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Sexual dimorphism has commonly been found inmany species. The phenotypes of

Salix matsudana females and males are different under salinity stress. An F1
population was selected to compare the differences between males and

females. As a result, males showed stronger roots and heavier dry weights than

females. The unique molecular mechanisms of males and females under salinity

stress were further analyzed based on the root transcriptome of males and

females. Both males and females up-regulated systemic acquired resistance

genes, such as ADH and oxygenase-related genes, to resist salt. Moreover, many

other abiotic stress response genes were up-regulated in males to adjust to salinity

stress, while females showed more down-regulation of nitrogen metabolism-

related genes to decrease the harm from salinity stress. The research on salinity

tolerance in Salix matsudana males and females would help to further understand

sexual dimorphism under selection pressure and provide benefits to the

ecological environment.
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Introduction

Plants have developed unique sex types to adjust to different selection pressures (Mendez

and Karlsson, 2005; Olas et al., 2019). Dioecious plants have much stronger heterosis and

evolutionary advantages and are more common in woody species (Barrett, 2010). Previous

studies have shown that the different reproductive costs of the different sexes in dioecious

plants may lead to different evolutionary directions. These evolutionary differences often lead

to obvious sex differences in morphological, physiological, and ecological indicators (mainly

in morphological growth, gas exchange, water use and hormone levels) and life history

characteristics (Stromme et al., 2018). Sexual dimorphism has been found in Acer

tegmentosum (Zhang et al., 2014), Taxus wallichiana (Zhang et al., 2009), Taxus cuspidata

(Cedro and Iszkuło, 2011), Populus davidiana (Sakai and Burris, 1985) and other trees. There
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are significant differences between the sexes in individual survival

rate, individual morphology (reproductive organs, vegetative organs,

individual size, etc.), and physiological characteristics (flowering time,

flowering frequency, photosynthetic characteristics, etc.).

Woody plants have to experience various abiotic stresses due to

their immobility and perennial characteristics (Han et al., 2022).

Sexual dimorphism is also reflected in the response to abiotic stresses

(Stromme et al., 2018). Under different external conditions, plants of

different sexes will appropriately adjust the allocation of resources to

promote their own better development (Tonnabel et al., 2017).

Previous studies have found that dioecious plants show significant

sexual dimorphism in response to salt stress, drought stress, heavy

metal stress, high temperature stress and low temperature stress.

Populus catharensis (Chen et al., 2011) and Populus yunnanensis

(Jiang et al., 2012) showed higher osmotic regulation capacity, water

use efficiency, and antioxidant enzyme activity to adapt to salt stress,

Populus euphratica males exhibit stronger drought and salt stress

resistance than females (Yu et al., 2023). However, female Populus

davidianas exhibited a taller height and more biomass accumulation

than males during salt stress (Li et al., 2016). The photosynthetic rate,

water use efficiency, and antioxidant enzyme activity of female Ginkgo

were higher than those of male plants under salt stress, showing

stronger salt tolerance (Zhou et al., 2018). Male Populus yunnanensis

were more tolerant to cadmium, zinc, and lead stresses (Han et al.,

2013). Male Populus cathayana showed an advantage under

phosphorus deficiency, while female Populus cathayana showed an

advantage under high phosphorus supply (Xia et al., 2020).

Salix matsudana Koidz is a typical dioecious tree species that has

the characteristics of a wide distribution, strong adaptability, a short

flowering cycle and fast growth and reproduction (Zhang et al., 2020).

It has been widely planted in coastal beaches, riverbanks, mountains,

and desert shelterbelts. Moreover, Salix matsudana has strong salt

tolerance, which is of great significance for improving the ecological

environment of saline-alkali land (Liu et al., 2021b). In this research,

an F1 population of Salix matsudana was chosen to compare the

salinity tolerance between Salix matsudana males and females.

Moreover, the molecular mechanism of salinity stress in males and

females was further discovered. Research on salinity tolerance in Salix

matsudana males and females would help to further understand

sexual dimorphism under selection pressure and benefit the

ecological environment.
Materials and methods

Plant materials and tissue collection

An F1 individuals of Salix matsudana Koidz was produced by

cross-breeding the male parent “9901” and the female parent

“Yanjiang” in 2014 (Liu et al., 2021c). The branches of 30 female

F1 progenies and 30 male F1 progenies were clipped at 10 cm

lengths and 1 cm thicknesses and hydroponically cultured in

water under two conditions, with water only (i.e., the normal

condition, marked as “CK”) and with 0.5% NaCl solution (g/v)

(i.e., the salinity stress condition, marked as “T”). The clipped

branches were grown under each condition in three biological

replications for RNA-seq at Nantong University in March 2022.
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After 30 days, the newly sprouted roots and shoots were

col lected from each repl icate . The excised roots were

immediately frozen in liquid nitrogen and stored at -80°C until

use (Liu et al., 2021a).
RNA sequencing and library construction

The excised roots were ground in liquid nitrogen. The Plant RNA

Reagent Kit (Tiangen, China) was used to extract total RNA from

three replications. A Nanodrop ND 2000 spectrophotometer

(NanoDrop, Thermo, Waltham, MA, USA) was then used to

quantify the RNAs. The RNAs were then stored at -80°C before

performing RNA sequencing. Finally, Illumina sequencing

technology (Illumina, San Diego, CA, USA) was employed to

perform RNA sequencing by Biomarker (Beijing, China) (Chen

et al., 2020).
Analysis of sequencing data

The transcriptome reads were processed into clean, full-length

reads by removing the low-quality and adapter reads (Chen et al.,

2022). The assembled Salix matsudana Koidz. (“Yanjiang”) genome

sequence was selected as the reference for paired-end read mapping

(Zhang et al., 2020). The clean reads were aligned to genes of the

reference genome using HiSAT2 software with default parameters

(Kim et al., 2019). Then, StringTie2 was used to detect new transcripts

(Pertea et al., 2015). RSEM was chosen to calculate the fragments per

kilobase transcriptome per million mapped reads (FPKM) by

normalizing to the length of the gene and to the number of

mapped reads. To identify the differentially expressed genes

(DEGs), DESeq2 was selected. Two standards were used to detect

the DEGs: (1) the fold change should be no less than 2 between

different libraries, and (2) the adjusted false discovery rate (FDR)

should be less than 0.05 (Chen et al., 2020).

The identified genes were annotated by using the BLASTx search

in the NCBI nonredundant protein database. Then, Gene Ontology

(GO) categorization, clusters of eukaryotic orthologous groups

(KOG), Cluster of Orthologous Groups of proteins (COG), and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis were performed using BMKCloud (www.biocloud.net,

version 2.0) (Liu et al., 2021a). The data that supported the findings

of this study were deposited into the CNGB Sequence Archive

(CNSA) of the China National GeneBank Database (CNGBdb) with

accession number CNP0003818.
Measurement of male and
female phenotypes

The root depth, root width, and root cap area of 30 male and 30

female progenies under normal and saline conditions in three

biological replications were measured by using Win RHIZO

TRON (Xu et al., 2020). Then, all seedlings were harvested and

oven-dried to measure the biomass of the whole plant by using the

student t test.
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Results

Males of Salix matsudana have deeper and
wider roots than females

The phenotype of 30 male F1 progenies and 30 female F1
progenies under normal and salinity conditions were measured.

Under normal conditions, the root depth and width of male and

female plants did not differ significantly (Figure 1A). In contrast,

under salinity stress, the roots of male and female plants

subjected to intrasexual competition were significantly different.

Under salinity stress, male plants showed deeper and wider roots

than female plants (Figure 1B). The root cap area of males was

also higher than that of females (Figure 1C). This result means

that Salix matsudana showed sexual dimorphism under salinity

stress. Unlike in Populus deltoides (Li et al., 2016), male Salix

matsudana have much more developed roots than females. We

then measured the whole-plant dry mass, and the average

biomass accumulation of males was higher than that of females,

significantly (Figure 1D).
Overview of the RNA sequencing data

To characterize the role of the response of active genes to salinity

stress in males and females, deep sequencing libraries were generated

using total RNA extracted from roots under normal and salinity stress

conditions. After trimming off the adapter sequences and removing

the low-quality reads, we obtained 19,468,575–27,771,058 clean reads

for the 12 libraries; these libraries had a single read length of 90 bp

and a Q30 percentage (percentage of the sequences with sequencing

error rates lower than 0.1%) over 90% (Supplementary Table S1). The

clean reads were then mapped onto the reference genome of S.

matsudana using HISAT2. In total, 44,906 (77.64% of the 57,841
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gene models in the reference genome) genes were identified as being

expressed in at least one library.
Identification of differentially expressed
genes that responded to salinity stress in
males and females

The DEGs under normal and salinity stress conditions in males

and females were identified using a threshold FDR ≤ 0.05 and an

absolute value of log2-fold change ≥ 1. A total of 4906 DEGs (2604 in

males and 3227 in females) were identified, (Figure 2A). More genes

were identified in the response to salinity stress in females than in

males. However, only approximately one-fifth (925 in 4906) of the

DEGs were identified as differentially expressed in both males and

females. Compared to those under the normal condition, most genes

under salinity stress conditions showed low expression (Figure 2B).

Only 327 and 546 DEGs showed similar expression trends in males

and females, respectively. Moreover, 52 DEGs were identified as

showing opposite expression trends in males and females. Thirty-

seven DEGs were up-regulated in females but down-regulated in

males, and 15 DEGs were up-regulated in males but down-regulated

in females. The results indicate that the mechanisms of the response

to salinity stress in males and females may differ.
Common protein interaction networks
in response to salinity stress in
males and females

Weighted gene co-expression network analysis was performed to

further detect common and unique salinity stress response genes in

males and females. Among the 4906 DEGs, 969 could be classed into 3

modules (Figure 3A). In “MEbrown”, genes showed similar
A B

DC

FIGURE 1

Females and males showed different responses to salinity stress. (A) The root depth and width of females and males under normal condition. (B) The root
depth and width of females and males under salinity stress. (C) The root cap area of females and males under salinity stress. (D) The whole-plant dry
mass of females and males under salinity stress. The error bars denote the standard error (SE), The phenotypes were significantly different at **p < 0.01.
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expression trends in males and females. These genes were up-

regulated in both males and females under salinity stress, indicating

that the regulation of these genes in males and females is similar

(Figure 3B). Genes in “MEblue” showed a high correlation with

female plants under normal conditions, indicating that these genes

were only highly expressed in females under normal conditions and

were reduced under salinity stress. In males, these genes showed

similar expression levels between normal and salinity stress
Frontiers in Plant Science 04
conditions. The genes in “MEturquoise” showed a high correlation

with male plants responding to salinity stress. These genes were

highly expressed in males under salinity stress and did not change

much in females (Figure 3C).

A total of 48 genes were detected in “MEbrown”, and COG

enrichment analysis was performed. These genes were found to be

enriched in carbohydrate transport and metabolism and secondary

metabolite biosynthesis, transport and catabolism (Figure 4A). KEGG
A

B

C

FIGURE 3

Weighted gene co-expression network analysis (WGCNA) of females and males response to salinity stress. (A) DEGs were classed into 3 modules. (B) The
expression profile of DEGs in 3 modules, Blue, reduced expression; red, increased expression. (C) Correlation analysis of 3 modules and Salix matsudana
under different conditions.
A B

FIGURE 2

The differentially expressed genes (DEGs) of females and males response to salinity stress. (A) Venn analysis of the DEGs in females and males. (B) Venn
analysis of the up- and down-regulated DEGs in females and males.
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enrichment analysis showed that selenocompound metabolism was

enriched at high levels (Figure 4B). GO enrichment analysis was

further performed. For biological processes, the DEGs were mostly

enriched in systemic acquired resistance and carbohydrate metabolic

processes (Figure 4C). In contrast, for molecular functions, the DEGs

were mostly enriched in nutrient reservoir activity (Figure 4E). cell

wall and apoplast were detected enriched in cellular components

(Figure 4D). According to the common salinity stress-induced

protein interaction network, several genes encoding alcohol

dehydrogenase (ADH) proteins, oxygenase-related genes, glycosyl

hydrolase and ethylene synthesis genes were detected as hub genes

(Figure 5A, Table S2). The up-regulation of these genes could help

resist salinity stress (Zhao et al., 2019).
Unique protein interaction networks
in response to salinity stress in
males and females

The genes responding to salinity stress that were unique to

males or females were further detected. A total of 718 genes in

“MEturquoise” were up-regulated in males under salinity stress.

The COG enrichment analysis showed that these genes were

enriched in carbohydrate transport and metabolism, secondary

metabolite biosynthesis, transport and catabolism, signal

transduction mechanisms and defense mechanisms (Figure 6A).

The KEGG enrichment analysis showed that plant−pathogen

interaction and starch and sucrose metabolism were significantly
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enriched (Figure 6B). According to the GO analysis, carbohydrate

metabolic process and response to oxidative stress were enriched

in biological processes (Figure 6C); membrane and extracellular

region were detected in cellular components (Figure 6D); and

many oxygen-related terms, i.e. , peroxidase activity and

oxidoreductase activity, were significantly enriched in molecular

functions (Figure 6E). These results indicate that males could

activate some pathways to defend against salinity stress, such as

peroxidase activity, defense mechanisms, and sucrose metabolism

(Jia et al., 2019). We then constructed the salinity stress-induced

protein interaction network for males, and 16 hub genes were

identified (Figure 5B, Table S2). These hub genes were annotated

as dihydrofolate reductase (DHFR), ubiquitin, glutathione

transferase (GST), and DNAJ, among others (Table S3). These

genes were reported to reduce the damage caused by

active oxygen.

In females, 203 DEGs in “MEblue” were down-regulated

under salinity stress, which means that the expression of these

genes may work to the disadvantage of females when resisting

salinity stress. Secondary metabolite biosynthesis, transport

and catabolism, and signal transduction mechanisms were

detected in the COG enrichment analysis (Figure 7A). In the

KEGG enrichment analysis, nitrogen metabolism and plant

−pathogen interaction were significantly enriched (Figure 7B).

The GO analysis also detected several enriched nitrogen-related

terms (Figures 7C–E). These results indicate that female plants

could reduce the metabolism of nitrogen to adjust to salinity

stress. These genes were then used to construct the protein
A

B

D

E

C

FIGURE 4

COG, KEGG and GO analysis of salinity stress responding genes in both males and females. (A) COG enrichment analysis of salinity stress responding
genes in both males and females. (B) KEGG enrichment analysis of salinity stress responding genes in both males and females. (C–E) GO enrichment
analysis of salinity stress responding genes in both males and females.
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interaction network of females. As a result, genes encoding

nitrate reductase (NR) and nitrate transporter (NRT) were

detected as hub genes (Figure 5C, Table S2). Nitrate is one of

the most important sources of nitrogen in plants and can affect

the growth and development of plants. Researchers have
Frontiers in Plant Science 06
already found that NRT could regulate the distribution of

lateral roots. The down-regulation of nitrate-related genes

reduced the metabolism of nitrogen and plant growth. These

resu l ts showed that female p lants could reduce the i r

metabolism to adjust to salinity stress.
A

B

D

E

C

FIGURE 6

COG, KEGG and GO analysis of male unique salinity stress responding genes. (A) COG enrichment analysis of male unique salinity stress responding
genes. (B) KEGG enrichment analysis of male unique salinity stress responding genes. (C–E) GO enrichment analysis of male unique salinity stress
responding genes.
FIGURE 5

Identify of salinity stress responding protein interaction networks in Salix matsudana (Koidz) females and males. (A) Common protein interaction network
in both females and males. (B) Male unique salinity stress responding protein interaction network. (C) Female unique salinity stress responding protein
interaction network.
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Discussion

Male Salix matsudana plants showed
higher tolerance to salinity stress
than female plants

Female and male plants experience different selection pressures

and have different evolutionary directions. The difference in their

evolution could induce a series of morphological, physiological and

ecological differences between males and females, which is called

sexual dimorphism. In this research, Salix matsudana of both sexes

were selected to identify their sexual dimorphisms under salinity

stress. To suppress the interference of different genotypes, an F1
population was selected to perform the experiments. Males and

females did not differ significantly in root depth and width under

normal conditions. However, sexual dimorphism was evident under

salinity stress. Male plants showed a higher tolerance to salinity stress

than female plants, with deeper and wider roots and larger cap areas.

Usually, males have a higher tolerance for abiotic stress because

females may invest more energy into reproductive growth. Previous

studies have found that under salinity stress, Populus cathayana and

Populus yunnanensis males showed higher osmotic regulation ability,

water use efficiency and antioxidant enzyme activity than females.

This study also showed that Salix matsudana males gained an

advantage under salinity stress. However, in Populus deltoides and

Ginkgo, females are less sensitive to salinity stress than males. The

results indicate that even within the same family or genus, sexual

dimorphism may also differ. Interestingly, the sexual dimorphism
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under different abiotic stresses is not fixed. For example, male Populus

cathayana showed an advantage under salinity (Chen et al., 2011),

deficient nitrogen (Wu et al., 2021), phosphorus deficiency (Xia et al.,

2020) and drought stress (Chen et al., 2014), while female Populus

cathayana showed an advantage under high phosphorus supply (Xia

et al., 2020). A probable reason for the changing sexual dimorphism

could be that males and females have different selection pressures.
Males and females have their own
mechanism regarding salinity stress

To further understand the molecular response to salinity stress in

Salix matsudana males and females, we classified the DEGs into 3

module types: male-unique modules, female-unique modules, and

common modules. In the common modules, most genes were

annotated into the systemic acquired resistance term. ADH and

oxygenase-related genes were identified as hub genes. These genes

were reported to regulate plant resistance to abiotic stress. ADH has

been reported to take part in abiotic stress responses, such as those to

cold stress (Davik et al., 2013; Song et al., 2017), drought stress

(Senthil-Kumar et al., 2010), salinity stress (Shi et al., 2017) and

flooding stress (Liu and Adams, 2007; Komatsu and Ahsan, 2009;

Komatsu et al., 2012). In Arabidopsis, overexpression of AtADH1

could increase the accumulation of soluble sugar and produce a

stronger salt tolerance phenotype than the wild type (Shi et al., 2017).

The unique modules in males and females showed different

expression trends. In males, unique response genes were up-
A

B

D

E

C

FIGURE 7

COG, KEGG and GO analysis of female unique salinity stress responding genes. (A) COG enrichment analysis of female unique salinity stress responding
genes. (B) KEGG enrichment analysis of female unique salinity stress responding genes. (C–E) GO enrichment analysis of female unique salinity stress
responding genes.
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regulated under salinity stress, while in females, most genes showed

down-regulated expression trends. In males, many abiotic stress-

related pathways were activated, such as starch and sucrose

metabolism, peroxidase activity, and oxidoreductase activity. The

hub genes, i.e., DHFR, GST, DNAJ, and ubiquitin, were annotated

as being able to reduce the harm to the roots caused by oxidation.

Previous studies found that DHFR could affect the content of

chlorophyll (Van Wilder et al., 2009), and the suppression of DHFR

could down-regulate cell proliferation and lead to cell death (Assaraf,

2007; Zheng, 2009). GST can expel oxygen free radicals from cells and

reduce the damage caused by stress (Csiszar et al., 2014). In

Arabidopsis, the expression of GST could increase salt tolerance and

accelerate plant growth (Qi et al., 2010). In Solanum lycopersicum,

DNAJ could reduce reactive oxygen species accumulation and

enhance the tolerance to cold stress and heat stress (Kong et al.,

2014). The overexpression of DNAJ could increase the tolerance to

salt in Arabidopsis (Bekh-Ochir et al., 2013). In tobacco, the

overexpression of ubiquitin could improve the resistance to cold,

high salt and drought (Guo et al., 2008).

In contrast, unique genes in females were down-regulated under

salinity stress. Most of these genes were enriched in nitrogen

metabolism-related pathways. The hub genes were also annotated

to encode nitrate reductase (NR) and nitrate transporter (NRT). The

low expression of nitrogen metabolism-related genes could decrease

the cell viability and growth of plants (Tabata et al., 2014). Previous

studies also found that nitrate-related proteins could be involved in

the plant response to salt stress. Under salt stress, the expression of

NRT1.5 decreased to reduce the transport of NO3
- to the bud and

prevent harmful Na+ from entering the bud and causing injury to

plants (Lin et al., 2008). By comparing the unique modules in males

and females, we could develop a hypothesis: males preferred to

activate abiotic stress response genes to adjust to salinity stress,

while females preferred to reduce their basic nitrogen metabolism

and regulate the transport of NO3
- to decrease the harm caused by

salinity stress. This hypothesis could explain the phenomenon of male

Salix matsudana plants showing higher tolerance to salinity stress

than female plants.
Conclusion

In this study, the sexual dimorphism of Salix matsudana under

salinity stress was compared. Males showed stronger roots and

heavier dry weights than females. The molecular mechanisms of

males and females under salinity stress were further analyzed. As a

result, both males and females upregulated systemic acquired

resistance genes, such as ADH and oxygenase-related genes, to

resist salt. Moreover, many abiotic stress response genes were up-

regulated in males to adjust to salinity stress, while females preferred

to down-regulate nitrogen metabolism-related genes to decrease the

harm caused by salinity stress. The research on salinity tolerance in
Frontiers in Plant Science 08
Salix matsudanamales and females would help to further understand

sexual dimorphism under selection pressure and provide benefits to

the ecological environment.
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