
International Journal of Mathematical, Engineering and Management Sciences

Vol. 8, No. 2, 230-244, 2023

https://doi.org/10.33889/IJMEMS.2023.8.2.014

230 | https://www.ijmems.in

A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and

Secret Key Generation

Sagnik Pal

School of Computer Science and Engineering,

Vellore Institute of Technology, Vellore, Tamil Nadu, India.

E-mail: palsagnik3@gmail.com

Ramani Selvanambi
School of Computer Science and Engineering,

Vellore Institute of Technology, Vellore, Tamil Nadu, India.

E-mail: ramani.s@vit.ac.in

Preeti Malik
Department of Computer Science and Engineering,

Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.

E-mail: preetishivach2009@gmail.com

Marimuthu Karuppiah
Department of Computer Science and Engineering and Information Science,

Presidency University, Bengaluru 560064, Karnataka, India.

Corresponding author: marimuthume@gmail.com

(Received on May 31, 2022; Accepted on December 24, 2022)

Abstract

In cryptography, Block ciphers use S-Boxes to perform substitution and permutation operations on a data block. S-Boxes provide

non-linearity and confusion of bits to the cryptographic algorithms. In addition, secret keys are critical security aspects for

encrypting and decrypting messages. The uncertainty and randomness of the secret key and S-boxes used in the algorithm determine

the extent of security against any cryptanalysis attack. This paper proposes a new mechanism to dynamically generate a secret key

and S-Box each time while sending and receiving the message. These dynamically generated S-Boxes and keys depend on mutually

decided security parameters and message transfer history. Furthermore, a new counter-based mechanism is introduced in this paper.

These enhancement techniques are applied to the serpent cipher algorithm, and a data transfer simulation is performed to validate

the efficacy of the proposed method. We observe that the dynamically generated S-box follows the strict avalanche criteria. We

further validate that the encrypted message shows higher sensitivity to the S-box and the secret key in enhanced serpent cipher than

the original version. However, to validate our proposed method, we test and analyze the improvements in the Serpent Cipher

Algorithm.

Keywords- Serpent block cipher, S-Box and permutation box, Chaotic equation, Cyclic generator, Count tracking mechanism.

1. Introduction
Symmetric key block cipher algorithms are used to encrypt the messages block-wise before sending them

for transmission. These cryptographic block ciphers are popularly used to encrypt a piece of plaintext and

send it as a cipher text to the receiver. The receiver then decrypts the cipher text using the decryption

algorithm. For this whole process to work, both the sender and the receiver must be aware of the secret key

used by the encryption and decryption algorithm. These symmetric block cipher algorithms have been

consistently used along with asymmetric cipher algorithms to encrypt and decrypt messages for

transmission. The symmetric block cipher algorithms are faster than asymmetric ones, but the asymmetric

mailto:ramani.s@vit.ac.in
mailto:preetishivach2009@gmail.com
mailto:marimuthume@gmail.com

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

231 | Vol. 8, No. 2, 2023

key ciphers are more secure as the encrypted message is protected against unauthorized access. The

cryptographic block cipher algorithm often involves too many rounds that increase execution time.

Reducing the number of rounds would increase the execution speed and take less time for encryption and

decryption, compromising security (Dawood and Hammadi, 2017). Hence a combination of these two

techniques is used to encrypt a piece of information, especially when the message sent over a network is

bigger in size. The proposed work will add an extra layer of uncertainty to symmetric key block ciphers

and can be customized for different algorithms to fit security requirements.

The work discussed in this paper aims to enhance the security of symmetric key block ciphers so they can

be used more efficiently. The idea is to provide the sender and receiver a mechanism to generate a new key

and S-Box (Substitution box) each time while sending and receiving the message. A chaotic equation will

be employed each time to generate the S-box. The sender and receiver will not only generate a new S-box

and a new key for each communication but also make sure these generated S-boxes and keys are different

for each communication. The most significant parameter for an intruder to intercept and decrypt the

message used to be the key, but now, in addition to the key, there are added parameters and functional

dependencies for the intruder to decipher the message within a specified time frame. The proposed ideology

ensures that even if the interception is successfully done once and the dependencies are compromised, the

same dependencies cannot be used to decrypt the message during the following interceptions. Furthermore,

one of the generated parameters for the S-box also employs the usage of positional bits of the previously

sent message. All these security parameters aim to decrease the probability for attackers to decipher

messages and restrict the time frame they have for decryption. This methodology will allow most symmetric

block cipher algorithms to perform faster than they do by reducing the number of rounds from their native

version. Combining this work with the Serpent Cipher algorithm and reducing the number of rounds in the

encryption and decryption steps, the overall execution time decreases.

In the following sections, we discuss the background work from recent research on dynamic S-box

generation. First, the literature review (section 2) highlights algorithms and methodologies using

pseudorandom number generators and chaotic equations. Then we explain the proposed algorithm for S-

box and secret key generation in the methodology section (section 3). We start by explaining the random

choice equation and the hyperparameters used in the chaotic map, followed by the dynamic S-box

generation using an example. The count tracking mechanism and message history usage are explained in

the later section. Further, a security analysis of the S-box and key is done in the results and discussions

section (section 4). Finally, our approach's end outcome (conclusion) and limitations are presented in

section 5.

2. Literature Review
The S-Boxes in this paper are designed to be generated dynamically. Hence, we have referred to the work

by Manjula and Mohan (2016) to construct a key-dependent dynamic S-Box for AES. The authors have

given experimental results and have used S-box rotation and subkey generation before each round. Further,

a chaotic algorithm has been established by Gao et al. (2006), which uses 'Henon Chaotic' maps to meet the

requirements of image transfer safety. They used the distribution of grey-level values as they are entirely

random and show random behavior on encryption. Their proposal consists of 2 steps, Image fusion between

the original and key image; then, they encrypt using the Henon Chaotic map. Yun-Peng et al. (2009) further

take up the topic of digital image encryption and chaotic algorithms and applies them to DES. A new

encryption scheme using the Logistic chaos sequencer is used to make the pseudorandom sequence. It

shows high speed, sensitivity, and security and can be used in the actual image encryption. The paper gives

a clear comparison between the AES and 3-DES with their algorithms. Elkamchouchi et al. (2018) describe

the modified Serpent cipher algorithm. This paper proposes the serpent Cipher modification for image

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

232 | Vol. 8, No. 2, 2023

encryption based on chaotic mapping and cyclic group substitution instead of byte substitution

transformation (DES S-Box), decreasing the number of rounds and the time usage. The authors have done

a statistical test on images of different sizes and compared the other algorithms.

The graphical programming tool for the encryption and decryption of the Serpent Algorithm for the Secured

data Transmission is used by Kabilan et al. (2017). It is fast and easy. Nazlee et al. (2009) have shown

parallelism using CUDA and how it can be used to implement the limitation of Serpent Cipher, which is

speed. They proposed a technique that transforms the CPU-based implementation of the Serpent Cipher

algorithm to CUDA implementation. The study of S-BOX properties in block cipher by Mohamed et al.

(2014) is critical. This paper analyses the properties of S-BOX so that a new model in the future can be

proposed, which will strengthen it further. The authors proposed a novel approach for designing S-BOX in

AES using the chaotic map. Najafi et al. (2004) present a novel, generic, parameterizable Rijndael encryptor

core capable of supporting varying key sizes. The 192-bit key and 256-bit key designs run at data rates of

5.8 Gbits/sec and 5.1 Gbits/sec, respectively. Another critical aspect of the serpent cipher is that it can be

implemented on a 24-bit DSP processor and how efficient it can be with performance. Ivancic et al. (2001)

dealt with less powerful Motorola's 56000 families. They have discussed various models of S-BOXES and

compared the results and how they are better without the need for ROM data. The algorithm can be scaled

down to 8-bit and 16-bit for high 32-bit microprocessors. Authors have provided various implementations

of Serpent Cipher. Biham et al. (1998) propose the Serpent Cipher algorithm in this paper. They provided

a highly conservative and efficient implementation that uses DES S-boxes and allows a more rapid

avalanche, a more efficient bit-slice implementation, and a security analysis. They claim this to be as secure

as triple DES. The authors, Dawood and Hammadi (2017), discuss the study's weaknesses, and the primary

target of the paper is to highlight vulnerabilities and explain the gaps in design elements that can be

exploited in the AES structure. One of the disadvantages they mentioned was that it could not work correctly

with 64 bits systems. Also, they mentioned that decryption is slower than encryption, especially in

embedded devices, and this feature refers to the unbalancing structure of AES. Biham et al. (2001) presented

the attacks on 7-round, 8-round, and 10-round variants of Serpent. They have attacked with varying key

lengths on 7, 8, and 10 rounds with 256 bits keys. The attack is being enhanced with the amplified

boomerang attack and uses better differentials. They have described a rectangle attack, how it affects the

various cipher rounds, and how to deal with that.

Ibrahim (2021) analyzed various cryptographic properties of constructed S-boxes by pseudorandom

bijective algorithms. The Fisher-Yates algorithm for shuffling the bits is also analyzed. The authors study

the randomness and cryptographic strength of dynamic S-boxes. AL-Zubaidy and Al-Bahrani (2018)

proposed a new dynamic S-box generation algorithm using a Chebyshev chaotic map and an exponential

map. A new key generation algorithm has been proposed. The authors show the usage of chaotic maps for

S-box generation. The generated keys are shown to have high randomness. Manjula and Mohan (2018)

explored a hash function to generate a dynamic S-Box. This paper also analyses the structure of AES

algorithm. The experimental results of the modified AES algorithm with generated S-Boxes were shown.

The time-based analysis compared encryption and decryption time for standard and dynamic S-box. A new

S-Box generation technique for the AES algorithm was proposed in this paper. Zagi and Maolood (2020)

presented a modified Serpent Cipher Algorithm. The original algorithm has 32 rounds, making it slower

than Rijndael. This paper has improved the speed and uses a 4x4 S-Box constructed through the

multiplicative group of finite commutative chain rings. The conclusion has shown a result that clearly shows

the algorithm's improvement over the standard Serpent Algorithm. Fisher-Yates shuffle has been proposed

as an S-box generation technique to enforce the non-linearity in a block cipher by Tayel et al. (2018). The

S-boxes generated using this technique are entirely dynamic, and the generation is done under the complete

control of the secret key. Rohiem et al. (2005) presented a couple of chaotic system-based pseudorandom

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

233 | Vol. 8, No. 2, 2023

bit generators (CCS-PRBG), and the output was verified using the NIST tests for randomness. This

algorithm has been used to encrypt and decrypt the image. It has been tested whether it satisfies the property

of confusion and diffusion by analysis of histograms and correlation of pixels of a plain and ciphered image.

Al-Khasawneh et al. (2018) proposed a multi-chaos algorithm for image encryption. It can solve common

issues associated with the algorithm of a low-dimensional map. Pixel and bit-level permutation has been

defined in this paper. As a novel solution to the earlier existing problems of image encryption, this paper

proposes a chaos-based symmetric method of a key cryptosystem. This method employs an external secret

key that Logistic, Henon, and Gauss iterated maps have previously expanded. Tsedura and Chibaya (2020)

introduce a new approach to generate S-boxes during runtime and make computational changes to the DES

algorithm. In this paper, the newly modified DES performs better than the original DES algorithm. Zahid

et al. (2021) propose an enhanced method to generate secret key-dependent S-boxes using linear

trigonometric transformations. This paper also introduces optimization for the characteristics of initial S-

boxes generated using the proposed scheme.

3. Methodology
The S-box and the secret key are generated each time before encrypting the plaintext at the sender node;

the plaintext is then encrypted utilizing the newly generated S-box and the secret key, then it is sent to the

receiver node. After the receiver node receives the cipher text, it generates the same S-box and secret key

that was generated by the sender before encrypting the plaintext and uses these (S-box and secret key) to

decrypt the cipher text. The main principle behind the dynamic generation of S-boxes for each round is to

use a random choice equation; the procedure is explained in detail in the later sections. The chaotic equation

uses some hyperparameters (𝜆, 𝑥0). This paper discusses how the hyperparameters are updated before and

after each digital message transfer.

3.1 Random Choice Equation
Random choice chaotic equations have cryptographic properties that maintain high randomness and

diffusion of bits using this Eqn. 1. The Eqn. 1 is a modified version of the logistic map polynomial.

𝑥(𝑛) = 𝑓𝑙𝑜𝑜𝑟 [[𝜆 ⋅ 𝑥(𝑛 − 1). (1 − 𝑥(𝑛 − 1))] 𝑚𝑜𝑑(𝑝)] + 1. (1)

𝜆 is the security parameter. For values of 𝜆 between 0 and 4, 𝑥(𝑛) can take values between 1 and p (value

of p is selected in later sections) inclusive. For the value of 𝜆 between 3.9 and 4, the output of the Eqn. 1

shows chaotic behavior (value of 𝑥(𝑛) starts to oscillate). For 𝜆 > 4, the value of 𝑥(𝑛) diverges and leaves

the interval of [1, p]. Hence in our proposed methodology, we consider the value of 𝜆 between 3.9 and 4

(i.e., 3.9 ≤ 𝜆 ≤ 4). The random choice equation can thus produce a random value between 1 to p.

Before we understand how the S-boxes are generated for each round, we must understand primitive roots

and generator elements.

3.1.1. Primitive Roots
We define z as the primitive root modulo n (where n is a positive integer), if for every integer a (where a

is coprime to n), there exists an integer x such that zx ≡ a (mod n). Here, x is the index or discrete

logarithm of the integer a to the base z modulo n. Here, z can be a primitive root modulo n only when z is

a generator element of a set of integers coprime to n.

E.g., 2 is a primitive root modulo 5, as for every integer a (where a is coprime to 5), there exists an integer

x such that 2x ≡ a (mod 5).

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

234 | Vol. 8, No. 2, 2023

3.1.2 Generator Elements
If n is a prime number, the expression zx mod (n) can generate all numbers between 1 and n-1 (as all

numbers from 1 to n-1 are coprime to n), then z can be used to generate the complete set S = {1,2, 3, … n-

1}. Here, z is called the generating element of set S.

E.g., Consider n = 7, then 3x mod (7) can generate S = {1, 2, 3, 4, 5, 6}.

In Table 1, where n=7 and z=3, it is observed that the values start repeating after the exponent of 3 is more

than 6. Hence, the period of repetition is 6. If the number n is a prime, the repetition period is always n-1.

From Figure 1, we see that the S-box for each round in the Serpent cipher must contain 16 entries, which

must be in a random arrangement from 1 to 16. If we divide the plaintext of 128 bits into 8-bit divisions,

then the plaintext block will have 16 segments. The S-box is used to shuffle these segments randomly.

Figure 1 shows how an S-Box shuffles the given input segment by rearranging the blocks randomly to add

randomness and confusion during encryption.

Table 1. Repetition period.

31 31 mod (7) 3

32 32 mod (7) 2

33 33 mod (7) 6

34 34 mod (7) 4

35 35 mod (7) 5

36 36 mod (7) 1

37 37 mod (7) 3

3.2 Dynamic S-Box Generation
Now, there is a need to generate a random arrangement of numbers from 1 to 16. Consider P = 17, every

number in the set S = {3, 5, 6, 7, 10, 11, 12, 14} is a generator element of 17. For example, if z = 3. We

have, e = 3xmod (17). The next step is to choose the number of rounds used in the algorithm. Here 10 rounds

are finalized. So, we have to generate 10 random numbers using the chaotic equation. The numbers

generated will be scaled down between 0 to 7 (as there are 8 generators of 17). The generated integer will

be used as an index to choose a generator from the set S as shown in Table 2.

Figure 1. S-Box transformation.

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

235 | Vol. 8, No. 2, 2023

Table 2. The generator set.

Index 0 1 2 3 4 5 6 7

S 3 5 6 7 10 11 12 14

The modified chaotic equation used for generating 10 numbers is given below and fixing the value of x(0)

= 𝑥0 and a value of 𝜆, we could compute x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10) using the

equation 2.

𝑥(𝑛) = (𝑓𝑙𝑜𝑜𝑟[[𝜆 ⋅ 𝑥(𝑛 − 1). 𝑥(𝑛 − 1). 𝑥(0)] 𝑚𝑜𝑑(128)] + 7) 𝑚𝑜𝑑(8) (2)

3.2.1 S-Box Generation Example
Initialize 𝜆 = 3.9863, 𝑥(0) = 5. The 10 numbers generated using the modified chaotic equation are {1, 2,

6, 4, 5, 1, 2, 6, 4, 5}. Considering these generated numbers as indices we can form a new set of generators

{S[1], S[2], S[6], S[4], S[5], S[1], S[2], S[6], S[4], S[5]} which is G = {5, 6, 12, 10, 11, 5, 6, 12, 10, 11}.

S-box for ith round is generated using the Pseudocode.

for i from 1 to 10:

for x from 1 to 16:

S[i][x] = G[i]x mod (17).

In Table 3, S-Box for each round [1, 10] is generated (e.g., S1 = S[1][x]) using the algorithm mentioned in

the above pseudocode. In the later sections, we discuss how the S-Boxes generated for every

communication will be different by updating the value of 𝜆 𝑎𝑛𝑑 𝑥(0) before each new digital

communication.

Table 3. S Box values of different rounds.

Round

S1 5 8 6 13 14 2 10 16 12 9 11 4 3 15 7 1

S2 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1

S3 12 8 11 13 3 2 7 16 5 9 6 4 14 15 10 1

S4 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12 1

S5 11 2 5 4 10 8 3 16 6 15 12 13 7 9 14 1

S6 5 8 6 13 14 2 10 16 12 9 11 4 3 15 7 1

S7 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1

S8 12 8 11 13 3 2 7 16 5 9 6 4 14 15 10 1

S9 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12 1

S10 11 2 5 4 10 8 3 16 6 15 12 13 7 9 14 1

3.3 Count Tracking Mechanism
This paper proposes a novel mechanism of count tracking to ensure that before each message

communication between sender and receiver, the security parameters (𝜆, 𝑥(0), 𝑘𝑒𝑦) are updated using the

current count value. The ‘count’ is defined as the total number of successful digital communications that

have already been completed between a sender-receiver pair. The value of ‘count’ is updated by

incrementing it by ‘1’ after every digital communication.

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

236 | Vol. 8, No. 2, 2023

Figure 2. Updating the count value.

Figure 2 shows how the count variable increments after each successful message communication. A hash

table data structure implementation with count entries (as values) of different sender-receiver pairs (as hash

table keys) can be maintained for tracking different communications.

3.4 Message History Usage
The latest message transferred between a sender-receiver pair is also considered for our proposed approach.

In this section, we see how the value of security parameter m is calculated using the previously exchanged

message between two nodes in the network. The value of m depends again on three values (s, latest

plaintext, count, and window size). The s is defined as the shift rate, which can take any value between 1

and the plaintext block size. The block size of plaintext is 128 bits in the case of the serpent cipher, but for

understanding, we consider this example in Figure 3.

Figure 3. Message history value assignment.

In the Figure 3, block size = 8 bits, window size = 4 bits, s = 1 bits, count = 2, plaintext =”10110110”. m

value is calculated as 13 (base 10 value of “1101”). The value of m is also calculated after the receiver node

receives the cipher text from the sender. While testing our mechanism on the serpent cipher, we use (block

size = 128 bits, s = 4 bits, window size = 16 bits, and the count value is calculated from the count tracking

mechanism). The default value of m is set as 0. Figure 4 shows the calculation of the m value at the sender

and receiver sides. The above figure window size is taken as 4, the plaintext size is taken as 8 bits, and the

shift rate is 1. The window's position is determined by the instantaneous value of shift rate (s) and count.

The value of m is stored in the lookup table every time before the message is sent. The lookup table can be

implemented as a hash table with the sender-receiver pair acting as the key and m as their corresponding

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

237 | Vol. 8, No. 2, 2023

value. Please note that the same plaintext is used in Figure 4 for every message transmission, but the same

method is applicable even if the plaintext sent in each message transmission is different.

Figure 4. ‘m’ calculation demonstration.

3.5 Updating Security Parameters
The idea behind using the count tracking mechanism and latest message history is to ensure that each time

before a digital message transfer, the security parameters (𝜆, 𝑥(0)) are updated, which in turn will ensure

that S-box and key generated will be unique for every message transfer between a pair. This is mainly done

to prevent an attacker from tracking down the security parameters and hence deciphering the ciphertext.

For updating the values of (𝜆, 𝑥(0)), we use user-defined functions, which will be only known by the sender-

receiver pair and will be stored as their corresponding lookup entries (the lookup entries can be stored in a

hash table similar to m values with sender-receiver pair acting as key).

3.5.1 Example of Security Parameter Update
The function used to compute 𝜆 𝑎𝑛𝑑 𝑥(0) can vary from simple linear functions to higher order

polynomials. Consider one such example below. The function to update 𝜆 𝑎𝑛𝑑 𝑥(0) is given by Eqn. 3 and

Eqn. 4.

𝜆𝑛𝑒𝜔 = 𝜆𝑜𝑙𝑑 + ((0.00001 ∗ 𝑐𝑜𝑢𝑛𝑡) ∗ 𝑚) + ((0.00001 ∗ 𝑐𝑜𝑢𝑛𝑡) ∗ 𝑚)
2

+ ((0.00001 ∗ 𝑐𝑜𝑢𝑛𝑡) ∗ 𝑚)
3
 (3)

𝑥(0)𝑛𝑒𝜔 = 𝑥(0)𝑜𝑙𝑑 + (𝑐𝑜𝑢𝑛𝑡 + 𝑚) + (𝑐𝑜𝑢𝑛𝑡 + 𝑚)2 + (𝑐𝑜𝑢𝑛𝑡 + 𝑚)3 (4)

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

238 | Vol. 8, No. 2, 2023

Also note that since 𝜆 can only take values between 3.9 and 4, if the value exceeds 4, we reinitialize 𝜆 to

3.9. The authority to decide what functions to use entirely lies with the sender and receiver. They must

mutually agree upon using these functions for performing updates. After 𝜆 𝑎𝑛𝑑 𝑥(0) values are updated,

they can be used again by the chaotic equation to calculate the new S-boxes for each round.

Let us consider an example with random values for security parameters (m = 13, count = 2, 𝜆𝑜𝑙𝑑 = 3.91452

and 𝑥(0)𝑜𝑙𝑑 = 5). Now using Eqn. 3 and Eqn. 4, the new values generated for 𝜆𝑛𝑒𝜔 will be 3.91478 (rounded

to 5 decimal places) and 𝑥(0)𝑛𝑒𝜔 will be 3620. Now using the modified chaotic equation (Eqn. 2), a new

dynamic S-Box can be generated.

3.6 Updating the Key
For updating the value of key each time before a digital communication at the sender side and after digital

communication at the receiver side, the count and m values are used, as shown in Figure 4. A function is

again decided upon by both the communicating parties for updating the key before and after message

transfer (see Eqn. 5).

𝐾𝑒𝑦𝑛𝑒𝑤 = (𝐾𝑒𝑦𝑜𝑙𝑑 + (𝑐𝑜𝑢𝑛𝑡 + 𝑚) + (𝑐𝑜𝑢𝑛𝑡 + 𝑚)2) + (𝑐𝑜𝑢𝑛𝑡 + 𝑚)3)%𝑘𝑒𝑦𝑆𝑖𝑧𝑒 (5)

While choosing a function it is recommended to pick a continuous function that has a large range and is

non-oscillating. A good example is a cubic polynomial. As we increase the degree of the function or replace

it with a higher-order function, it will be difficult for the attacker to guess the function. In addition to that,

it must be noted that if the key size is small, the range of values generated will be confined because of the

modulo operator (modulo key Size), and randomness will be restricted. Both the communicating parties

must know the initial secret key value and the key updating function to transfer messages.

3.7 Sender-Receiver Message Transfer
It is time to summarize all the procedures discussed in the above sections and define a pipeline of steps to

be followed at the sender and receiver side for transferring a message successfully using the proposed

modifications. The complete process pipeline is described below in Figure 5. The sequence of steps must

be followed by every sender-receiver pair in order to communicate with each other. All the security

parameters (𝜆, 𝑘𝑒𝑦, 𝑚, 𝑐𝑜𝑢𝑛𝑡, 𝑥0) must be maintained in a lookup table (a hash table implementation with

sender-receiver entries as key), which will contain these parameters for every sender-receiver node.

To optimize the space requirements, we can specify a storage limit on the capacity of the lookup table and

store only the parameters which communicate most frequently. After the security parameters of a pair are

dropped from the lookup table, the parameters are reinitialized and stored in the lookup table whenever

there is a need to re-communicate.

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

239 | Vol. 8, No. 2, 2023

Figure 5. Sender-Receiver Message transfer diagram.

4. Results and Discussion
Based on the methodology proposed in the above section, the dynamic S-box and key generation

mechanism are applied to the classical serpent cipher algorithm to observe the effects on its speed and

robustness. The implementation includes count variable incrementation and message history usage to

update count and m values. The effect of newly added security parameters is also tabulated and discussed.

In this section, an execution speed followed by an S-box and secret key security analysis is done after

applying the proposed algorithm to the serpent cipher. Further, the security of the S-Box is validated using

Strict Avalanche Criteria.

4.1 Execution Speed Analysis
For quantitative analysis of execution speed, a system with Intel(R) Core (TM) i7-7700HQ CPU and

2.80GHz processing speed, 8.00 GB Installed memory (RAM), Windows 10 (64-bit operating system) is

used. A mini–Local Area Network consisting of two systems (nodes) behaving as sender and receiver is

created to simulate data transfer. The input data is an image in .jpeg format, and the image size is 180 x

166. The image is first converted into a binary stream encoding (base-64 encoding) and then encrypted to

be sent at the sender node and decrypted after receiving it at the receiver node. For execution speed analysis,

the first classical Serpent cipher algorithm is used to encrypt the data and decrypt the cipher text at the

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

240 | Vol. 8, No. 2, 2023

receiver side Biham et al (1998), the work proposed in this paper is used to develop an enhanced version

of the serpent cipher, the modified serpent cipher. Then the Modified Serpent Cipher algorithm is again

used to encrypt and decrypt the data at the appropriate communicating nodes. The improvement in

execution speed of the algorithm is compared in Table 4 and Table 5, given below.

Table 4. Execution speed of the encryption process with seconds.

No of Rounds Classical Serpent No of Rounds Modified Serpent

32 55.68941 10 15.90857

Table 5. Execution speed of the decryption process with seconds.

No of Rounds Classical Serpent No of Rounds Modified Serpent

32 55.43567 10 16.92635

4.2 Security Analysis
As discussed in the above sections, the security of a cipher algorithm is dependent on the number of trials

needed to determine the key and the S-Box. The difficulty of breaching the cipher increases exponentially

with key size (2n, where n is the key size in bits). In order to ensure that the cryptanalysis attacker cannot

determine the correct key used within the theoretical limits of a computer’s processing speed, the key sizes

were traditionally kept large. However, suppose a restriction is brought regarding the time available for

performing any cryptanalysis attack, the key size can be reduced safely without compromising the security

of the encryption-decryption algorithm. The security parameters depend on the sender-receiver pair's

instantaneous count value. As a result of the message history and count tracking methodology, the security

parameters are randomized before each message transaction. Hence, the count tracking mechanism reduces

the time for the attackers to determine the security parameters, as mentioned in Table 6.

Table 6. Count tracking performance.

 Key Size (bits) Number of trials to decipher

key

Time available with attacker

Performance without count tracking n 2n No time restriction

Performance after applying count tracking n 2n c

where, t = It is the total time between 2 consecutive message transfers between sender-receiver. The

robustness of the proposed mechanism can only be ensured if the security parameters used for the dynamic

generation of the S-box and the key are practically infeasible. The number of trials needed to accurately

predict the security parameters (𝜆, 𝑘𝑒𝑦, 𝑚, 𝑐𝑜𝑢𝑛𝑡, 𝑥0) is mentioned in the table below. Before the inclusion

of these security parameters, the number of trials needed to guess the key accurately was 2n (where n is the

key size in bits). After the security parameters are added to modify the algorithms, the total number of trials

needed is 2n1x 2n2x 2n3x 2n4x 2n5 (refer to n1, n2, n3, n4, n5 from the table). Table 7 shows the maximum

number of trials required to decipher each security parameter using brute force attack and the dependence

of some parameters on other security parameters (count, m, and s).

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

241 | Vol. 8, No. 2, 2023

Table 7. Security parameters.

Security Parameter Parameter Size (in bits) Trials needed to decipher

parameter

Dependency on other parameters

𝜆 n1 2n1 count, m

𝑥0 n2 2n2 count, m

key n3 2n3 count, m

m n4 2n4 s, count

count n5 2n5 -

s n6 2n6 -

where, count = count value maintained by the sender and receiver

m = value of last b bits of the previous message transferred

d = any value less than the actual size of the message

s = it is the shift rate of the sliding window which is used to calculate the value of m, d is the size of the

window.

It is crucial for the security of the block cipher that the cipher text generated by the algorithm is sensitive

to the key and S-box used. Even if a single bit of the encryption key is changed, the cipher text generated

must be completely different. The S-box must possess the same property. Therefore, even if two S-boxes

differ by a single entry, they must produce completely different cipher texts. To quantitatively measure the

extent of sensitivity of the encrypted message on the key and S-box, we find the correlation between the

original message and the decrypted message with altered S-box and key (differing by a single bit position),

respectively. Table 8 shows the correlation values when the key is altered by complementing a single bit

only. All the keys and S-boxes listed in Tables 8 and 9 differ by a single bit from the original key and S-

box, respectively. If the correlation values are close to zero, it shows high sensitivity to the key and S-box.

In Table 8, the row corresponding to “Serpent” contains the correlation values between the original message

(before encryption using the secret key) and the decrypted message (using the 1-bit complemented secret

key). The row corresponding to “Enhanced Serpent” contains the correlation values between the original

message (before encryption using the dynamically generated secret key) and the decrypted message (using

the 1-bit complemented dynamic secret key). Clearly, the modified serpent cipher has more sensitivity to

the secret key than the original version (Table 8).

Table 8. Correlation values for key sensitivity analysis.

Block Cipher Key1 Key2 Key3 Key4
Serpent 0.0112 0.0126 0.0212 0.0231

Modified Serpent 0.0027 0.0052 0.0020 0.0024

Similarly in Table 9, the S-box's sensitivity is quantified and represented using correlation values. Again,

the Modified Serpent cipher has better correlation values (closer to zero) than the original version. The

serpent cipher's modified version, aided by our dynamic s-boxes, has successfully passed the key and S-

box sensitivity test.

Table 9. Correlation values for S-Box sensitivity analysis.

Block Cipher S-Box1 S-Box2 S-Box3 S-Box4
Serpent 0.0223 0.0233 0.0338 0.0213

Modified Serpent 0.0121 0.0048 0.0102 0.0045

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

242 | Vol. 8, No. 2, 2023

4.3 Strict Avalanche Criteria
According to the strict avalanche criteria, with a change in a single input bit, every output bit must change

by a probability of 0.5. Hence if one of the input bits is changed, more than half of the output bits must

change in the encrypted text. In Table 10, a tabulation of the change in the number of output bits to input

bits is done. The block size of plaintext is 128 bits. From Table 10, it is visible that our generated S-box

follows the Strict Avalanche Criteria.

The modification proposed in this paper is not just limited to increasing the attacker's difficulty in

interpreting the cipher text. The mechanism also ensures that even if the security parameters are

compromised once and have been spotted correctly, they still cannot be used to decipher the cipher text in

succeeding communications, as the value of the parameters updates after each transmission. Hence the

complete process of deciphering has to be started again from scratch.

Table 10. Strict avalanche criteria validation.

Bit Position Complemented Number of Output bits changed

0 87

1 84

4 90

16 89

The accurate values of the security parameters can only be determined if the functions (given in Eqn. 3 and

Eqn. 4) used to update the values of these parameters are known to the attacker. The difficulty of

determining these functions can be varied by increasing the degree of these functions or using strictly

increasing functions.

5. Conclusions
With the growing need and importance of information security in the present setting, this paper has

proposed some innovative modifications to existing techniques and algorithms. A novel approach to

generating S-boxes and a secret key using message history and a counter-based mechanism was proposed

in this paper. The dependence of S-box generation on the previous messages encrypted by the block cipher

adds a new security element. Compared to traditional brute force attacks, the proposed work has

significantly reduced the probability of deciphering a cipher text by an unauthorized intruder. Security is

added for symmetric key block ciphers by adding more security hyperparameters and functional

dependencies. The execution speed of symmetric key block cipher algorithms is increased by reducing the

number of rounds without compromising security. Freedom of customizability of the cryptographic

algorithms is provided for the organizations without compromising accepted standards. This modification

can be masked with any symmetric key block cipher, which involves the use of an S-Box and a secret key;

hence its scope is not limited to any specific algorithm. It must be noted that the given methodology can be

partially applied to asymmetric block cipher algorithms. The counter-tracking technique and message

history usage can be masked with asymmetric block ciphers. If we observe, the count tracking mechanism

introduced in this paper is based on the logical synchronization of clocks at the sender and receiver sides.

Making the shared security variables between sender and receiver dependent on the logical clock decreases

the chances of message interception. However, it must be noted that if all the security parameters, functions

used for key generation, and the encryption-decryption algorithm are compromised along with the logical

count of message transfers, the encrypted message can be intercepted by an intruder. Also, if the functions

defined for key generation in this methodology are not formulated wisely by the sender and receiver party

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

243 | Vol. 8, No. 2, 2023

(e.g., if the function chosen is linear or of degree 1), an intruder may be able to guess the function being

used. Hence, selecting a function that produces a unique key for a range of continuous values is essential.

Conflict of Interest

The authors confirm that there is no conflict of interest to declare for this publication.

Acknowledgments

This research did not receive any specific grant from public, commercial, or not-for-profit funding agencies. The authors would

like to thank the editor and anonymous reviewers for their comments that helped improve the quality of this work.

References

Al-Khasawneh, M.A., Shamsuddin, S.M., Hasan, S., & Bakar, A.A. (2018, July). An improved chaotic image

encryption algorithm. In 2018 International Conference on Smart Computing and Electronic Enterprise

(ICSCEE) (pp. 1-8). IEEE. Shah Alam, Malaysia.

AL-Zubaidy, R.N., & Al-Bahrani, E. (2018). New key generation algorithm based on dynamical chaotic substitution

box. In 2018 Al-Mansour International Conference on New Trends in Computing, Communication, and

Information Technology (NTCCIT) (pp. 93-98). IEEE. Baghdad, Iraq.

Biham, E., Anderson, R., & Knudsen, L. (1998). Serpent: A new block cipher proposal. In International Workshop

on Fast Software Encryption (pp. 222-238). Springer, Berlin, Heidelberg.

Biham, E., Dunkelman, O., & Keller, N. (2001). The rectangle attack—rectangling the serpent. In International

Conference on the Theory and Applications of Cryptographic Techniques (pp. 340-357). Springer, Berlin,

Heidelberg.

Dawood, O.A., & Hammadi, O.I. (2017). An analytical study for some drawbacks and weakness points of the AES

cipher (rijndael algorithm). Qalaai Zanist Journal, 2(2), 111-118.

Elkamchouchi, H.M., Takieldeen, A.E., & Shawky, M.A. (2018). A modified serpent based algorithm for image

encryption. In 2018 35th National Radio Science Conference (NRSC) (pp. 239-248). IEEE. Cairo, Egypt.

Gao, H., Zhang, Y., Liang, S., & Li, D. (2006). A new chaotic algorithm for image encryption. Chaos, Solitons &

Fractals, 29(2), 393-399.

Ibrahim, S. (2021). Performance analysis of dynamic bijective S-BOX construction algorithms. In 2021 National

Computing Colleges Conference (NCCC) (pp. 1-4). IEEE. Taif, Saudi Arabia.

Ivancic, D., Runje, D., & Kovac, M. (2001, June). Implementation of serpent encryption algorithm on 24-bit DSP

processor. In ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and

Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (pp. 411-416).

IEEE. Pula, Croatia.

Kabilan, K., Saketh, M., & Nagarajan, K.K. (2017). Implementation of SERPENT cryptographic algorithm for secured

data transmission. In 2017 International Conference on Innovations in Information, Embedded and

Communication Systems (ICIIECS) (pp. 1-6). IEEE. Coimbatore, India.

Manjula, G., & Mohan, H.S. (2016). Constructing key dependent dynamic S-Box for AES block cipher system. In

2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology

(iCATccT) (pp. 613-617). IEEE. Bangalore, India.

Manjula, G., & Mohan, H.S. (2018). Improved dynamic S-box generation using hash function for AES and its

performance analysis. In 2018 Second International Conference on Green Computing and Internet of Things

(ICGCIoT) (pp. 109-115). IEEE. Bangalore, India.

Pal et al.: A Chaotic System and Count Tracking Mechanism-based Dynamic S-Box and …

244 | Vol. 8, No. 2, 2023

Mohamed, K., Pauzi, M.N.M., Ali, F.H.H.M., Ariffin, S., & Zulkipli, N.H.N. (2014). Study of S-box properties in

block cipher. In 2014 International Conference on Computer, Communications, and Control Technology (I4CT)

(pp. 362-366). IEEE. Langkawi, Malaysia.

Najafi, B., Sadeghian, B., Zamani, M.S., & Valizadeh, A. (2004). High speed implementation of serpent algorithm.

In Proceedings. The 16th International Conference on Microelectronics (pp. 718-721). IEEE. Tunis, Tunisia.

Nazlee, A.M., Hussin, F.A., & Ali, N.B.Z. (2009). Serpent encryption algorithm implementation on compute unified

device architecture (cuda). In 2009 IEEE Student Conference on Research and Development (SCOReD) (pp. 164-

167). IEEE. Serdang, Malaysia.

Rohiem, A.E., Elagooz, S., & Dahshan, H. (2005). A novel approach for designing the s-box of advanced encryption

standard algorithm (AES) using chaotic map. In Proceedings of the Twenty-Second National Radio Science

Conference, 2005. NRSC 2005 (pp. 455-464). IEEE. Cairo, Egypt.

Tayel, M., Dawood, G., & Shawky, H. (2018). Block cipher S-box modification based on fisher-yates shuffle and

ikeda map. In 2018 IEEE 18th International Conference on Communication Technology (ICCT) (pp. 59-64).

IEEE. Chongqing, China.

Tsedura, N.A., & Chibaya, C. (2020, November). Effects of runtime generated S-boxes to the DES Model. In 2020

2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC) (pp. 1-6).

IEEE. Kimberley, South Africa.

Yun-Peng, Z., Wei, L., Shui-Ping, C., Zheng-Jun, Z., Xuan, N., & Wei-di, D. (2009). Digital image encryption

algorithm based on chaos and improved DES. In 2009 IEEE International Conference on Systems, Man and

Cybernetics (pp. 474-479). IEEE. San Antonio, TX, USA.

Zagi, H.R., & Maolood, A.T. (2020). A novel serpent algorithm improvement by the key schedule increase security.

Tikrit Journal of Pure Science, 25(6), 114-125.

Zahid, A.H., Ahmad, M., Alkhayyat, A., Hassan, M.T., Manzoor, A., & Farhan, A.K. (2021). Efficient dynamic S-

box generation using linear trigonometric transformation for security applications. IEEE Access, 9, 98460-98475.

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses under the Creative

Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

Publisher’s Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps

and institutional affiliations.

