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CREATION AND EVALUATION OF THE STRUCTURES GRID IN
CURVILINEAR AREAS

The article concerns methods of a structural curvilinear grid constructing in areas of geometrically
complex shape and its evaluation from the quality point of view. Equidistribution methods based
on differential equations were used to construct the grid at the boundary and inside the region.
The numerical solution of differential equations was realized by the finite difference method. For
the problems of uniform arrangement of grid nodes on the boundary and for the problems of
constructing curved grids inside the region, implicit difference schemes were constructed and
methods of scalar sweep and alternating directions were used. The results of numerical calculations
are obtained and graphs of curved grids are presented for different numbers of grid nodes. The
quality of the grid was studied according to four criteria such as orthogonality, elongation, convexity
and adaptability, which corresponds to the division of the considered area into equal subdomains,
i.e. cells.
Key words: numerical solution, curvilinear area, sweep method, alternating direction method,
partial differential equations, curved mesh, difference schemes.
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Қисықсызықты облыстарда құрылымдық тор құру және оны бағалау

Мақалада геометриялық күрделi пiшiндi облыстарда құрылымды қисықсызықты торды
құру әдiстерi және оны сапа тұрғысынан бағалау қарастырылған. Қисықсызықты облыстың
шекарасында және iшiнде құрылымды тор құру үшiн дифференциалдық теңдеулерге негiз-
делген эквиүлестiрiм әдiстерi қолданылды. Дифференциалдық теңдеулердi сандық шешу
ақырлы айырмдар әдiсiмен жүзеге асырылды. Қисықсызықты шекарада тор тораптарын
бiркелкi орналастыру және облыстың iшiнде қисық сызықты тор құру есептерi үшiн айқын
емес айырымдық схемалар құрылып, сколярлық қуалау және айнымалы бағыттар әдiстерi
қолданылды. Сандық есептеулердiң нәтижелерi алынды және тор тораптарының әртүрлi са-
ны үшiн қисықсызықты торлардың графиктерi келтiрiлдi. Тордың сапасы ортогоналдылық,
созылу, дөңес және қарастырылып отырған облыстың бiрдей бөлiктерге, яғни ұяшықтарға
бөлiнуiне жауап беретiн бейiмделу сияқты төрт критерилер бойынша зерттеулер жүргiзiлдi.

Түйiн сөздер: сандық шешiм, қисықсызықты облыс, қуалау әдiсi, айнымалы бағыттар әдiсi,
дербес туындылы дифференциалдық теңдеу, қисық сызықты тор, айырымдық схема.
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В статье рассмотрены методы построения структурной криволинейной сетки в областях
геометрически сложной формы и ее оценка с точки зрения качества. Для построения
сетки на границе и внутри области использовались методы эквираспределения, основанные
на дифференциальных уравнениях. Численное решение дифференциальных уравнений
реализовались методом конечных разностей. Для задач равномерного расположения узлов
сетки на границе и для задач построения криволинейных сеток внутри области были
построены неявные разностные схемы и использховались методы сколярной прогонки и
переменных направлений. Получены результаты численных расчетов и приведены графики
криволинейных сеток при различных количествах узлов сетки. Проводились исследование
качество сетки по четырем критериям как ортогональность, вытянутость, выпуклость и
адаптивность которое отвечает разделения рассматирваемой области на равные подобласти,
т.е. ячейки.

Ключевые слова: численное решение, криволинейная область, метод прогонки, метод пере-
менных направлений, уравнения в частных производных, криволинейная сетка, разностные
схемы.

1 Introduction

Modern computers for researchers became an effective tool for mathematical modeling
of complex problems of science and technology. Therefore, nowadays qualitative research
methods are considered of usability in all life spheres, and mathematical modeling is a tool
for research.

In recent years, it is often necessary to consider problems in various fields in complex
geometric areas. The first thing to do for numerical modeling in complex geometric areas is to
sample the physical area, that is to model the physical geometry with the help of a set of cells
of difference grids. It is also possible to qualitatively describe the necessary characteristics of
the physical process under study, even in a small number of well-defined physical area nodes.
It should be noted that the use of uneven grid layouts can lead to the appearance of sources of
non-physical mass and momentum in the calculation schemes, as well as the loss of important
properties inherent in differential equations. Equations written in curvilinear coordinates
have a more complex form than the original equations. Particularly, they contain coefficients
of variables, additional components, non-zero right parts, etc. Therefore, the question of
approximation of equations in curvilinear grids occurs relevant and requires careful attention.
Moreover, the requirements for difference grids lead to a complex mathematical problem of
grid construction.

The work on the creation of structural curvilinear grids in complex geometric areas is
considered in the works of many domestic and foreign scientists. The uniform arrangement
of grids along the curve is described in detail in [1-3] works. It is widely considered in the
work on the construction of the grid by the elliptical method [1, 4-6] in the inner regions.
Methods of evaluation the created grids by different criteria are given in [1, 7].

2 Grid in curvilinear areas

In this paper, the method of creating a curvilinear lattice ∂D in a connected area D with a
curvilinear boundary is considered (Fig. 1 (a)).

Border interpolation is carried out to ensure continuity and monotony of boundary points.
In the research, first, the ways of uniform placement of grids within the boundaries of
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the curvilinear region, secondly, the creation of a grid with a mutually orthogonal structure
within the region and the assessment of the created curvilinear grids are considered.

Since the physical region under consideration is complex and has a curvilinear boundary,
we use differential methods to create curvilinear grids.

The physical region in the coordinate system (x, y) is carried out by the method of drawing
to the computational area in the coordinate system (ξ, η) (Fig. 1).

a) b)

Figure 1: A related domain a) and the computational area b)

Creating the grid in a one-dimensional area starts with creation of the grid within it is
boundaries. Since the boundary is not monotonous, the boundary is described by the given
parametric form.

x = f 1(p), y = f 2(p), 0 ≤ p ≤ 1 (1)

where l – the length of the border.
To create a grid at the boundary, we use the method of one-dimensional equivalence, it

means that the differential equation is given by [1]:

∂

∂ξ

(
ϑ(p)

∂p

∂ξ

)
= 0, ξ ∈ (0, 1), p(0) = 0, p(1) = l (2)

where ϑ(p) =

√(
∂f1(p)
∂p

)2
+
(
∂f2(p)
∂p

)2
> 0, p ∈ [0, l].

To create a grid at a related plane, let us use the following equation of the method of
equivalence with the assumption that the search coordinate system is orthogonal [1]:

∂

∂ξ

(
g22

∂−→x
∂ξ

)
+

∂

∂η

(
g11

∂−→x
∂η

)
= 0 (3)
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here −→x = (x, y) – the coordinates of the physical area, g11 = x2ξ + y2ξ , g22 = x2η + y2η – the
components of the metric tensor.

To create the grid on the boundary of the computational area let us solve problem (1)
– (3) by the method of the finite-difference schemes. The finite-difference scheme for (2) is
written as follows:

1

h1

(
ϑi+1/2

pi+1 − pi
h1

+ ϑi−1/2
pi − pi−1

h1

)
= 0, p1 = 0, pn = l, i = 2, n1 − 1 (4)

where

ϑi+1/2 =

√(
f 1(pi+1)− f 1(pi)

pi+1 − pi

)2

+

(
f 2(pi+1)− f 2(pi)

pi+1 − pi

)2

If the boundary of the region Ak(xk, yk) (k = 1, . . . ,M), (xk, yk) ∈ Γl (l = 1, 2) is given,
then the extension of the point set is determined as follows:

l1 = 0; lk =
k∑
i=2

√
(xi − xi−1)2 + (yi − yi−1)2, k = 2, . . . ,M

If pi ∈ [lk, lk+1] then the parametric equation for determining the coordinates of the
boundary nodes in linear interpolation is as follows

f 1(pi) = xk +
xk+1 − xk
lk+1 − lk

(pi − lk)

f 2(pi) = yk +
yk+1 − yk
lk+1 − lk

(pi − lk)
(5)

The resulting finite-difference problem (4) is solved by the following iterative method.As
an initial approximation p0i , we obtain a uniform grid from the part [0, l]. Let us suppose at
the n-th iteration a grid pni is constructed. In the grid we obtain

ϑi+1/2 =

√(
f 1(pi+1)− f 1(pi)

pi+1 − pi

)2

+

(
f 2(pi+1)− f 2(pi)

pi+1 − pi

)2

and using it we obtain the next approximations. The following linear problem is solved:

1

h1

(
ϑni+1/2

pn+1
i+1 − pn+1

i

h1
+ ϑni−1/2

pn+1
i − pn+1

i−1

h1

)
= 0,

pn+1
1 = 0, pn+1

ni
= l, i = 2, . . . , n1 − 1.

(6)

The iterative process continues to a given accuracy, it means that until the following
conditions are met:

max
1≤i≤n1

|pn+1
i − pni | ≤ ε
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a) b)

Figure 2: Evenly spaced grid nodes a) (20× 20) and b) (50× 50)

Based on the results of the last iterative approximation, the coordinates of the nodes at
the boundaries of the physical region are calculated using (5).

Fig. 2 shows the results of the calculation of the difference between (6) and (5) evenly
spaced at the boundary for a) 20× 20 and b) 50× 50 grid nodes.

Now we consider the difference problem of equation (3) to find the coordinates of the
nodes within the area. The last finite-difference scheme has the following form:

Λ11
−→x i,j + Λ22

−→x i,j = 0 (7)

where

Λ11
−→x i,j =

1

h1

(
g22,i+1/2,j

−→x i+1,j −−→x i,j

h1
− g22,i−1/2,j

−→x i,j −−→x i−1,j

h1

)
Λ22
−→x i,j =

1

h2

(
g11,i,j+1/2

−→x i,j+1 −−→x i,j

h2
− g11,i,j−1/2

−→x i,j −−→x i,j−1

h2

)
.

Central differences in integer nodes were used to identify metric tensor components.

xξ,i,j =
xi+1,j − xi−1,j

2h1
, xη,i,j =

xi,j+1 − xi,j−1

2h2

yξ,i,j =
yi+1,j − yi−1,j

2h1
, yη,i,j =

yi,j+1 − yi,j−1

2h2

g11,i,j = x2ξ,i,j + y2ξ,i,j, g22,i,j = x2η,i,j + y2η,i,j

The cells are averaged in the middle of the pages as follows:

g11,i+1/2,j =
g11,i+1,j + g11,i,jj

2
, g11,i−1/2,j =

g11,i,j + g11,i−1,j

2
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The remaining coefficients are determined similarly. To find the numerical solution of
equation (7), the method of alternating directions was used, considering the solutions of
equation (6) as a boundary condition. Methodological calculations for the construction of
curved grids using the method described above are considered for grids of different number
of nodes. Fig. 3 and Fig. 4 show the results of the curvilinear grids.

Figure 3: The curvilinear grid 20×20 Figure 4: The curvilinear grid 50×50

a) b)

Figure 5: Triangulation of cells

It is not enough to check the quality of the created curved grids only by visual inspection.
This is due to unnoticeable non-convex or crossed nodes potential occurrence during mesh
nodes multiplication. Therefore, as considered in [1] let us consider four types of criteria for
the assessment of grid networks: orthogonal, local uniformity, non-convex and convex of the
formed network. Let us give a number to each grid as is shown at Fig. 6.
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Figure 6: Convexity criterion estimation graph for the created curvilinear grid

Each grid cell is considered and divided into triangles diagonally. The following values are
responsible for the convexity criterion estimation:

Q1
i,j =

min
{
S(i,j),(i+1,j),(i+1,j+1), S(i,j),(i,j+1),(i+1,j+1), S(i,j),(i+1,j),(i,j+1), S(i+1,j),(i,j+1),(i+1,j+1)

}
0.5(S(i,j),(i+1,j),(i+1,j+1) + S(i,j),(i,j+1),(i+1,j+1))

(8)

where

S(i,j),(i+1,j),(i+1,j+1) =
1

2
[(xi+1,j − xi,j)(yi+1,j+1 − yi,j)− (xi+1,j+1 − xi,j)(yi+1,j − yi,j)]

S(i,j),(i,j+1),(i+1,j+1) =
1

2
[(xi+1,j+1 − xi,j)(yi,j+1 − yi,j)− (xi,j+1 − xi,j)(yi+1,j+1 − yi,j)]

S(i,j),(i+1,j),(i,j+1) =
1

2
[(xi+1,j − xi,j)(yi,j+1 − yi,j)− (xi,j+1 − xi,j)(yi+1,j − yi,j)]

S(i+1,j),(i,j+1),(i+1,j+1) =
1

2
[(xi+1,j+1 − xi+1,j)(yi,j+1 − yi,j)− (xi,j+1 − xi+1,j)(yi+1,j+1 − yi+1,j)]

the area of the corresponding triangles formed by the diagonals. The value of Q1
i,j may lie in

(−∞, 1], for convex cells is 0 < Q1
i,j ≤ 1, for triangular and intersecting cells is −∞ < Q1

i,j ≤
0.

The next evaluation criterion is orthogonality. To determine the value of the orthogonality
criterion, let apply the sine angle to the minimum value as follows:

Q2
i,j = min

k=(i,j),(i+1,j),(i,j+1),(i+1,j+1)
{sinϕk} (9)

where

sinϕi,j =
2S(i,j),(i+1,j),(i,j+1)

l(i,j),(i+1,j)l(i,j),(i,j+1)
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sinϕi+1,j =
2S(i,j),(i+1,j),(i+1,j+1)

l(i,j),(i+1,j)l(i+1,j),(i+1,j+1)

sinϕi,j+1 =
2S(i,j),(i,j+1),(i+1,j+1)

l(i,j),(i,j+1)l(i,j+1),(i+1,j+1)

sinϕi+1,j+1 =
2S(i+1,j),(i,j+1),(i+1,j+1)

l(i+1,j),(i+1,j+1)l(i,j+1),(i+1,j+1)

and the lengths of the nodes sides can be determined by the following equation

l(i,j),(i+1,j) =
√

(xi+1,j − xi,j)2 + (yi+1,j − yi,j)2

Function Q2
i,j takes values at [−1, 1] section. So for the convex cells it takes positive (right-

hand) values, for triangular cells it takes zero values and for non-convex and intersecting cells
it takes negative (left-hand) values.

The next criterion for the quality of the grid is the elongation of the cell, the length of
which is determined as follows:

Q3
i,j =

min
k=[(i,j),(i+1,j)],[(i+1,j),(i+1,j+1)],[(i+1,j+1),(i,j+1)],[(i,j+1),(i,j)]

{lk}

max
k=[(i,j),(i+1,j)],[(i+1,j),(i+1,j+1)],[(i+1,j+1),(i,j+1)],[(i,j+1),(i,j)]

{lk}
(10)

The value of Q3
i,j changes in the interval [0, 1].

One of the main requirements for curvilinear grids is local smoothness, that is, the areas
of all cells in the domain must be equal to each other. The criterion of local smoothness is
determined as follows:

Q4
i,j = min

{
Si+1/2,j+1/2

S̃
,

S̃

Si+1/2,j+1/2

}
(11)

here Si+1/2,j+1/2 – the area of the cell surrounded by the nodes {(i, j), (i + 1, j), (i + 1, j +

1), (i, j + 1)} and S̃ =

n1−1∑
i=1

n2−1∑
j=1

Si+1/2,j+1/2

(n1 − 1)(n2 − 1)
– the average area of one cell. Here the value of

Q4
i,j changes at the interval [0, 1]. It can be seen from the graph that all the curvilinear grids

are sufficiently convex.
From the criteria of orthogonality one can see the areas tapered fitted at grid nodes.
The low estimation values at the elongated areas of the grid nodes can be seen from the

Figure as well.
Since the inclination curve divides the area into mutually equal areas, then it can be seen

that the value of the corresponding criterion is low in the areas where the grid nodes are
compressed.
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Figure 7: Mutual orthogonality criterion estimation graph for the created curvilinear grid

Figure 8: Durability criterion estimation graph for the created curvilinear grid

Figure 9: Inclination criterion estimation graph for the created curvilinear grid

3 Conclusion

In order to determine the best grid model, the grid quality criteria were determined at each
iteration by the methods described above. At each iteration, the worst (lowest estimation
value) and the best of the worst were selected for a certain grid quality criterion. Thus, the
most optimal lattice was determined by the convexity, due to the fact that, the convexity
and orthogonality are similar criteria.
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The methods of creating a curvilinear grid and determining its quality considered in this
paper, allowing us to smooth out and evenly distribute the difference grid nodes in a complex
geometric area, as well as automatically create a new grid in case of changes in the number
of nodes.

In addition, a qualitative description of the necessary characteristics of the physical
process, which is studied in a small number of well-defined physical area nodes, is possible
to be made.

4 Acknowledgement

The work was supported by grant funding of scientific and technical programs and projects of
the Ministry of Science and Education of the Republic of Kazakhstan (Grant No.AP09058430
"Development of numerical methods for solving Navier-Stokes equations combining fictitious
domains and conjugate equations"2021-2023).

References

[1] Shokin Yu.I., Danaev N.T., Hakimzyanov G.S., Shokina N.Yu., Lekcii po raznostnym skhemam na podvizhnyh setkah
[Lectures on difference schemes on moving grids] II (Almaty, 2008): 184.

[2] Eiseman P.R., "Adaptive grid generation" , Comput. Meth. Appl. Mech. Engng. 64 (1987): 321–376.

[3] Hawken D.F., Gottlieb J.J., Hansen J.S., "Review article. Review of some adaptive node-movement techniques in finite-
element and finite-difference solutions of partial differential equations" , J. Comput. Phys. 95(2) (1991): 254-302.

[4] Thompson J.F., "Grid generation techniques in computational dynamics" , AlAA Journal 22 (1984): 1505-1523.

[5] Thompson J.F., Warsi Z.U.A., Mastin C.W., Numerical grid generation, foundations and applications (New York, etc.:
Elsevier, 1985).

[6] Lisejkin V.D., Metody postroeniya raznostnyh setok: Monogr. [Methods for constructing difference grids: Monogr.]
(Novosib.gos.un-t. Novosibirsk, 2014): 208.

[7] Prokopov G.P., Ob organizacii sravneniya algoritmov i programm postroeniya regulyarnyh dvumernyh raznostnyh setok
[On the organization of comparison of algorithms and programs for constructing regular two-dimensional difference grids]
(M.: Preprint 18. AN SSSR. IPM im. Keldysha, 1989): 27.

[8] Garanzha V.A., "Computation of discrete curvatures based on polar polyhedra theory" , Proceedings of International
Conference "Numerical geometry, grid generation and scientific computing". Moscow, 10-13 June 2008, M.: Folium
(2008): 182-189.

[9] Garanzha V.A., "Approximation of the curvature of Alexandrov surfaces using dual polyhedra" , Rus. J. Numer. Analys.
Modeling. 24 (5) (2009): 409-423.

[10] Garanzha V.A. "Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra" , Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki 50 (1) (2010): 71-98.

[11] Xie Z., Sevilla R., Hassan O., Morgen K., "The generation of arbitrary order curved meshes for 3D finite element analysis" ,
Computational Mechanics 51(3) (2013): 361-374.

[12] Remacle J.-F., Lambrechts J., Geuzaine C. and Toulorge T., "Optimizing the geometrical accuracy of 2D curvilinear
meshes" , Procedia Engineering 82 (2014): 228-239.

[13] Temirbekov N., Malgazhdarov Y., Tokanova S., Baigereyev D., Turarov A., "Information technology for numerical

simulation of convective flows of a viscous incompressible fluid in curvilinear multiply connected domains" , Journal

of Theoretical and Applied Information Technology 97 (22) (2019): 3166-3177.


