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The discovery of hidden laws in data is the core challenge in many fields, from

the natural sciences to the social sciences. However, this task has historically relied

on human intuition and experience in many areas, including psychology. Therefore,

discovering laws using artificial intelligence (AI) has two significant advantages. First,

it makes it possible to detect laws that humans cannot discover. Second, it will

help construct more accurate theories. An AI called AI-Feynman was released in a

very di�erent field, and it performed impressively. Although AI-Feynman was initially

designed to discover laws in physics, it can also work well in psychology. This

research aims to examine whether AI-Feynman can be a new data analysis method for

inter-temporal choice experiments by testing whether it can discover the hyperbolic

discount model as a discount function. An inter-temporal choice experiment was

conducted to accomplish these objectives, and the data were input into AI-Feynman.

As a result, seven discount function candidates were proposed by AI-Feynman. One

candidate was the hyperbolic discount model, which is currently considered the

most accurate. The three functions of the root-mean-squared errors were superior

to the hyperbolic discount model. Moreover, one of the three candidates was

more “hyperbolic” than the standard hyperbolic discount function. These results

indicate two things. One is that AI-Feynman can be a new data analysis method

for inter-temporal choice experiments. The other is that AI-Feynman can discover

discount functions that humans cannot find.

KEYWORDS

time preference, symbolic regression, AI-Feynman, hyperbolic discounting model, artificial

intelligence

1. Introduction

This study uses artificial intelligence that can automatically discover the laws of physics to

discover the law of time preference and share its review. Here, the laws are defined as functions

that match the data obtained from humans. This paper aims to inform psychologists that AI is

a powerful tool to discover laws and that it is simple, easy, and free to use.1 To demonstrate the

usefulness and possibility of AI in the field of psychology, we will examine a tool named AI-

Feynman (Udrescu and Tegmark, 2020; Udrescu et al., 2020), which is a neural-network-based

symbolic regression fitting tool developed by physicists, to discover the lows or tendencies from

psychological phenomena. As an example, we apply AI-Feynman to explore the lows of time

1 This work is based on and extended from the first author’s under-graduate thesis (Miyazaki, 2021).
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preference and discounting phenomenon2 and explain how it works

to extract lows from the experimental data. We conduct a single

experiment on time preference as an example. Although we only have

one experiment, we find seven candidates for the discount function

using AI-Feynman, and two of them provide intriguing models and

others include known functions. This would provide an effectiveness

of AI-Feynman, though the novelty of the two models is limited

due to the small sized sample. An application of AI technology

(convolutional neural network) to education has been reported in Liu

et al. (2022), where the MOOC forum discussions of an E-learning

system are analyzed to explore the relationships among emotional

and cognitive engagements, and learning achievement.

Section 2 explains the necessity of discovering the laws of time

preference. Section 3 introduces AI that can automatically discover

physical laws and shows that AI can work well in psychology.

In Section 4, AI is used to reveal the discount function from

experimental data of inter-temporal choice, and it is shown that

the results are consistent with previous findings. Finally, Section 5

discusses our conclusions, limitations, and future directions.

The discovery of laws in psychology is important because

it increases the reproducibility of findings and helps develop

psychology as a science. There are two methods for discovering laws

in psychology. One is the deductive method, which derives laws from

the existing theories and axioms. The other is the inductive method,

which searches for laws that well explain experimental facts.

An example of the inductive method is the discovery of the laws

of time preference in inter-temporal choices. Inter-temporal choice is

defined as decisions involving trade-offs between costs and benefits

that occur at different times (Frederick et al., 2002). It is also known

that people prefer receiving a reward earlier time rather than later

(Koopmans, 1960). This phenomenon is known as “time preference”

in economics and “delay discounting” in psychology. For example, if

people are given two options: (A) get $10 now and (B) get $10 at the

end of the month, most people choose (A) even though the amount

of money is equal between the two options.

Since such choices can affect economic prosperity on a national

scale (Smith, 1976), they have been studied since early in the

history of economics (Rae, 1905). However, until 1936, too many

theories explained inter-temporal choice, and economists did

not understand it systematically. Sub-sequently, the Exponential

Discounting Model (EDM) was proposed by Samuelson (1937). His

theory significantly advanced understanding, leading to its rapid

acceptance because it explained inter-temporal choice with only one

concept, “discounting”. Discounting is captured mathematically in

the discount function λ(t), as shown in Equation (1):

U(A, t) = Aλ(t) (1)

where t is the time, A is the amount of goods, and U is the utility

function. The utility function converts the value of receiving A at

time t to utility. λ(t) takes values ranging from zero to one. The

EDM considers λ(t) = e−κt , where κ is a positive real parameter

that determines discount level. In this case, the utility function is

expressed by Equation (2).

2 We do not provide details of time preference and discounting phenomenon

and interested readers are referred to Frederick et al. (2002).

FIGURE 1

Graph of EDM and HDM.

U(A, t|κ) = Ae−κt (2)

EDM was deduced from the old economic axiom about human

decision-making that assumes people are rational3 [For details and

proof, see Appendix, Section 6.1 A2 of Musau (2009)]. Because of

this, EDM views a present bias as an anomaly. The present bias is the

reversal of preference over time. People often experience doing a task

that they are sure to do tomorrow but put it off. This example typifies

present bias because their preference for “doing the job” to “putting it

off” is reversed over time.

On the other hand, psychologists inductively discovered the

hyperbolic discounting model (HDM) through experiments on

humans and pigeons (Green and Myerson, 1996). The HDM

considers that λ(t) = 1/(1 + κt). In this case, the utility function

is expressed as Equation (3).

U(A, t|κ) = A
1

1+ κt
(3)

The graphs of EDM and HDM are shown in Figure 1. Subsequent

empirical research revealed that the HDM is more suitable for λ(t)

than EDMbecause the former can explain present bias, whereas EDM

cannot. The present bias occurs when λ(t) is the HDM instead of

the EDM. Since people often put off something they would do,4 in

daily life, HDMs can capture the essence of time preference more

than EDMs.

As the example above shows, inductive law discovery is essential

because it can discover new theories and axioms founded on real-

world phenomena. However, since inductive law discovery has relied

on human intuition and experience in many fields, researchers

have often overlooked some laws. In particular, when true laws are

expressed via complex mathematical formulae, researchers who do

not use mathematics as the primary tool in the theoretical analysis

might not discover them.

3 In this context, the word “humans are rational” means that the value of

humans’ subjective interest rate does not change with time.

4 “Eating high-calorie meals while dieting” and “spending money you would

save” are also examples of present bias.
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In a very different field, an AI called AI-Feynman, which can

discover physical laws, was released, and it achieved impressively high

performance (Udrescu and Tegmark, 2020; Udrescu et al., 2020).

Although AI-Feynman was initially designed to discover laws in

physics, it can also work well in psychology. This study demonstrated

that the law of time preference can be found from experimental data

with AI-Feynman and can help researchers who do not have high

mathematical skills.

2. Materials and methods

2.1. AI-Feynman

In this section, the AI-Feynman machinery is briefly explained.

For more details, please refer to the following references (Udrescu

and Tegmark, 2020; Udrescu et al., 2020; Miyazaki, 2021).

2.1.1. Symbolic regression and fitting
The discovery of laws is sometimes referred to as a symbolic

regression. Symbolic regression discovers hidden laws as a formula,

namely a combination of “symbols”. Strictly speaking, given n

independent variables {x1, x2, . . . , xn} and one dependent variable

y, symbolic regression is the process of finding the formula

of function f , where y = f (x1, x2, . . . , xn) by searching

the formula space (Udrescu and Tegmark, 2020). In contrast,

adjusting the arbitrary constants in a particular function to fit the

given data is called “fitting.” Fitting can be distinguished from

symbolic regression.

For symbolic regression, it is necessary to find f as a combination

of symbols that maximizes the fit to the data. This process is time-

consuming, as the number of combinations increases in the order

of sl, where l is the length of f as a symbolic combination, and s

is the number of possible symbols for f . This trend implies that the

formula space to be searched is generally vast. However, AI-Feynman

uses a neural network to detect the symmetry and separability of

f . As a result, it recursively reduces the formula space. Therefore,

it is possible to avoid searching for a vast formula space with

relative ease.

Until AI-Feynman was released in April 2020, the Eureqa

software (Schmidt and Lipson, 2009; Praksova, 2011) was the best

symbolic regression program. Both programs were tested to regress

100 laws symbolically Feynman’s Lecture on Physics (Feynman,

1963a,b; Feynman et al., 1963). As a result, Eureqa symbolically

regressed only 71 laws, while AI-Feynman achieved symbolic

regression of 100 laws. There are two versions of AI-Feynman:

the unbranded AI-Feynman, released in April 2020, and the AI-

Feynman 2.0 released in September 2020. In this research, we have

attempted to explain AI-Feynman 2.0, because it recorded higher

performance. Therefore, when we use the word “AI-Feynman” in

the following text, it means AI-Feynman 2.0. The source code of

AI-Feynman 2.0 is at https://github.com/dcshapiro/AI-Feynman.

2.1.2. Outline of algorithm
As mentioned in the previous section, symbolic regression takes

a long time because the formula space increases in the order of sl.

However, functions appearing in many scientific fields, including

physics and psychology, often have the following three properties

introduced in Udrescu and Tegmark (2020). These properties enable

us to shorten the time required for symbolic regression.

1. Smoothness5: A formula is continuous and analytic in the domain

of the given data.

(e.g., The formula for kinetic energy and distance between two

points is analytic within the domain of definition).

2. Symmetry: A formula exhibits either translational, rotational, or

scaling symmetry for some variables.

(e.g., The formula of distance between two points d =
√

(x1 − x2)2 + (y1 − y2)2 has the symmetry of being invariant to

the translational transformation x1 → x1 + a, x2 → x2 + a with

any constant a).

3. Separability: A formula can be written as the sum or product of

two parts that have no variables in common.

(e.g., The formula for kinetic energy mv2

2 can be written as the

product of the term m
2 aboutm and the term v2 about v).

The formula space to search can be reduced using the properties

of f . Using property (i) enables us to approximate f with a

feed-forward neural network6 (FNN), whose activation function

is analytical.7 Using the FNN in (i) can confirm the presence or

absence of (ii). If we confirm that f has symmetry, the number

of independent variables can be reduced by one. The presence

or absence of (iii) can also be confirmed using the FNN. If it is

confirmed that f has separability, it can be divided into two simpler

independent functions.

An overview of AI-Feynman’s algorithm is presented in Figure 2.

As can be seen in Figure 2, the AI-Feynman algorithm consists

of seven units (dimensional analysis, brute-force search, gradient-

descent, low-degree polynomial fitting, integer or rational adjusting,

output transform, confirming symmetry and separability units).

These units help AI-Feynman to shorten the time of symbolic

regression. The dashed squares indicate the role of each unit (data

transformation, formula searching, or fitting), and the numbers

attached to the arrows indicate the order of the process (the process

starts with the arrow that has the number 1). The essential thing

in Figure 2 is that AI-Feynman can discover the laws behind data

regardless of whether they are laws in physics or psychology because

the data you input into AI-Feynman are only combinations of

numbers (and units).

Because of space limitations, the details of AI-Feynman are not

presented here. Interested readers can refer to a brief review of

AI-Feynman (Miyazaki, 2021).

2.2. Experiment

The data of the discount function λ(t) must be collected by

changing the value of t, namely {ti, λ(t)i, i = 1, . . . ,Nd}.
The data {(ti, λ(t)i)} can be collected by asking “At least how

much money would you like to receive now compared to receiving y

5 The quasi-hyperbolic discounting model (Ikeda, 2012, pp. 79–81) does not

satisfy this condition and cannot be symbolically regressed.

6 This is a standard neural network whose signals propagate only from the

input to the output.

7 AI-Feynman’s activation function is tanh(x) = ex−e−x

ex+e−x .
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FIGURE 2

Overview of AI-Feynman’s algorithm.

[yen] after t days later?” varying the value of t. If the answer is x[yen],

Equation (4) is provided.

yλ(t) = xλ(0)

λ(t) =
x

y
(∵ λ(0) = 1)

(4)

However, in practice, it is difficult for participants to determine

accurately the minimum value of money. Therefore, in this study,

data were collected using the 10-choice question shown in Figure 3.

This question type was repeated several times by changing y and t.

Each of the values of y[yen] and t[days] used in experiment varies

as 1,500, 4,000, 10,000, 25,000, 300,000, 500,000, and 1,000,000 and

7, 14, 21, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, and

360 respectively.8 Because the experiment was conducted for all

combinations of y and t, the participants answered 105 times in total.

The value of t increased from seven to 360. Additionally, because

the discount function is a decreasing function, the answer at time t1
can be regarded as the maximum value of the answer xmax[yen] at

the next time t2. For example, it was unlikely that a participant who

chose 1,200 yen on the upper sheet in Figure 3 would choose more

than 1,200 yen on the lower sheet in Figure 3. Therefore, if the answer

to the questionnaire described in the top panel of Figure 3 were 1,200

yen, the xmax of next questionnaire in the bottom panel of Figure 3

would be 1,200 yen. As mentioned earlier, there were 105 questions in

total, and the experiment took approximately 20minutes to complete.

The experiment was conducted in a room at Hiroshima University,

and the questions were displayed on a computer screen.

8 1,000 yen is about $9; checked on July 17, 2021.
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3. Results

The participant in the current experiment was the first author.

Only one subject participated in the experiment because the primary

objective of this research was to determine whether AI-Feynman

estimated the discount function correctly.

The experimental results are shown in Figure 4. The vertical and

horizontal axes represent λ(t) and time, t, respectively. Each line

shows the results for each y. From Figure 4, we can observe that the

future value is discounted. It can also be seen that the larger the y

FIGURE 3

Example of questionnaire’s first two steps.

FIGURE 4

The results of our first author’s discount function.

is, the larger the value of the discount function. This phenomenon

is known as the magnitude effect; the value of a discount function is

greater for large-magnitude goods (Loewenstein and Prelec, 1992).

Because of the magnitude effect, the data were input for each

value of y into AI-Feynman. AI-Feynman regressedmultiple discount

functions. These are shown in Table 1. Let them be fi,y(t). The root

TABLE 1 Function forms regressed by AI-Feynman.

Function form Name RMSE Present
bias

√

cos
(

1
4
log(κ1t + 1)

)

Model A 6.4× 10−2 Have

1−
√

κ1t Model B 5.6× 10−2 None

cos
(

κ1t
1
4

)

Model C 5.4× 10−2 None

1
1+κ1 t

HDM 4.0× 10−2 Have

sin
(

1√
κ1 t+κ2

)

+ 1− sin
(

1√
κ2

)

Model D 4.0× 10−2 Have

κ3 · e−κ1 t + (1− κ3) Model E 3.7× 10−2 Have

κ3 · 1
1+κ1 t

+ (1− κ3) Model F 3.1× 10−2 Have

eκt (Reference Only) EDM 6.3× 10−2 None

FIGURE 5

The shape of functions regressed by AI-Feynman.

FIGURE 6

Comparison of model D, HDM, and EDM.
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FIGURE 7

Comparison of standard study and study with AI-Feynman.

mean squared error (RMSE) was then calculated for each function

defined by Equation (5).

RMSEi ≡

√

√

√

√

∑

y

{

fi,y(t)− λ(t)
}2

N(total number of the questions)
(5)

The calculation results are shown in Table 1 in the presence or

absence of the present bias. Note that κ1 is a positive constant, κ2 is a

constant s.t. π2

4 ≤ κ2, and κ3 is a constant s.t. 0 ≤ κ3 ≤ 1. Although

EDMwas not provided by AI-Feynman, it was in Table 1 for reference

only. The shapes of the regressed functions are shown in Figure 5.

All the coefficients of each model are adjusted so that they cross at

(t, λ(t)) = (80, 0.15).

3.1. Discovery of the model which is more
“hyperbolic” than HDM

As can be seen in the fifth line of Table 1, the HDMwas regressed.

As a result, Models D, E, and F have present biases, and their RMSEs

are below that of the HDM.9 Therefore, we treat Models D, E, and

F as candidates superior to HDM. In the following, the properties of

Models D, E, and F are described in detail. On the other hand, Model

A is inappropriate as λ(t) because its RMSE value is inferior to that of

HDM. Models B and C are also inappropriate as λ(t) because they do

not have a present bias.

First, Model D is differentiable in the domain of t ≥ 0 because

0 < sin
(

1√
κ1t+κ2

)

≤ sin
(

1√
κ2

)

< 1 from definition κ1 >

0, κ2 > 4
π2 . This implies that Model D satisfies the definition of

λ(t). Additionally, the value of Model D is closer to 1 − sin
(

1√
κ2

)

at t → ∞. Figure 6 illustrates the shape of Model D with EDM and

HDM. All coefficients of each model are adjusted such that they cross

at (t, λ(t)) = (60, 0.3). As shown in Figure 6, model D drops more

sharply than the HDM around t < 60 and drops more gently around

60 < t. This feature indicates that Model D is a more “hyperbolic”

model than HDM.

9 The smaller the RMSE, the better the model.

Model E can be understood as a mixed model of EDM and 1. In

other words, Model E is the sum of e−κ1t with a weight of κ3 and

one with a weight of 1 − κ3. Model E can be understood as one that

exponentially discounts with probability κ3 and does not discount at

all with probability 1− κ3.

Model F is also understood as a mixed model of HDM and 1. This

means that Model F hyperbolically discounts with probability κ3 and

does not discount at all with probability 1− κ3.

4. Discussion

The AI-Feynman regressed the HDM. This result indicates that

AI-Feynman can be a new data analysis method for inter-temporal

choice experiments. AI-Feynman also regressed other intriguing

models, such as models E and F. These are mixed models composed

of EDM or HDM and a no-discount model. Such models have never

been proposed before, suggesting that that AI-Feynman can discover

new laws.

4.1. Evaluating regression results with
domain knowledge

Here, we emphasize that domain knowledge can be used to

evaluate the regression results of AI-Feynman. For example, in the

previous section, Model C was evaluated as inappropriate as λ(t)

because it does not have a present bias. However, even if there is a

present bias, Model C can be rejected using the domain knowledge of

λ(t). First, by definition, λ(t) is a monotonically decreasing function.

However, cos is not a monotonically decreasing function. Therefore,

Model C is not appropriate as λ(t).

4.2. New study procedure

In this study, we demonstrated a new study procedure using

AI-Feynman. The new procedure was compared with the standard

one in Figure 7. As shown on the left side of Figure 7, a standard

study was conducted in the following sequence: abduction, modeling

by humans, data collection, model selection, and discovery of laws.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1039438
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Miyazaki et al. 10.3389/frai.2023.1039438

On the other hand, the study with AI-Feynman, as shown on the

right side of Figure 7, contains the following sequence: collecting

data, modeling by AI-Feynman, revealing hypotheses behind the

model, selecting hypotheses, and discovering laws. A study with AI-

Feynman has the advantages of “automatic modeling” and “less likely

to miss laws.”

4.3. Future studies

The findings obtained from this study were based on data from

only one participant. Therefore, the same experiment should be

conducted with various participants whose discount functions would

vary. Individual differences must be considered when collecting data

from more than one person.

When data were collected from more than one person, there

were individual differences. The type of analysis used depends on

whether individual differences are assumed. If individual differences

are not assumed in a specific field, the mean of each participant’s data

should be input into AI-Feynman. This analysis is equivalent to the

fixed-effects model (Hsiao, 2003, pp. 51–52).

On the other hand, if individual differences are assumed, it

is desirable to remodel AI-Feynman to discover a model whose

arbitrary constants in discount functions differ for each participant.

For example, the HDM is 1
1+αit

, where αi represents an arbitrary

constant for each participant. Therefore, it is desirable to remodel the

AI-Feynman so that 1
1+αit

will be regressed.
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