmed by comparing its results with those obtained by
other techniques.

The remainder of the paper is organized as follows. The total
system modeling including the commercial load demand, WT, and
BES is presented in section two. Next, the problem formulation is
presented in Section three. After that, the proposed algorithm is
explained in Section four. Subsequently, the obtained results are
analyzed and discussed in Section five. Finally, Section six discusses
the conclusion of the paper.

2 Problem formulation

This paper studies the preferable allocation of WT alone or
with BES in the RDS as two cases to decrease the total active loss as
a single objective function. In the first case, installing WTs alone is
utilized to inject active power only to the RDS. In the second case,
the BES and WT are installed simultaneously to inject active
power only by them to the RDS. Also, BES is utilized to be charged
fromWT during light load and discharges the stored energy to the
system at high load, thus helping in enhancing the system
reliability. Therefore, BES is modeled to draw the active power
from the WT during charging when the load demand is less than
75% of the reference load and deliver active power to the system
during discharging when the load demand is more than 75% of the
reference load. Also, BES is disconnected from the system when
the load level reaches 75 % of the reference system load. The

forward–backward method is utilized to calculate the system load
flows (Eminoglu and Hocaoglu, 2008). The active and reactive
load flows in RDS are calculated by Eqs 1, 2, respectively. The
value of bus voltage (d+1) is calculated by Eq. 3. Figure 1shows the
system load flows are changed by installing WT alone or with BES,
as shown in Eqs 4, 5.

Pd � Rd, d+1
Pd+1 + PL,d+1( )2 + Qd+1 + QL,d+1( )2

Vd+1| |2( ) + Pd+1 + PL,d+1,

(1)

Qd � Xd, d+1
Pd+1 + PL,d+1( )2 + Qd+1 + QL,d+1( )2

Vd+1| |2( ) + Qd+1 + QL,d+1,

(2)
Vd+12 � Rd, d+12 +Xd, d+12( ) Pd

2 + Qd
2

Vd
2( ) + Vd

2

−2 PdRd, d+1 + QdXd, d+1( ), (3)

Pd � Rd, d+1
Pd+1 + PL,d+1( )2 + Qd+1 + QL,d+1( )2

Vd+1| |2( ) + Pd+1 + PL,d+1

−PWT, (4)

Pd � Rd, d+1
Pd+1 + PL,d+1( )2 + Qd+1 + QL,d+1( )2

Vd+1| |2( ) + Pd+1 + PL,d+1

− PWT + PBES( ), (5)
where Vd and Vd+1 are the voltage values of buses d and d + 1,
respectively. QL,d+1 and PL,d+1 are the reactive and active load at bus d.
Xd,d+1 and Rd,d+1 are the reactance and resistance among buses d and
d + 1, respectively. PWT and PBES are the active power generation of
the WT and BES, respectively. Also, Qd and Qd+1 are reactive power
flows at buses d and d + 1, respectively. Pd and Pd+1 represent the
active power flows at bus d and bus d + 1, respectively.

The total active power loss during 24 h is used as the objective
function as follows:

Fob � ∑Z

Z�1Ploss Z( ), (6)

where z and Ploss(z) are the total number of branches and the active
loss of the branch (z), respectively.

The formulation of the problem is implemented under inequality
and equality constraints shown as follows.

2.1 Equality constraints

The active and reactive load flows are represented as equality
constraints, as shown in Eqs 7, 8. Also, the power parlance equations
are formulated as equality constraints, as shown in Eqs 9, 10.

Pd+1 � Pd − PL,d+1−Rd,d+1
Pd

2 + Qd
2

Vd| |2( ), (7)

Qd+1 � Qd − QL,d+1−Xd,d+1
Pd

2 + Qd
2

Vd| |2( ), (8)

Psubstation +∑NWT

n�1 PWT n( ) +∑NBES

s�1 PBES s( )
� ∑NL

L�1Ploss L( ) +∑NB

b�1PL b( ), (9)
Qsubstation � ∑NL

L�1Qloss L( ) +∑NB

b�1QL b( ). (10)

TABLE 1 Utilized parameters

Item Value

Number of bald eagles 50

Number of iteration 200

System voltage limits 0.90 ≤Vk ≤ 1.05

Wind turbine limits 0 kW ≤PWT ≤ 4000 kW

Battery sizing limits 1 kW ≤PBES ≤ 500 kW

Discharging and charging power rate 1 kW ≤ Pcharge/discharge ≤ 500 kW

FIGURE 6
Output power of the WT by installing 1-WT alone in the RDS.
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2.2 Inequality constraints

These constraints are based on operation system constraints such
as branch constraints, WT output constraints, and bus system voltage

1) System Voltage constraints

Vn ≤Vk ≤VN, (11)

where VN, Vn, and Vk are the maximum, minimum, and nominal
voltage of bus (k), respectively.

2) WT output constraints

PWT, L ≤PWT, k ≤PWT,U, (12)
where PWT,L and PWT,U are the lower and upper output power of a
wind turbine, respectively.

3) Branch constraints

IL ≤ IN,L , L � 1, 2, 3, . . . . . . . . . . . . . . . , NB, (13)
where IL and IN,L are the nominal and maximum current of branch L,
respectively (Aman et al., 2014).

3 Modeling of load demand, WT and BES

3.1 Load modeling

Figure 2 presents an output of commercial load modeling in
per unit through 24 h (Lopez et al., 2004). This model is based on
voltage-dependent loads that are represented by Eqs 14, 15
(Khoubseresht and Shayanfar, 2020). Also, this model is
applied on the studied system load to become as commercial
load curve via the day (Kasturi and Nayak, 2017).

PL t( ) � POL t( ) × V
np
L , (14)

QL t( ) � POL t( ), (15)
where the real and reactive load voltage exponents are nP and nQ and
equal to 1.51 and 3.4, respectively. The real and reactive loads at bus
(L) are POL and QOL, respectively. Also, the injection real power and
reactive power at bus (L) are PL and QL, respectively.

3.2 Model of a wind turbine

The generating power of the WT depends on the wind speed,
so the uncertainty of wind speed can be modeled using Weibull
probability density function (Abdel-Mawgoud et al., 2021a).

TABLE 2 Results for the best allocation of WT alone using BES-optimizer in the RDS.

Item Without WT 1-WT alone 2-WT alone 3-WT alone

Location (size (kW)) — 61(2051.9) 61(1954.23) 61(1888.503)

17(573.8) 18(415.586)

— 11(552.257)

Energy (kWh) — 61(27073) 61(25784) 61(24917)

17(7570.8) 18(5483.2)

— 11(7286.5)

Total energy (kWh) — 27073 33354.8 37686.7

Power loss (kW) 2173.851 1015.892 920.147 902.370

Power loss reduction (%) — 53.3 57.7 58.5

FIGURE 7
Output power of the WT by installing 2-WT alone in the RDS.

FIGURE 8
Output power of the WT by installing 3-WT alone in the RDS.
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Therefore, the probability of wind speed can be evaluated using
Eq. 16.

F D( ) � a

w

x

q
( )a−1

exp − D

w
( )a[ ], (16)

where w and a are the scale and shape parameters that are determined
using the mean and standard deviation of wind speed, respectively.

a � δs
ρs

( )−1.086
, (17)

w � ρs
Γ 1 + 1 /

j( )( ), (18)

The output and the average power of the output are evaluated
using Eqs 19, 20, respectively.

P Dm( ) �

0 , 0≤Dm ≤Dci

Prated ×
Dm −Dci( )
Dr −Dci( ) , Dci ≤Dm ≤Dr,

Prated , Dr ≤Dm ≤Dco

0 , Dm ≥Dco

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(19)

P
W,av�∫t

0
PW Dm( )FW D( )dD dx,

(20)

where Dci and Dr are the cut-in and rated velocity of the WT,
respectively. Dm and Dco are the average and cut-out velocity of
WT, respectively. Pw, av and P(Dm) are the average and generation
power of the WT, respectively.

3.3 Battery storage system

The battery storage system is a storage device that is utilized in a
power grid to enhance the system reliability and minimize the
intermittent output of renewable resources and the variable load.
The BES can be connected to the distribution system via an inverter
to convert the DC voltage from BESs to AC voltage, as shown in
Figure 1. In this paper, the charging and discharging of the BES is
based on the load level, as shown in Figure 3. The BES is charging or
discharging when the load level is less or above 75% of the base
load. Therefore, the BES can be simulated as the load or the
generator during the charging or discharging status.

4 Modified algorithm

4.1 Bald eagle search algorithm

BES-optimizer is an efficient metaheuristic algorithm that is
inspired by the hunting behavior of bald eagles in nature. The
hunting behavior of the BES-optimizer begins with selecting space,
then searching in the selected space, and finally moving to swooping
behavior. In the selecting space behavior stage, bald eagles search for
the promising area (search space) that has a greater number of fish or
prey. In the searching behavior stage, the bald eagles move in the
promising area to search for fish. In the swooping behavior stage, the
bald eagles move to the prey predetermined before the second stage.
These behaviors can be formulated as follows:

TABLE 3 Comparison among the modified BES-optimizer, SCA, original BES-optimizer, and modified MRFO used for determining the allocation of the WT alone in
the RDS.

Item 1-WT alone 2-WT alone 3-WT alone

Modified BES-optimizer Bus (size (kW)) 61(2051.9) 61(1954.23) 61(1888.503)

17(573.8) 18(415.586)

— 11(552.257)

Power loss (kW) 1015.892 920.147 902.370

SCA Bus (size (kW)) 61(2051.9) 61(1954.23) 61(1879.99)

17(573.8) 17(433.8)

— 11(523.3)

Power loss (kW) 1015.892 920.147 902.482

Original BES-optimizer Bus (size (kW)) 61(2051.9) 61(1954.23) 61(1903.87)

17(573.8) 21(338.1)

— 12(540.5)

Power loss (kW) 1015.892 920.147 903.399

Modified MRFO (Zhu et al., 2018) Bus (size (kW)) 61(2051.9) 61(1954.23) 61(1888.5)

17(573.8) 17(415.8)

— 11(552,1)

Power loss (kW) 1015.892 920.147 902.379

Modified BES-optimizer is the presented algorithm and obtain better results than other algorithms. Therefore, the results have been obtained by modified BES-optimizer are presented as bold value to

illustrate that this is the best value.
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Stage 1: Selecting the search area
Bald eagles search for a new search space Hnew,i depending on

the best search area Hbest and the available information Hmean

that are determined from the previous stage, as shown in Eq. 21.

Hnew,i � Hbest + ∝× r Hmean −Hi( ), (21)

where r is a random value between 1 and 0. ∝ is a parameter that
controls the new position of the bald eagle and equals a value between
1.5 and 2.

Stage 2: Searching in the search space
Bald eagles move in a spiral space in the search space selected

before in the first stage to search for fish. Therefore, the

TABLE 4 Results of the optimal allocation of the WT with the BES using the modified BES-optimizer in the RDS.

Item Without WT and BES 1-(WT+BES) 2-(WT+BES) 3-(WT+BES)

Location (WT size (kW)) — 61(2284) 61(2188.4) 61(2093.2)

17(628.4636) 18(468.3)

— 11(638.3)

Location (BES size (kW)) — 61(286) 61(274) 61(262)

17(79) 18(59)

— 11(80)

Total WT energy (kWh) — 61(30135) 61(28873) 61(27618)

17(8291.9) 18(6178.7)

— 11(8422.2)

Charging energy of the BES (kWh) — 61(4290) 61(4110) 61(3930)

17(1185) 18(885)

— 11(1200)

Discharging energy of the BES (kWh) — 61(1716) 61(1644) 61(1572)

17(474) 18(354)

— 11(480)

Energy from the WT to the grid (kWh) — 61(25845) 61(24763) 61(2368.8)

17(7106.9) 18(5293.7)

— 11(7222.2)

Energy from (WT + BES) to the grid (kWh) — 61(27561) 61(26407) 61(25260)

17(7580.9) 17(5647.7)

— 11(7702.2)

Power loss (kW) 2173.851 881.774 774.1187 753.5304

Power loss reduction (%) — 59.4 64.4 65.3

FIGURE 9
Output power of one WT by installing 1-(WT-BES) in the RDS.

FIGURE 10
Charging and discharging energies of one BES by installing 1-(WT-
BES) in the RDS.
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new position of bald eagles can be formulated by Eq. 22. a and R
are the parameters that control the shape of the spiral space
movement, as a determines the corner between a point in the

search path and the center point and R determines the number of
search cycles.

Hnew,i � Hi + y i( ) Hi −Hi+1( ) + x i( ) Hi −Hmean( )( ), (22)
x i( ) � xr i( )

max xr| |( ), y i( ) � yr i( )
max yr

∣∣∣∣ ∣∣∣∣( ), (23)

xr i( ) � r i( ) + sin θ i( )( ), yr i( ) � r i( ) + cos θ i( )( ), (24)
θ i( ) � a × π × rand, r i( ) � θ i( ) + R × rand, (25)

where R is a parameter that equals a value between 0.5 and 2. a is a
parameter that equals a value between 5 and 10.

Stage 3: Swooping
Bald eagles swing from its best position that is predetermined from

the second stage to the fish. The swing behavior is formulated from Eq.
26, as follows:

Hnew,i � rand × Hbest + x1 i( ) Hi − c1 × Hmean( )
+y1 i( ) Hi − c2 × Hbest( ), (26)

x1 i( ) � xr i( )
max xr| |( ), y1 i( ) � yr i( )

max yr
∣∣∣∣ ∣∣∣∣( ), (27)

FIGURE 11
Total energies of one BES during 24 h by installing 1-(WT-BES) in
the RDS.

FIGURE 12
Output power of two WTs by installing 2-(WT-BES) in the RDS.

FIGURE 13
Charging and discharging energies of BES1 and BES2 by installing
2-(WT-BES) in the RDS.

FIGURE 14
Total energies of BES1 and BES2 during 24 h by installing 2-(WT-
BES) in the RDS.

FIGURE 15
Output power of three WTs by installing 3-(WT-BES) in the RDS.
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xr i( ) � r i( ) + sinh θ i( )( ), yr i( ) � r i( ) + cosh θ i( )( ), (28)
θ i( ) � a × π × randr, i( ) � θ i( ), (29)

where c1 and c2 ∈ [1, 2][6, 7]

4.2 Sine cosine algorithm

The SCA is based on cosine and sine functions that lead to solutions
fluctuating toward or outward the best solution. The implementation of
the SCA during the optimization process is based on the exploration
phase and exploitation phase. In addition, the SCA starts its optimization
process by generating solutions with a high rate of randomness during the
exploration phase and then generates solutions with a low rate of
randomness during the exploitation phase. There are several
parameters in the SCA to make a control balance of exploration and
exploitation phases during the optimization process. The updating
positions of the SCA are formulated by Eq. 30.

Hnew, i � Hi + r1 × sin r2( ) r3Hbest −Hi( ) , r4 < 0.5
Hi + r1 × cos r2( ) r3Hbest −Hi( ) , r4 ≥ 0.5

{ , (30)

FIGURE 16
Charging and discharging energies of BES1, BES2, and BES3 by installing 3-(WT-BES) in the RDS.

FIGURE 17
Total energies of BES1, BES2, and BES3 during 24 h by installing 3-
(WT-BES) in the RDS.
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r1 � 2
2t
t max

, (31)
r2 � 2 × π × rand(), (32)
r3 � 2 × rand(), (33)
r4 � rand(), (34)

where r1, r2, r3, and r4 represent a random number. t max and t are the
maximum and current iteration, respectively.Hbest andHi are the best
and current position, respectively.

4.3 Modified bald eagle search algorithm

The SCA has an efficient exploration phase that depends on
generating solutions with a high rate of randomness to explore the
best promising area that has many prey. The exploration phase of the
BES-optimizer is based on the parameter α that controls themovement of
bald eagles in search space to explore the best search area (promising
area). Also, the randomness of solutions during the first stage is low as the
movement of bald eagles is based on (∝ ) that equals 1.5 or 2. Therefore,

TABLE 5 Comparison among the modified BES-optimizer, SCA, and original BES-optimizer in determining the optimal allocation of the WT with the BES in the RDS.

Item 1-(WT+BES) 2-(WT+BES) 3-(WT+BES)

Modified BES-optimizer Bus (WT size (kW)) 61(2284) 61(2188.4) 61(2093.2)

17(628.4636) 18(468.3)

— 11(638.3)

Location (BES size (kW)) 61(286) 61(274) 61(262)

17(79) 18(59)

— 11(80)

Power loss (kW) 881.774 774.1187 753.5304

SCA Bus (WT size (kW)) 61(2284) 61(2200) 61(2117.8)

17(639.5) 17(428.8)

— 11(694.98)

Location (BES size (kW)) 61(286) 61(275) 61(265)

17(80) 17(54)

— 11(87)

Power loss (kW) 881.774 774.3856 754.02

BES-optimizer Bus (WT size (kW)) 61(2284) 61(2475) 61(2063.5)

17(711) 19(395.07)

— 12(550.8)

Location (BES size (kW)) 61(286) 61(309) 61(258)

17(89) 19(49)

— 12(69)

Power loss (kW) 881.774 774.4682 756.233

TABLE 6 Statistical results and simulation time of the BES, SCA, and modified-BES algorithms by installing three WTs with and without the BES in the RDS.

Item Minimum Average Maximum STD Simulation time of the minimum value (second)

WT alone BES-optimizer 903.399 906.1 908.248 1.8892 118.323563

SCA 902.482 904.2796 906.243 1.5805 109.236042

Modified BES-optimizer 902.37 903.8474 905.37 1.4023 195.327.195

WT+BES BES-optimizer 756.233 760.1302 765.889 4.0138 174.23604

SCA 754.02 757.4208 759.786 2.1618 170.529705

— Modified BES-optimizer 753.5304 754.5933 755.745 1.0415 243.338127

Frontiers in Energy Research frontiersin.org10

Kamel et al. 10.3389/fenrg.2023.1100456

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1100456


inserting the SCA into BES-optimizer is used to increase the exploration
phase BES-optimizer in the first stage to obtain the best promising area in
the search space. The flowchart of themodified BES-optimizer is shown in
Figure 4. Therefore, the modified behavior stages of BES-optimizer can be
formulated as follows:

Stage 1: Selecting the search area

Hnew, i � Hbest + α × rand × sin rand()( ) Hmean −Hi( ) , rand()< 0.5
Hbest + α × rand × cos rand()( ) Hmean −Hi( ) , rand()≥ 0.5{ .

(35)

The second and third stages of the BES-optimizer remain the same
as follows.

Stage 2: Searching in the search space

Hnew,i � Hi + y i( ) Hi −Hi+1( ) + x i( ) Hi −Hmean( )( ), (36)
x i( ) � xr i( )

max xr| |( ), y i( ) � yr i( )
max yr

∣∣∣∣ ∣∣∣∣( ), (37)

xr i( ) � r i( ) + sin θ i( )( ), yr i( ) � r i( ) + cos θ i( )( ), (38)
θ i( ) � a × π × rand, r i( ) � θ i( ) + R × rand. (39)

Stage 3: Swooping

Hnew,i � rand × Hbest + x1 i( ) Hi − c1 × Hmean( )
+y1 i( ) Hi − c2 × Hbest( ), (40)

x1 i( ) � xr i( )
max xr| |( ), y1 i( ) � yr i( )

max yr
∣∣∣∣ ∣∣∣∣( ), (41)

xr i( ) � r i( ) + sinh θ i( )( ), yr i( ) � r i( ) + cosh θ i( )( ), (42)
θ i( ) � a × π × rand, r i( ) � θ i( ). (43)

The summarized steps of the developed BES-optimizer to obtain the
preferable allocation of the WT and BES in the RDS are presented as
follows:

Step 1: Read the system constraints with line and bus data.

Step 2: Set the parameters of BES-optimizer such as α to 2, a to 10,
and R to 1.5.

Step 3: Generate initial population of among the lower (low) and
upper (high) values of the control variable as follows:

H P,D( ) � rand(high(P,D) − low(P,D)) + low(P,D), (44)
where D and P are the number of variables and number of
populations, respectively.

Step 4: The obtained solutions of bald eagles are formulated as follows:

H �
H1,1 H1,2 / H1,D

H2,1 H2,2 . . . H2,D

..

. ..
.

1 ..
.

Hp,1 HP,2 / HP,D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (45)

Step 5: . Evaluate the fitness of all bald eagles and obtain the best
position and best fitness.

Step 6: Updating the positions of bald eagles according to the first
stage using the following equation:

Hnew, i � Hbest + α × rand × sin rand()( ) Hmean −Hi( ) , rand()< 0.5
Hbest + α × rand × cos rand()( ) Hmean −Hi( ) , rand()≥ 0.5{ .

(46)

Step 7: Evaluate the fitness of all updating position of bald eagles and
obtain the best position that is represented as the best search space or
promising area.

Step 8: Updating the positions of bald eagles according to the second
stage using the following equation:

Hnew,i � Hi + y i( ) Hi −Hi+1( ) + x i( ) Hi −Hmean( )( ). (47)

Step 9: Evaluate the fitness of all updating position of bald eagles
and obtain the best position in the promising area to make
swooping.

Step 10: Updating the positions of bald eagles to make swooping and
go to the prey or fish according to the third stage using the following
equation:

Hnew,i � rand × Hbest + x1 i( ) Hi − c1 × Hmean( )
+ y1 i( ) Hi − c2 × Hbest( ), (48)

Step 11: . Evaluate the fitness of all the updating position of bald
eagles and obtain the best position that is represented as the position of
prey or fish.

Step 12: Repeat Step 6 to 11 when maximum iteration is achieved.

Step 13: Obtain the best position (locations and sizes of the WT and
BES) with the best fitness.

5 Simulation results

The proposed modified BES-optimizer is validated and utilized to
obtain the best allocation of the WT and BES in IEEE 69-bus RDS.
This test system has a total load of 3.802 MW and 2.695 MVAr (Sahoo
and Prasad, 2006). The branches and buses of this system are 68 and
69, respectively, as shown in Figure 5. The system power flow is
evaluated in per unit under the base value of 100 MVA and 12.66 kV.
The system constraints and the algorithm parameters are given in
Table 1.

5.1 Optimal allocation of the WT alone in
the RDS

In this case, the WT is integrated in the RDS to inject active
power only to the grid during the day. Installing one WT decreases
the system loss to 1015.892 kWwith sizes of 2051.9 kW at bus 61 and
total energy of 27073 kWh, as shown in Figure 6. Table 2 shows the
optimal sizes of two WTs are 1954.23 kW and 573.8 kW at buses
61 and 17, respectively, leading to a decrease in the real loss to
920.147 kW. Figure 7 shows the energies of two WTs through
24 h are 25784 kWh and 7570.8 kWh at buses 61 and 17,
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respectively. Table 2 shows installing three WTs achieves superior
results than other cases as it reduces the system loss to 902.37 kW.
The preferable sizing of three WTs at buses 61, 18, and 11 are
1888.503 kW, 415.586 kW, and 552.257 kW, respectively. Figure 8
shows the energies of three WTs through 24 h at buses 61, 18, and
11 are 24917 kWh, 5483.2 kWh, and 7286.5 kWh, respectively. The
total energies of two and three WTs through 24 h are 33354.8 kWh
and 37686.7 kWh, respectively. Table 3 shows the proposed
algorithm proves its efficiency to obtain better results than SCA,
the original BES-Optimizer, and modified Manta ray foraging
optimizer.

5.2 Optimal allocation of the WT with the BES
in the RDS

In this case, the best allocation of the WT and BES simultaneously in
the RDS is determined using the proposed optimizer. Table 4 shows the
best sizing of one WT and BES is 2284 kW and 286 kW at bus 61,
respectively, which can minimize the system loss to 881.774 kW. Figure 9
and Figure 10 show that oneWThas a total energy of 30135 kWh that can
charge one BES with an energy of 4290 kW with a charge rate of 286 kW
and inject an energy of 25845 kWh to the grid. In addition, the BES can
discharge an energy of 1716 kWh to the grid during the day, with a
discharge rate of 286 kW. The total energy capacity of one BES during the
day is shown in Figure 11. Installing two WTs with the BES can enable
injecting a total energy of 26407 kWh and 7580.9 kWh to the grid at buses
61 and 17, respectively. The superior allocation of twoWTs with the BES
in the RDS is 2188.4 kW and 628.4636 kW for the WT and 274 kW and
79 kW for the BES at buses 61 and 17, respectively. Figure 12 shows the
total energy of twoWTs is 28873 kWh and 8291.9 kW, which can enable
injecting an energy of 24763 kWh and 7106.9 kWh at buses 61 and 17,
respectively. The charging and discharging energies of two BESs are
4110 kWh and 1644 kWh at bus 61 and 1185 kWh and 474 kWh at bus
17, respectively, as shown in Figure 13. The total energies from the WT
and BES to the grid are 26407 kWh and 7580.9 kWh at buses 61 and 17,
respectively. The total energies of two BESs during the day are shown in
Figure 14. Integrating three WTs with the BES in the RDS decreases the
system loss to 753.5304 kW with sizes of 2093.2 kW, 468.3 kW, and
638.3 kW for WT and 262 kW, 59 kW, and 80 kW for BES at buses 61,
18, and 11, respectively. From Figure 15, it can be observed that the total
energies of three WTs are 27618 kWh, 6178.7 kWh, and 8422.2 kWh to
inject energies of 2368.8 kWh, 5293.7 kWh, and 7222.2 kWh at buses
61, 18, and 11, respectively. Three BESs can be charged from three WTs
during the day with energies of 3930 kWh, 885 kWh, and 1200 kWh to
inject energies of 1572 kWh, 354 kWh, and 480 kWh at buses 61, 18 and
11, respectively. Both three WTs and BES can inject total energies of
25260 kWh, 5647.7 kWh, and 7702.2 kWh to the grid at buses 61, 18,
and 11, respectively. The charging and discharging power of three BESs
during the day are shown in Figure 16. Also, the energy capacity of three
BESs during the day is shown in Figure 17. The performance of the
modified BES-optimizer is measured by comparing its results with those
obtained by the SCA and the original BES-optimizer, as shown in
Table 5. From BES modeling, the BES is charging or discharging when
the load level is less or above 75% of the base load. Therefore, BESs are
charged with a specific power rate from hour 1 to hour 6 and then are
discharged from hour 7 to hour 12, as shown in Figure 10; Figure 13;
Figure 16. In addition, the total stored energy of BESs decreased 0 at
hour 12 when the last discharging power rate is injected into the

system at hour 12, which leads to the stored energy to become 0 at
hours 13, 14, and 15. Finally, the BES is charged again from hour
16 to hour 24 when the load level is less than 75% of the base load to
increase the stored energy of BESs again until it reaches to the
maximum value at hour 24, as shown in Figure 11; Figure 14;
Figure 17. The statistical results of the BES, SCA, and the modified-
BES algorithms with the simulation time by installing three WTs
with and without BES in RDS are illustrated in Table 6. BES-
optimizer, BES, and SCA algorithms are applied 15 times for
installing three WTs alone and with the BES in the RDS to
obtain the minimum, STD, maximum, and average values of
total system loss as shown in Table 6. Table 6 shows the best
results obtained by the BES-optimizer with high simulation time
when compared to BES and SCA algorithms.

6 Conclusion

In this paper, determining the preferable allocation of the WT alone
or simultaneously with the BES in the RDS considering uncertainty of
generation and time-varying load has been presented. A modified BES-
optimizer has been proposed by inserting the SCA with the original BES-
optimizer, with the aim of improving the performance of the original BES.
The reduction in total active loss has been presented as a problem
formulation, considering system constraints. The results proved that
the maximum reduction in the active loss by incorporating one, two,
and three WTs alone in RDS are 53.3%, 57.7%, and 58.5%, respectively.
However, the maximum reduction in active loss is increased to 59.4%,
64.4%, and 65.3% by integrating one, two, and three WTs with BES,
respectively. The performance of themodified BES-optimizer is measured
by comparing its results with those obtained by other efficient algorithms
such as modified MRFO, SCA, and the original BES-optimizer.
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Nomenclature

Acronyms

ACO-DE Ant colony optimization–differential evolution

BBKH Biogeography-based krill herd

CSKH Cuckoo search krill herd

GA-DE Genetic algorithm–differential evolution

ACO-DE Ant colony optimization–differential evolution

GA Genetic algorithm

ABC Artificial bee colony

GWO Gray wolf optimizer

PSO-ACO Particle swarm optimization–ant colony optimization

GA Genetic algorithm

PSO-GA Particle swarm optimization–genetic algorithm

PSO Particle swarm optimization

PSO-DE Particle swarm optimization-differential evolution

ACO-GA Ant colony optimization–genetic algorithm

Modified HGSO Modified Henry gas solubility optimization

SCA Sine cosine algorithm

BES-Optimizer Bald eagle search optimizer

RDS Radial distribution system

BES Battery energy storage

WT Wind turbine

PV Photovoltaic

Indices and sets

NBES Set of BESs in the RDS

NWT Set of WTs in the RDS

NL Set of branches in the RDS

NB Set of buses in the RDS

s Index of BESs

n Index of WTs

L Index of branches in the RDS

b Index of buses in the RDS

Parameters

QL,d+1, PL,d+1 The reactive and active loads at bus d+1

Xd,d+1, Rd,d+1 The reactance and resistance among buses d and d+1

IN,L The high limiting current of branch (L)

PWT,U, PWT,L The upper and lower values of the WT output power

VN, Vn The maximum and minimum allowable operating bus voltage

Hbest, Hi Represent the best and current position

r1, r2, r3, r4 Represent a random number among [0,1]

R Represents a parameter that equals a value between 0.5 and 2

a Represents a parameter that equals a value between 5 and 10

~ Represents a number between 1.5 and 2

r Represents a random number among [0,1]

Prated, Dm Rated power and the average velocity of the WT

Dr Rated velocity of the WT

Dco, Dci Cut-off and cut-in velocities of the WT

δs, ρs Standard deviation and mean of the wind velocity

a, w Shape and scale parameters of Weibull function

nQ Reactive load modeling voltage index

nP Active load modeling voltage index

Functions and variables

Pdischarge The discharging power rate of the BES

Pcharge The charging power rate of the BES

IL The current in the branch (L)

Psubstation, Qsubstation The injected active and reactive power from
substation

PWT, PBES The generated active power of the WT and BES

Vd, Vd+1 The voltage value of bus d and bus d+1

Qd, Pd The reactive power and real power among buses d and d+1

Ploss (z) Represents the power losses at branch z

fob The main objective function

f (D) The Weibull probability density function of the wind
speed (D)
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