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Purpose: To determine whether differences exist in the architectural characteristics
of the hamstring muscles of elite-level male and female rugby union players.

Methods: Forty elite-level rugby union players (male n = 20, female n = 20)
participated in this cross-sectional study. A sonographer acquired static
ultrasound images using a 92 mm linear transducer to quantify (via a semi-
automated tracing software tool) the architectural characteristics (muscle length,
fascicle length, pennation angle, and muscle thickness) of the biceps femoris long
head and semimembranosus muscles of participants’ left limb. Muscle length and
muscle thickness of the biceps femoris short head and semitendinosus muscles of
participants’ left limbwere also quantified. Bonferroni adjusted independent samples
t-tests were performed to evaluate whether differences exist in the architectural
characteristics of the hamstring muscles of elite-level male and female rugby union
players.

Results: Therewere no significant differences in fascicle length or pennation angle of
the hamstring muscles of elite-level male and female rugby union players. Some
significant differences in muscle thickness (biceps femoris short head, and
semimembranosus) and muscle length (biceps femoris short head, biceps femoris
long head, semitendinosus, and semimembranosus) were observed; in all cases the
male players had thicker and longer muscles.

Conclusion: At a group level, hamstring muscle fascicle length and pennation angle
are unlikely to be a sex-specific intrinsic risk factor for Hamstring strain injuries.
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Introduction

In professional rugby union, a negative association between injuries and team success has
been reported (Williams et al., 2017). Therefore, in order to enhance the assets of the sport
organisation, a primary focus needs to be placed on injury prevention. Hamstring strain injuries
(HSI) have consistently been identified as one of the most common injuries sustained by elite-
level rugby union players (Fuller et al., 2013; Fuller et al., 2017). Indeed HSI were reported to
account for 9.8% of all injuries incurred during the (men’s) 2019 RugbyWorld Cup (Fuller et al.,
2020). A similar injury prevalence has been reported in other rugby union injury surveillance
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studies (Fuller et al., 2013; Fuller et al., 2017), where HSI were the most
common injury type sustained duringmatches. Both the injury burden
and recurrence rate of HSI are high (Kerin et al., 2022).

It is generally accepted that male athletes are more likely to sustain
acute HSI than their female counterparts (Blackburn et al., 2008;
Blackburn and Pamukoff, 2013; Cross et al., 2013). Studies that
directly compare the rate of injuries between male and female
athletes have reported that male athletes are two to four times
more likely to incur HSI than their female counterparts (Cross
et al., 2013; Dalton et al., 2015; Edouard et al., 2016; Larruskain
et al., 2018). In soccer, incidence rates for HSI vary between sexes; the
incidence rate in men’s professional football is higher (1.5/1,000 h)
than the incidence rate in women’s professional football (0.2/1,000 h)
(Larruskain et al., 2018). However, HSI have been reported to be a
significant concern for female athletes. A study conducted in women’s
Gaelic football reported that HSI are common, and account for up to
22% of all injuries, with an associated injury burden of 66 days lost per
1,000 h (O’Connor et al., 2021). Other studies have reported that HSI
are the second most common injury sustained by professional female
soccer players (Crossley et al., 2020), and the third most frequent
injury sustained by amateur female soccer players (Söderman et al.,
2001). A similar injury prevalence (6%) has been reported in a
women’s rugby union injury surveillance study (Williams et al.,
2019). As detailed in the report of Williams et al. (2019), HSI
resulted in a substantial number of days lost to injury (mean range
91–100 days).

Although HSI are a prevalent injury incurred by male and female
athletes, little is known about potential inherent sex differences in the
architectural characteristics of the hamstring muscles. Muscle
architecture refers to the arrangement of fascicles within a given
muscle, which ultimately governs the mechanical function of the
muscle (Lieber and Ward, 2011). Aberrancies in the architecture of
the bicep femoris long head muscle have been investigated as a
potential intrinsic risk factor for HSI (Timmins et al., 2015).
During fast eccentric activity (i.e., sprinting), the muscle undergoes
active lengthening (Blazevich and Sharp, 2006). During this type of
contraction, long muscle fascicles, compared to short muscle fascicles,
exhibit less strain per sarcomere in series (Blazevich and Sharp, 2006);
this increases the maximum shortening velocity of the muscle and has
been proposed to reduce the risk of injury (Timmins et al., 2016a). One
prospective study has reported that “short” bicep femoris long head
muscle fascicles and low levels of eccentric knee flexor strength are risk
factors for HSI in elite soccer players (Timmins et al., 2016a).

Ultrasound can be used to accurately and reliably quantify the
architectural characteristics of skeletal muscle (Franchi et al.,
2020). One key limitation of standard B-mode ultrasound
transducers is their relatively narrow field of view (4–6 cm).
Previous studies (Timmins et al., 2016a; Bourne et al., 2017)
have assessed hamstring muscle architecture with narrow fields
of view. These fields of view are typically shorter than the fascicles
that are being measured. In these cases, fascicle length has been
estimated (>50%) with various linear approximations, using the
measured muscle thickness and pennation angle values (Timmins
et al., 2016a; Bourne et al., 2017). Thus, the ability to quantify the
architectural characteristics of the hamstring muscles is dependent
upon the accuracy and repeatability of the measurement technique
(Cronin et al., 2022). Recently, a semi-automated tracing software
tool was develop to quantify the architectural characteristics of the
hamstring muscles (Cronin et al., 2021). This tracing software tool

precisely measures fascicle length, whilst accounting for fascicle
curvature (Cronin et al., 2021).

Sex differences in lower extremity kinanthropometry and
anatomical structure have been reported to account for differences
in rates of knee injuries sustained by male and female athletes
(Mendiguchia et al., 2011). However their potential association
with sex differences in the rate of HSI has yet to be explored
(Tillman et al., 2005). One study conducted by Behan and others
identified that the fascicle length of the biceps femoris long head
muscle did not differ between males and females (Behan et al., 2019).
However a comparison of the architectural characteristics of the
hamstring muscles of elite-level male and females athletes has yet
to be reported in the published literature. Therefore, the purpose of
this study was to determine whether differences exist in the
architectural characteristics of the hamstring muscles of elite-level
male and female rugby union players. We hypothesised that males
would have longer biceps femoris long head and semimembranosus
fascicle lengths compared to their female counterparts.

Materials and methods

Participants

Forty professional rugby union players were recruited by
convenience sampling to partake in this cross-sectional study;
20 males (age = 24.5 ± 3.3 years; height = 1.9 ± 0.1 m; body mass,
100.4 ± 12.1 kg) and 20 females (age = 24.4 ± 3.3 years; height = 1.7 ±
0.1 m; body mass, 74.5 ± 9 kg). Using G* Power (statistical power
analysis tool) to calculate the sample size for a cross sectional study
with the following parameters, effect size (d) = 0.50, α err prob = 0.05,
power (β err prob) = 0.4, a sample size of 40 participants was
calculated (Faul et al., 2007). All participants provided written
informed consent before the ultrasound assessment. Ethical
approval for the study was granted by the UCD Human Research
Ethics Committee (LS-21-50-Kerin-Delahunt).

Hamstring ultrasound acquisition and
digitisation

All sonograms were acquired by a single operator using a Hitachi
Noblus ultrasound scanner (Hitachi Medical Systems,
United Kingdom) with a 92 mm wide field of view transducer
(Hitachi EUP-L53L). Trapezoid imaging was implemented at the
beginning of each ultrasound scan to induce an image base wider
than the footprint of the transducer; this permitted the inclusion of
more lateral muscle architecture when measuring fascicles in the
longitudinal plane up to 100 mm for a depth of 80 mm (Cronin
et al., 2022).

During the acquisition of the sonograms, participants were
positioned prone lying on a physiotherapy plinth. Participants’ legs
were adjusted so that the medial aspect of the thigh was aligned with a
previously placed mark on the plinth. A small amount of coupling gel
was placed on the posterior thigh to allow transmission of the
ultrasound waves intramuscularly. Ultrasound images were
analysed using a semi-automated tracing software tool to quantify
the architectural characteristics of the hamstring muscles (Cronin
et al., 2021). Fascicle length was measured in centimetres where a
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fascicle was clearly sonographically illustrated extending from the
intermediate aponeurosis to the superficial aponeurosis in the
longitudinal plane (Cronin et al., 2021). The angle formed between
the chosen fascicle and the intermediate aponeurosis is considered the
pennation angle (Cronin et al., 2021). Muscle thickness was defined as
the distance between the intermediate and superficial aponeurosis and
was measured in centimetres (Cronin et al., 2021).

Protocol

To identify the proximal and distal myotendinous junctions
(MTJs), the technique described by Freitas and others was used
(Freitas et al., 2018). A “mark” on the skin was used to indicate
the position of the MTJs, with the distance between these two marks
(in millimetres) being used to quantify muscle length. Each hamstring
muscle was divided into two distinct zones; a proximal zone (zone A),
and a distal zone (zone B) (Cronin et al., 2022). The proximal zone
represents architecture adjacent to the proximal MTJ, whereas the
distal zone represents architecture adjacent to the distal MTJ. All
sonograms were acquired from the left limb only. This sonographic
acquisition technique is a technically reliable (Cronin et al., 2022) and
precise method of quantifying hamstring muscle architecture (Cronin
et al., 2021).

Data analysis and statistics

All statistical analysis were performed with IBM SPSS Statistics for
Windows (Version 22.0, NY, United States, IBM Corp).

A Pearson product-moment correlation was used to determine the
relationship between player height and fascicle length of the biceps
femoris long head muscle (zone A and zone B) and the
semimembranosus muscle (zone A and zone B). This was
undertaken to determine whether player height should be included
as a co-variate in any between-group analyses of fascicle length.
Separate correlation analyses were performed for each group
(female elite-level rugby union players and male elite-level rugby
union players). The magnitude of correlation (r) was evaluated
according to the recommendations of Hopkins (2015) as follows:
r = 0.0–0.09 (trivial), r = 0.1–0.29 (small), r = 0.3–0.49 (moderate), r =
0.5–0.69 (large), r = 0.7–0.89 (very large), r = 0.9–0.99 (nearly perfect),
r = 1 (perfect) (Hopkins, 2015).

Independent samples t-tests were performed to evaluate whether
there were differences in fascicle length of the biceps femoris long head
muscle (zone A and zone B) and the semimembranosus (zone A and
zone B) muscle between female and male elite-level rugby union
players. The independent variable was sex (female elite-level rugby
union players vs. male elite-level rugby union players). The dependent
variables were fascicle length of the biceps femoris long head muscle
(zone A and zone B) and fascicle length of the semimembranosus
muscle (zone A and zone B). To adjust for multiple comparisons a new
a priori statistical significance level of p < 0.0125 was used. Cohen’s d
effect size was calculated and interpreted in line with Cohen’s
recommendations on the following descriptor scale; less than
0.20 = trivial, 0.20 = small, 0.50 = medium, 0.80 = large. 1.30 =
very large (Cohen, 1992).

Independent samples t-tests were performed to evaluate whether
there were differences in muscle thickness of the biceps femoris long

head, biceps femoris short head, semimembranosus and
semitendinosus muscles (zone A and zone B) between female and
male elite-level rugby union players. The independent variable was sex
(female elite-level rugby union players vs. male elite-level rugby union
players). The dependent variables were muscle thickness of the biceps
femoris long head, biceps femoris short head, semimembranosus and
semitendinosus muscles (zone A and zone B). To adjust for multiple
comparisons a new a priori statistical significance level of p <
0.006 was used. Cohen’s d effect size was calculated and
interpreted in line with Cohen’s recommendations on the following
descriptor scale; less than 0.20 = trivial, 0.20 = small, 0.50 = medium,
0.80 = large. 1.30 = very large (Cohen, 1992).

A Pearson product-moment correlation was used to determine the
relationship between player height and pennation angle of the biceps
femoris long head muscle (zone A and zone b) and the
semimembranosus muscle (zone A and zone B). This was
undertaken to determine whether player height should be included
as a co-variate in any performed between-group analyses of pennation
angle. Separate correlation analyses were performed for each group
(female elite-level rugby union players and male elite-level rugby
union players). The magnitude of correlation (r) was evaluated
according to the recommendations of Hopkins (2015) as follows:
r = 0.0–0.09 (trivial), r = 0.1–0.29 (small), r = 0.3–0.49 (moderate), r =
0.5–0.69 (large), r = 0.7–0.89 (very large), r = 0.9–0.99 (nearly perfect),
r = 1 (perfect) (Hopkins, 2015).

Independent samples t-tests were performed to evaluate whether
there were differences in pennation angle of the biceps femoris long
head muscle (zone A and zone B) and the semimembranosus (zone A
and zone B) muscle between female and male elite-level rugby union
players. The independent variable was group (female elite-level rugby
union players vs. male elite-level rugby union players). The dependent
variables were fascicle length of the biceps femoris long head muscle
(zone A and zone B) and fascicle length of the semimembranosus
muscle (zone A and zone B). To adjust for multiple comparisons a new
a priori statistical significance level of p < 0.0125 was used. Cohen’s d
effect size was calculated and interpreted in line with Cohen’s
recommendations on the following descriptor scale; less than
0.20 = trivial, 0.20 = small, 0.50 = medium, 0.80 = large. 1.30 =
very large (Cohen, 1992).

Independent samples t-tests were performed to evaluate whether
there were differences in (muscle) length of the biceps femoris long
head muscle, the biceps femoris short head muscle, the
semimembranosus muscle, and the semitendinosus muscle between
female and male elite-level rugby union players. To adjust for multiple
comparisons a new a priori statistical significance level of p <
0.0125 was used. Cohen’s D effect size was calculated and
interpreted in line with Cohen’s recommendations on the following
descriptor scale; less than 0.20 = trivial, 0.20 = small, 0.50 = medium,
0.80 = large. 1.30 = very large (Cohen, 1992).

Results

No significant correlations were observed between player
height and fascicle length of the biceps femoris long head
muscle (zone A and zone B) and semimembranosus muscle
(zone A and zone B) for either the female or male groups.
Therefore, player height was not included as a co-variate in any
analyses related to fascicle length.
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No significant between-group differences in fascicle length of the
biceps femoris long head muscle (zone A and zone B) and the
semimembranosus muscle (zone A and zone B) were observed
(Table 1).

No significant between-group differences in thickness of the
biceps femoris long head muscle (zone A and zone B), the
semitendinosus muscle (zone A) and the semimembranosus muscle
(zone A and zone B) were observed (Table 2). A significant difference
in muscle thickness of the biceps femoris short head muscle (zone A)
was observed between female and male elite-level rugby union
players (mean difference = −0.66 cm; 95% CI of mean
difference = −0.88 to −0.45; effect size = −1.97 (very large); p =
< 0.001 (Table 2). A significant difference in muscle thickness of
the biceps femoris short head muscle (zone B) was observed
between female and male elite-level rugby union players
(mean difference = −0.57 cm; 95% CI of mean
difference = −0.77 to −0.36; effect size = −1.78 (very large); p =
< 0.001) (Table 2). A significant difference in muscle thickness of the
semitendinosus muscle (zone B) was observed between female and

male elite-level rugby union players (mean difference = −0.39 cm; 95%
CI of mean difference = −0.62 to −0.16; effect size = −1.07 (large);
p = 0.002) (Table 2).

No significant correlations were observed between player height
and pennation angle of the biceps femoris long head muscle (zone A
and zone B) and semimembranosus muscle (zone A and zone B) for
either female or male groups. Therefore, player height was not
included as a co-variate in any analyses related to pennation angle.

No significant between-group differences in pennation angle of
the biceps femoris long head muscle (zone A and zone B) and the
semimembranosus muscle (zone A and zone B) were observed
(Table 3).

A significant difference in length of the biceps femoris long head
muscle was observed between female and male elite-level rugby union
players (mean difference = −2.95 cm; 95% CI of mean
difference = −4.03 to −1.87; effect size = −1.74 (very large); p = < 0
.001). A significant difference in length of the biceps femoris short head
muscle was observed between female and male elite-level rugby union
players (mean difference = −3.40 cm; 95% CI of mean

TABLE 1 Fascicle length.

Female Male Mean difference 95% CI of mean difference Effect size (Cohen’s d)

Biceps femoris long head zone A 8.21 ± 0.94 8.64 ± 0.77 −0.43 −0.98 to 0.12 −0.50

Biceps femoris long head zone B 7.23 ± 1.10 7.40 ± 1.24 −0.11 −0.86 to 0.64 −0.94

Semimembranosus zone A 6.00 ± 1.10 6.10 ± 1.40 −0.07 −0.86 to 0.72 −0.56

Semimembranosus zone B 6.00 ± 1.10 5.69 ± 1.09 0.30 −0.39 to 1.00 0.28

All fascicle length values are in cm.

TABLE 2 Muscle thickness.

Female Male Mean difference 95% CI of mean difference Effect size (Cohen’s d)

Biceps femoris long head zone A 3.40 ± 0.34 3.67 ± 0.37 −0.27 −0.50 to −0.45 −0.77

Biceps femoris long head zone B 3.34 ± 0.33 3.55 ± 0.35 −0.21 −0.43 to 0.01 −0.62

Bicep femoris short head zone A 2.01 ± 0.31 2.68 ± 0.36 −0.66a −0.88 to −0.45 −1.97

Bicep femoris short head zone B 2.05 ± 0.28 2.62 ± 0.35 −0.57a −0.77 to 0.36 −1.78

Semitendinosus zone A 2.73 ± 0.43 3.02 ± 0.28 −0.29 −0.52 to −0.58 −0.80

Semitendinosus zone B 2.79 ± 0.42 3.18 ± 0.31 −0.39a −0.62 to −0.16 −1.07

Semimembranosus zone A 3.56 ± 0.60 4.06 ± 0.65 −0.51 −0.91 to −0.11 −0.82

Semimembranosus zone B 3.89 ± 0.48 4.33 ± 0.53 −0.45 −0.77 to −0.13 −0.90

All muscle thickness values are in cm.
asignificant between group difference.

TABLE 3 Pennation angle.

Female Male Mean difference 95% CI of mean difference Effect size (Cohen’s d)

Biceps femoris long head zone A 21.77 ± 5.39 22.00 ± 5.59 −0.23 −3.74 to 3.29 −0.04

Biceps femoris long head zone B 20.82 ± 4.22 22.37 ± 5.38 −1.55 −4.65 to 1.54 −0.32

Semimembranosus zone A 21.33 ± 4.65 24.72 ± 5.82 −3.39 −6.76 to −0.02 −0.64

Semimembranosus zone B 21.62 ± 6.04 22.40 ± 5.03 −0.77 −4.33 to 2.79 −0.14

All pennation angle values are in degrees.
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difference = −4.98 to −1.82; effect size = −1.38 (very large); p = <0.001). A
significant difference in length of the semitendinosusmuscle was observed
between female and male elite-level rugby union players (mean
difference = −3.00 cm; 95% CI of mean difference = −4.73 to −1.27;
effect size = −1.11 (large); p = 0.001). A significant difference in length of
the semimembranosus muscle was observed between female and male
elite-level rugby union players (mean difference = −2.80 cm; 95% CI of
mean difference = −4.06 to −1.54; effect size = −1.43 (very large); p =
< 0.001) (Table 4).

Discussion

This study investigated whether differences exist in the
architectural characteristics of the hamstring muscles of elite-level
male and female rugby players. Our analyses revealed that there were
no significant between-group differences in fascicle length and
pennation angle. We did observe significant between-group
differences in muscle thickness of the semimembranosus muscle
(zone B) and bicep femoris short head muscle (zone A and B); the
male players had thicker muscles. Additionally, the elite-level male
players had longer hamstring muscles - for all muscles evaluated.

With respect to fascicle length, our observations are similar to those of
Behan et al. (2019), who reported that the fascicle length of the biceps
femoris long head muscle does not differ between recreationally active
men and women. Fascicle length and changes in fascicle length of the
bicep femoris long head muscle have been reported to associate with HSI
and risk of reinjury inmale athletes (Timmins et al., 2016a; Timmins et al.,
2016b). One retrospective study observed fascicle length to be 1.54 cm
shorter in the injured bicep femoris long head muscle (10.40 cm) when
compared to the uninjured bicep femoris long head muscle (11.94 cm)
(Timmins et al., 2015). Indeed, a prospective study identified that athletes
who possessed “short” bicep femoris long head muscle fascicle lengths
(<10.54 cm) were 4.1 times more likely to sustain future HSI, whereby for
every 0.5 cm increase in bicep femoris long head muscle fascicle length,
the risk of HSI was reduced by 73.9% (Timmins et al., 2016a). Our data
indicate that at a group-level, fascicle length of the biceps femoris long
head muscle and semimembranosus muscle do not differ between male
and female elite-level rugby union players. Therefore, at a group-level,
fascicle length is unlikely to be a sex-specific intrinsic risk factor for HSI.

We observed significant between-group differences in muscle
thickness of the bicep femoris short head muscle (zone A and zone
B). The between-group differences were 0.66 cm (zone A) and 0.57 cm
(zone B), respectively; the male athletes had thicker muscles. In a
previous study we described that the standard error of measurement
(SEM) associated with the ultrasound technique for the quantification
of muscle thickness of the bicep femoris short head muscle was

0.08 cm for zone A and zone B (Cronin et al., 2022). Therefore, we
can be confident that our observed significant between-group
difference in muscle thickness of the bicep femoris short head
muscle (zone A and zone B) represents a true difference (as it
exceed the SEM). We also observed a significant between-group
differences in muscle thickness of the semitendinosus muscle (zone
B). The between-group difference was 0.39 cm. In a previous study we
described that the standard error of measurement (SEM) associated
with the US technique for the quantification of muscle thickness of the
semitendinosus muscle was 0.09 cm for zone B (Cronin et al., 2022).
Therefore, we can be confident that our observed significant between-
group difference in muscle thickness of the semitendinosus muscle
(zone B) represents a true difference (as it exceed the SEM). The
prevalence of biceps femoris short head muscle injuries reported in the
published literature is low. In a retrospective study with 275 male
soccer players who had sustained HSI; the bicep femoris long head
muscle was the most commonly injured (56.5%), followed by the
semitendinosus muscle (24.4%), semimembranosus muscle (13.7%),
and bicep femoris short head muscle (5.6%) (Crema et al., 2015). In
elite-level male rugby union players, a recent study highlighted that
only 12% of injuries involve either the biceps femoris short head
muscle or semitendinosus muscle (Kerin et al., 2022). To our
knowledge, no published literature has reported upon the
physiological association between muscle thickness and the risk of
HSI. Although we observed significant between-group differences in
muscle thickness of the bicep femoris short head muscle (zone A and
zone B) and semitendinosus (zone B) muscle, we acknowledge that the
differences, although likely to be true differences, are somewhat small
(0.30–0.49 cm). It is important to understand that ultrasound is highly
operator dependent when assessing skeletal muscle architecture (Carr
et al., 2021), therefore any minor changes to transducer orientation
(Ishida et al., 2018; Dankel et al., 2020) and pressure applied to the skin
(Treece et al., 2002) will influence muscle thickness measurements.

We observed significant differences in the length of the hamstring
muscles between male and female elite-level rugby union players
(Table 4). This was somewhat expected, as male athletes were
significantly taller (p = <0.001); the mean height of the male
players was 1.9 m while the mean height of the female players was
1.7 m. However, no significant correlations were observed between
player height and fascicle length of the biceps femoris long head
muscle (zone A and zone B) and semimembranosus muscle (zone A
and zone B) for either groups. Indeed, we observed no significant
correlations between player height and pennation angle of the biceps
femoris long head muscle (zone A and zone B) and semimembranosus
muscle (zone A and zone B) for either groups. Lieber and others
identified that longer fascicle lengths contribute to an increase in
muscle length and muscle velocity, whereas shorter fascicles limit

TABLE 4 Muscle length.

Female Male Mean difference 95% CI of mean difference Effect size (Cohen’s d)

Biceps femoris long head 29.70 ± 1.84 32.65 ± 1.53 −2.95a −4.03 to −1.87 −1.74

Biceps femoris short head 23.30 ± 2.27 26.70 ± 2.64 −3.40a −4.98 to −1.82 −1.38

Semimembranosus 30.25 ± 1.78 33.05 ± 2.14 −2.80a −4.06 to −1.54 −1.43

Semitendinosus 33.60 ± 3.15 36.60 ± 2.16 −3.00a −4.73 to −1.27 −1.11

All muscle length values are in cm.
asignificant between group difference.
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muscle length and muscle velocity (Lieber, 1993). The majority of
studies assessing the associations between hamstring muscle
architectural characteristics and injury/re-injury have focussed on the
geometric distribution of the fascicles and fascicle length changes
(Timmins et al., 2016a; Timmins et al., 2017; Whiteley et al., 2022).
However, to our knowledge an association between hamstring muscle
length and the risk of HSI has not been described in the published
literature. Furthermore, the there is no direct association between
hamstring muscle length and HSI and our findings of significant
increases in hamstring muscle lengths between male and female elite
level rugby union players does not at least independently explain the
higher incidence of HSI in males when compared to females.

We acknowledge that our cross-sectional study design is a
limitation; we only assessed the architectural characteristics of the
hamstring muscles at a single point in time. Future studies should
include prospective designs which track the natural fluctuation of the
hamstring muscle architectural characteristics over the course of a full
competitive season. We acknowledge the lower sample size of our
study. Future studies should be undertaken on full team player cohorts
and not a convenience sample of players.

Conclusion

Our study is the first to comprehensively compare and contrast the
architectural characteristics of the hamstring muscles of elite-level
male and female rugby union players. At a group-level, no between-
group difference in fascicle length or pennation angle were observed.
Thus, at a group level, hamstring muscle fascicle length and pennation
angle are unlikely to be a sex-specific intrinsic risk factor for HSI.
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