
Citation: de Castro Pereira, S.;

Solteiro Pires, E.J.; de Moura Oliveira,

P.B. Ant-Balanced Multiple Traveling

Salesmen: ACO-BmTSP. Algorithms

2023, 16, 37. https://doi.org/

10.3390/a16010037

Academic Editor: Roberto

Montemanni

Received: 25 November 2022

Revised: 2 January 2023

Accepted: 3 January 2023

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Ant-Balanced Multiple Traveling Salesmen: ACO-BmTSP
Sílvia de Castro Pereira 1 , Eduardo J. Solteiro Pires 2,3,* and Paulo B. de Moura Oliveira 2,3

1 Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300–253 Bragança, Portugal
2 Departamento de Engenharias, Universidade de Trás-os-Montes e Alto Douro, 5000–811 Vila Real, Portugal
3 INESC TEC—INESC Technology and Science, Rua Dr. Roberto Frias, 4200–465 Porto, Portugal
* Correspondence: epires@utad.pt

Abstract: A new algorithm based on the ant colony optimization (ACO) method for the multiple
traveling salesman problem (mTSP) is presented and defined as ACO-BmTSP. This paper addresses
the problem of solving the mTSP while considering several salesmen and keeping both the total
travel cost at the minimum and the tours balanced. Eleven different problems with several variants
were analyzed to validate the method. The 20 variants considered three to twenty salesmen regarding
11 to 783 cities. The results were compared with best-known solutions (BKSs) in the literature.
Computational experiments showed that a total of eight final results were better than those of
the BKSs, and the others were quite promising, showing that with few adaptations, it will be
possible to obtain better results than those of the BKSs. Although the ACO metaheuristic does not
guarantee that the best solution will be found, it is essential in problems with non-deterministic
polynomial time complexity resolution or when used as an initial bound solution in an integer
programming formulation. Computational experiments on a wide range of benchmark problems
within an acceptable time limit showed that compared with four existing algorithms, the proposed
algorithm presented better results for several problems than the other algorithms did.

Keywords: ant colony optimization; multiple traveling salesman problem; balanced mTSP

1. Introduction

In recent years, intelligent computation technologies have received increasing attention
from researchers. Most of these technologies are inspired by natural phenomena and
attempt to use the virtues of elements of behavior. A technique for problem solving inspired
by the behavior of ants when finding paths from their nest to food sources (ant colony
optimization—ACO) gained special importance due to its successful results when applied
to optimization problems [1,2]. The original ACO underwent several modifications in order
to adapt it to different real-world problems, such as assignment problems, graph coloring,
scheduling, circuit design, communication networks, bioinformatics, vehicle routing, etc.
Several ACO extensions have been created since then, such as elitist AS [3], Ant-Q [4], Ant
Colony System [5], rank-based AS [6], population-based ACO [7], Beam-ACO [8], etc. Later,
the ACO algorithm was combined with other algorithms to create denominated hybrid
methods and to obtain better results. Some examples of hybrid methods using ACO are
found in [9–18].

When the traveling salesman problem (TSP) is extended to consider multiple salesmen
(mTSP), other kinds of algorithms can use this technique to solve more general problems.
Some works focused on solving the mTSP are reviewed in the following. Harrath et al. [19]
proposed a hybrid algorithm, AC2OptGA, for solving the mTSP. The algorithm used genetic
(GA), ant colony, and two-opt algorithms. The ant colony algorithm was used to generate
solutions, and the two-opt algorithm and GA were used to enhance the solutions that
were obtained. These algorithms used instances for n = {51, 100, 150} and m = {3, 5, 10}.
Gomes et al. [20] implemented a GA in a vehicle-routing problem (VRP). The goal was to
optimize daily routes for workers assigned to distribution for a company located in a city

Algorithms 2023, 16, 37. https://doi.org/10.3390/a16010037 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16010037
https://doi.org/10.3390/a16010037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5439-287X
https://orcid.org/0000-0003-3224-4926
https://orcid.org/0000-0003-4283-1243
https://doi.org/10.3390/a16010037
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16010037?type=check_update&version=3


Algorithms 2023, 16, 37 2 of 17

(Covilhã, Portugal). They claimed to reduce the total distance traveled by 618 km per week
in comparison with the company runs. They considered n = 270 nodes, three zones, and
a five-day window. The primary goal was to minimize the cost and distance instead of
balancing the tours. The cost-balanced TSP is one of the recent variants of the TSP. Thus,
Akbay and Kalayci [21] proposed a solution based on the variable neighborhood search
algorithm to solve the cost-balanced TSP. They used twenty-two datasets, which included
small-, medium-, and large-scale instances, to obtain computational results. Muñoz-Herrera
and Suchan [22] focused their research on fitness landscape analysis (FLA) for the multiple
traveling salesman problem (mTSP) and capacitated VRP (CVRP). They proposed a new
FLA measure that provided valuable information for characterizing the fitness landscape’s
structure under specific scenarios and obtained several relationships between the fitness
landscape’s structure and algorithmic performance. Garn [23] developed a balanced
dynamic closest vehicle heuristic (BD-CVH) and a balanced dynamic assignment vehicle
heuristic (BD-AVH) to solve a dynamic routing problem for the balanced mTSP. The
obtained distances indicated that, in general, the BD-AVH algorithm led to slightly better
solutions. Xu and Zhang [24] implemented a hybrid algorithm for the balanced mTSP
based on genetic algorithms and the two-opt algorithm. Khoufi et al. [25] proposed a review
of the existing literature devoted to UAV (unmanned aerial vehicle) path optimization
problems related to two existing general classic problems, the traveling salesman problem
and the vehicle-routing problem. They provided a synthetic overview of the resolution
techniques and performance metrics, and they obtained numerical results. Pereira et al. [18]
proposed a hybrid method, GACO2, for solving the mTSP based on the genetic algorithm,
ant colony optimization, and the two-opt algorithm to improve the solution. They applied
this method in two instances—mTSP51 and mTSP100—with 3, 5, and 10 travelers. The
primary purpose was to find the minimum distance traveled by using the minisum number
of salesmen. Pereira et al. [26] implemented a hybrid algorithm, GABC-LS, to solve the
minisum mTSP based on a genetic algorithm, an artificial bee colony, and two local search
methods (move1-within and two-opt). This was a small-sized instance.

Table 1 indicates the pros and cons of the reviewed algorithms. Considering balanced
tours, most works used the minimax function. Therefore, the minimization of the maximum
tour value may neglect variations in smaller tours. This phenomenon implies a loss of the
algorithm’s sensibility and compromises the feedback clues that the optimization function
gives to the search. On the other hand, combining ant and other optimization algorithms in
a hierarchical structure leads to a long computation time. Keeping these ideas in mind, the
following research questions were formulated:

1. Is it possible to solve the mTSP by using optimization functions without dead zones?
2. Could the mTSP be solved by using ant colony optimization with minor modifica-

tions?

This paper proposes a novel algorithm based on ACO for the mTSP with several
depots. The main contributions are the following: (i) an innovative objective function that
enables simultaneous achievement of two goals—minimal distance and balanced tours;
(ii) a refined version of ACO that includes a proposal for an ant-picket algorithm instead of
an ant finding a complete path alone, and the solution is subdivided into several tours to
be searched by a group (picket) of ants. For the experimental assessment in this proposal, a
group of instances proposed by Carter and Ragsdale [27], by [28], and by [29] were used to
validate the proposed algorithm.

This paper is organized as follows: The multiple traveling salesman problem used in
the experimental study is presented in Section 2.1. Section 2 presents the ACO algorithm
and associated concepts, describes the application of ACO to the mTSP, and presents the
proposed approach. Section 3 presents the simulation results. Section 4 discusses the
advantages of the proposed algorithm. Finally, the main conclusions and suggestions for
future studies are presented in Section 5.



Algorithms 2023, 16, 37 3 of 17

Table 1. Advantages and drawbacks of the reviewed approaches.

Approach Advantages Drawbacks

ACO – Rapid discovery of good solutions – Premature convergence
[1] – Efficient in solving the TSP – Falls easily into the trap of local optima

– Does not guarantee the optimal solution

AC2OptGA – Efficient with medium- and large-sized in-
stances

– Does not guarantee the optimal solution

[19] – Probability of a fall into local minima mini-
mized

– Highly time-consuming

GA to m-TSP – Reduction of 618 km per week – Does not guarantee the optimal solution
[20] – Huge impact in several forms – Highly time-consuming

– Contributions to fostering smart cities

FLA for mTSP – Efficient exploration of the solutions of fea-
tures of spaces

– Generally impossible to draw a fitness
landscape with a huge search space

[22] – Provides relevant information about opti-
mization method improvement

– Generally impossible to draw a fitness
landscape with a huge search neighbor-
hoods

– Gets relationships between the FL struc-
ture and the algorithmic performance

BD-mTSP – Predicts travel distance based on dynamic
parameters

– Solution is not immediately provided

[23] – Leads to slightly better solutions

GACO2 – Efficient in solving small-sized mTSP in-
stances

– Does not provide balanced tours

[18] – Allows the release of traveling salesmen – Not tested on large-sized instances

GABC-LS – Efficient in solving small-sized mTSP in-
stances

– Does not provide balanced tours

[26] – Uses only one method – Highly time-consuming

2. Methodology

This section begins by describing the basics of the mTSP. Next, Section 2.2 describes
the ACO algorithm, Section 2.3 explains how ACO can be used in the mTSP, and Section 2.4
presents the proposed approach to solving the mTSP to obtain balanced tours.

2.1. Basics of the Multiple Travel Salesman Problem

One of the best-known classic combinatorial problems is the traveling salesman prob-
lem, or the TSP for short [30]. According to [31], the TSP was studied in the eighteenth
century by two mathematicians, William Rowam Hamilton and Thomas Penynington
Kirkman. The TSP has the objective of minimizing a value—usually the distance—while
defining a sequence of locations, where each is visited exactly once by a salesman, who then
returns to the starting city. The travel can be described as a graph G = (V, E) with a set of
n vertices V connected by m edges E, where V = {v1, v2, ..., vn} and E = {e1, e2, ..., em}. In
this graph, the vertices represent the cities and the edges represent the roads or possible
paths to go from one city to another, with an associated cost value. To be able to take a
trip that passes through all of the graph vertices of the graph only once constitutes, in
graph theory, the so-called Hamiltonian circuit. Considering the vertex v1 as the depot, in
Figure 1, the Hamiltonian circuit has an associated cost of 21. This cost can have a different
meaning depending on the problem and can be evaluated with an objective function.

The graph in Figure 1 shows five vertices V = {v1, v2, v3, v4, v5}, each one representing
a city, interconnected by edges. The paths taken from one vertex to another have an
associated cost represented by the number near the line. The simplest way to solve the TSP
is to try all possibilities by using exhaustive methods, but when the number of edges grows,
those methods are too time-consuming and computationally expensive. On the other
hand, exact methods are useful when they solve problems within a reasonable time, e.g.,
in the production–inventory–routing problem [32], in discrete truss topology design [33],
and in wind farm layout problems [34]. Due to the TSP’s time complexity, when the
number of cities becomes high, heuristic and metaheuristic methods are used to solve the



Algorithms 2023, 16, 37 4 of 17

problem. Heuristics do not guarantee that the optimal solution to the problem is found, but
they can return a quality solution in an adequate amount of time for several application
needs. A heuristic’s main purpose is to find a good solution simply and quickly. On
the other hand, metaheuristics are models that serve as a guide for building heuristics.
Many of those models are based on natural phenomena. The TSP has many different
real-world applications, such as school bus routing, management of pickup and delivery,
and others [35], making it a prevalent problem to solve. However, some problems require
additional salesmen. Thus, the multiple TSP (mTSP) is defined to generalize the usual
TSP. This generalization uses more than one salesman to find a solution. It can be defined
as a set of n nodes and m salesmen initially located at a single depot node. All salesmen
start and return to the depot, and all remaining cities are visited only once by a unique
salesman [36].

v4

v5

v1

v3

v2

1

6

7

3

6

2 8

9 4

5

Figure 1. Example of a graph.

To model the single-depot mTSP precisely, assuming that the problem is symmetrical,
that is, cij = cji, the equations are:

min
n

∑
j=1

n

∑
i=1

cijxij (1)

n

∑
j=1

x1j =
n

∑
j=1

xj1 = m (2)

n

∑
j=2

xij = 1, i = 1, 2, ..., n (3)

n

∑
i=2

xij = 1, j = 1, 2, ..., n (4)

ui − uj + nxij ≤ n− 1, 2 ≤ i 6= j ≤ n (5)

xij ∈ {0, 1}, i, j = 1, 2, ..., n (6)

The objective function is described by (1), with the goal of minimizing the total associated
cost, which is subjected to several constraints. Constraint (2) ensures that exactly m traveling
salesmen start and return to the initial depot (vertex 1). Restrictions (3) and (4) ensure
that exactly one edge enters and exits each graph city. The sub-tour elimination constraint
(5) defines an integer variable ui for the position of node i in a tour, and n represents the
maximum number of nodes visited by any salesman. Finally, (6) defines the variable xij
as binary.

The mTSP is more appropriate than the TSP for many practical applications, and
it can be used to simulate many real-life applications [37], e.g., disaster management,
cooperative missions, monitoring and surveillance, transportation and delivery, multi-



Algorithms 2023, 16, 37 5 of 17

robot task allocation and scheduling, WSN data collection network connectivity, search and
rescue, and precision agriculture, among others [37]. Many variants of the mTSP have been
reported in the related literature. The most important for this study is the understanding of
the variant classification according to the objective function; two main formulations of the
mTSP exist [37]:

1. MiniMax mTSP: In this mTSP variant, the objective function consists of minimizing
the most extended tour cost among the tours of all salesmen.

2. MiniSum mTSP: In this mTSP variant, the objective function consists of minimizing
the sum of the tour costs of all salesmen.

Although a majority of reported works about the mTSP sought to minimize the
total distance traveled by all the salesmen (minisum), minimizing the maximum distance
traveled by any salesman (minimax) is of more practical significance, since it is related to
balancing the workload among salesmen [38].

2.2. The ACO Algorithm

This section briefly presents the ACO metaheuristic, which belongs to a bio-inspired
class of optimization algorithms. The ACO algorithm proposed by Marco Dorigo [39]
is inspired by real ants’ behavior in nature. Ants’ communication takes place through
the secretion of a semiochemical and odorous substance called a pheromone to guide
the direct food path from the destination to the source [40]. To search for food sources,
ants go out and realize a path, dropping a certain amount of pheromones on the ground.
Pheromone initialization is the most critical step, and the initialized quantity of pheromones
is equivalent for all graph nodes [40]. The edge pheromone amount, τij, between edges i
and j is evaluated according to the following formula:

τij = (1− ρ)τij +
na

∑
k=1

∆τk
ij (7)

where ρ is the pheromone evaporation rate, na is the number of ants that visited the edge
(i, j), and ∆τk

ij is the amount of pheromone deposited by ant k in the edge (i, j). This amount
of pheromone is calculated with:

∆k
ij =

{
Q/Lk, if the ant k has passed through this edge
0, otherwise

(8)

where Lk measures the path distance visited by ant k, and Q is a constant value. After the
ants have passed a particular edge of the graph, they need to choose the next edge to follow
in order to reach the food source. The amount of pheromone in the next edge to choose
will be decisive, so the greater this amount is, the greater the probability will be that the ant
will select the corresponding edge. The probability of movement of ant k from node i to
node j, which has not been visited yet, is calculated with:

pk
ij =

[τij]
α[ηij]

β

∑l∈Nk
i
[τij]α[ηij]β

(9)

where α is a parameter that represents the importance of the edge pheromone in deciding
the subsequent movement of the ant; β is a parameter that represents the importance of the
distance in deciding the subsequent movement of the ant; Nk

i is a set of nodes that have
not yet been visited by ant k; ηij is the inverse distance between nodes i and j. A cycle
is completed when all ants have finished their movement. As time goes by, it turns out
that ants will tend to follow the shortest path, thus tending to converge to the problem’s
optimal solution.

The ACO algorithm can be described step by step, as presented in Algorithm 1.



Algorithms 2023, 16, 37 6 of 17

Algorithm 1 ACO Algorithm.

1: Initialize parameters
2: Position ants at starting node
3: while stop condition is not satisfied do
4: Ants build a solution
5: Update pheromone
6: Local search (optional)
7: Update best solution
8: end while
9: Save best solution

2.3. Applying ACO to the BmTSP

As real ants are able to find the shortest path between a food source and their nest
without using visual mechanisms, but only by exploiting a trail of pheromones, they can
be similarly applied to the mTSP, considering the nest as a single depot and the location of
a food source as the location of other cities. The road network in the mTSP was modeled
with a graph simulating the path traveled by real ants to find food. Figures 2 and 3 show
an example of three salesmen traveling to twenty-three cities while using two different
variants: the minisum and unbalanced work (Figure 2)—where only the total cost (in
this case, the distance) was the aim considered—and the minimax (Figure 3)—where the
work was more balanced, but the only goal to minimize the path with the maximum
salesman cost.

TSP1 TSP2 TSP3

Figure 2. Unbalanced work in the mTSP.

TSP1 TSP2 TSP3

Figure 3. Balanced work in the mTSP.

Most reported studies focused on solving the mTSP by using a minisum formulation,
and only very few aimed to specifically minimize the maximum distance traveled by all of
the salesmen [41]. However, the best solutions showed that the salesmen’s paths were not



Algorithms 2023, 16, 37 7 of 17

equitable or balanced. A small percentage of salesmen traveled most of the paths, while
the rest traveled very short distances. To try to eliminate this disadvantage, this study
focused on an attempt to achieve a single function that consisted of a combination of the
shortest total path (minisum) and a minimization of the maximum subpath (minimax) in
order to obtain balanced paths for each salesman. The mTSP was called balanced (BmTSP)
when each salesman visited approximately the same number of cities or had the same
tour cost. Therefore, the BmTSP was used, and the equitable distribution of some types
of resources was important. Some authors formulated this problem by minimizing the
maximum tour values. In terms of optimization, this function presents some gaps. If the
‘lower’ tours—the tours with lower distance values—change, the objective value could
remain the same. Therefore, this change is not reflected in the objective function and does
not give any clues for driving the search in the right direction.

2.4. The Proposed Approach: ACO-BmTSP Algorithm

This work focuses on an implementation of ACO consisting of a substantial modifica-
tion in its application. Instead of using an ant to create a tour, an ant picket is used in the
proposed algorithm. This algorithm, ACO-BmTSP, replaces lines 4 and 5 of Algorithm 1.

The first step of this technique is to initialize all of the ACO parameters (line 1:3 of
Algorithm 2; the cost of each ant is zero at the beginning, cj = 0; the ant picket begins at the
deposit, uj = {Deposit}, and the set of unpicked nodes includes all except the deposit). As
the single-depot variant of the mTSP was used, all the ants of the picket were positioned
in this city (by analogy, the initial graph node; line 2). Instead of considering only one
ant, as in the classical single TSP, in this algorithm (ACO-BmTSP), a group of ants m was
considered to obtain a solution. Each ant j stores a tour, in the set uj, and all ants’ tours
forms a potential solution of the problem. Therefore, in Algorithm 2, for each instance (a
solution of the problem), the tours were built in the “while” loop as follows: The ant of the
picket whose cost is minimum (line 5) selects an unpicked city based on the pheromone
path (line 6); it updates its set of visited cities (line 7), the cost traveled according to the
distance dpj pi between the last and current cities (line 8), and the global set of unpicked
cities (line 9). The instance is finished when there is no city to pick, and the ants return
to the deposit. The pheromone is spread as in the original ACO. Each solution created
in an ant picket iteration is evaluated by using the objective function (10). This function
minimizes the cost of the tours and promotes balanced tours. Since it is a continuous
function, it suppresses the insensibility mentioned in the previous section, where each tour
variation leads to a variation in the objective function. In this function, Sj is a set of |Sj| arcs
traveled by the salesman k.

f =

√√√√√ m

∑
k=1

 |Sj |

∑
j=1

cj

2

, j ∈ Sj (10)

Algorithm 2 Ant picket algorithm.

1: cj = 0, ∀j ∈ {1, 2, . . . , m}
2: uj = {Depositj}, ∀j ∈ {1, 2, . . . , m}
3: P = {1, 2, . . . , n}\{Deposits}
4: while P 6= ∅ do
5: Find the ant j with the lowest cost cj
6: Select pi ∈ P according to the transition rules
7: uj = uj ∪ pi
8: cj = cj + dpj pi

9: P = P\{pi}
10: end while
11: Return the tour solution



Algorithms 2023, 16, 37 8 of 17

Minimizing function (10) leads to a solution with the minimum cost and balanced tours.
Although this perception is evident concerning the minimum cost, obtaining balanced tours
may not be straightforward. This intention becomes apparent if the following optimization
problem is considered: Suppose that two salesmen have a route of 100 units to travel, and
they want to divide the route so that each one travels the same path distance. This problem
can be formulated to determine the distance each one travels as follows:

Minimize :
c2

1 + c2
2

s.t. :
c1 + c2 = 100.

The solution of this problem is c1 = c2 = 50. Thus, squaring the factors that each sales-
man travels leads to balanced tours. The same reasoning was successfully applied to
minimize robotic manipulator trajectories and determine their “balanced” intermediate
configurations [42,43].

Using integer programming formulation and the same deposit, this problem can be
represented by Equations (11)–(16), where xk

ij is one if the arc (ij) belongs to tour k, and
zero otherwise. The square root of the objective function (11) could be eliminated, since
the optimization result would be the same. uk

i is the position of node i in the tour k. The
other variables have the same meanings as those used when considering Equations (1)–(6).
Namely, m is the number of the TSP, n is the number of cities, and k is the number of tours.

Constraint (12) ensures that exactly m traveling salesmen start and return to the initial
depot (vertex 1). Restrictions (13) and (14) ensure that exactly one edge enters and exits
each graph city. The sub-tour elimination constraint (5) defines an integer variable ui for
the position of node i in a tour, and n represents the maximum number of nodes visited by
any salesman. Finally, (6) defines that the variable xij is binary.

min

√√√√ m

∑
k=1

(
n

∑
j=1

n

∑
j=1

cijxk
ij

)2

(11)

m

∑
k=1

n

∑
j=1

xk
1j =

m

∑
k=1

n

∑
j=1

xk
j1 = m (12)

m

∑
k=1

n

∑
j=2

xk
ij = 1, i = 1, 2, ..., n (13)

m

∑
k=1

n

∑
i=2

xk
ij = 1, j = 1, 2, ..., n (14)

uk
i − uk

j + nxk
ij ≤ n− 1, 2 ≤ i 6= j ≤ n, k = 1, 2, . . . , m (15)

xk
ij ∈ {0, 1}, i, j = 1, 2, . . . , n, k = 1, 2, . . . , m (16)

Consider a problem with three traveling salesmen/ants, one deposit, and 16 cities.
Figure 4 presents one state in which the ant-picket algorithm is used. In the following,
it is explained how to reach this state with the three ants: {green (g), red (r), blue (b)}.
The ants randomly select the next city to visit while taking the pheromones deposited
in each arc into account. In the beginning, the ants (g, r, b) are at the deposit. Therefore,
the cost is c = (0, 0, 0) and ug = {0}, ur = {0}, ub = {0}. Suppose that the chosen
cities are 11, 16, and 3 for ants g, r, and b, respectively, leading to c = (25.49, 22.36, 7.07),
ug = {0, 11}, ur = {0, 16}, ub = {0, 3}. Since the ant b has the smallest distance cost,
minimum distance traveled by an ant is flagged as boldface, it selects the next city—for
example, city 5, reaching c = (25.49, 22.36, 30.48), ub = {0, 3, 5}. Suppose that ant r selects
city 12 (c = (25.49, 42.08, 30.48), ur = {0, 16, 12}), g selects city 8 (c = (41.09, 42.08, 30.48),
ug = {0, 11, 8}), and b selects city 4 (c = (41.09, 42.08, 40.78), ub = {0, 3, 5, 4}). At this point,



Algorithms 2023, 16, 37 9 of 17

since the ant b has the lowest cost, it selects the next city considering only the unpicked
cities P = {1, 2, 6, 7, 9, 10, 13, 14, 15}. Figure 4 illustrates this state. Circles or cities with
colors: green, red, and blue were selected by the ant with the respective color. Additionally,
the filled edges indicate the order of the visited cities. On the other hand, gray circles
represent unpicked cities. In this stage, ant b at node 4 will select one of those cities. Dotted
lines with a “?” highlight those possibilities. The algorithm continues until the set of all of
the unpicked cities is empty, and the ants return to their deposit.

Ant b

Ant r

Ant g

0

1

2

3
4

5

6

7
8

9

10

11

12
13

14

15

16

?

?

?

?

?

?

?

?

?

Figure 4. One state example of the ant-picket algorithm.

3. Experimental Results and Analysis

For each mTSP instance, the algorithm was run thirty times in order to verify the sta-
bility of the algorithm. The experimental results are shown in Section 3.2, and a comparison
with other works is also shown in this section’s tables. To improve the understanding of
the obtained values, some figures show the paths traveled by each salesman, indicating the
cities with nodes and the paths taken between cities with lines connecting the cities. A set
of instances contained a total of 11 instances. It is noted that all of the paths started and
ended at the same node (depot). In the mTSP51 instance, the depot used was (32, 39), in
the mTSP100 instance, the depot used was (1819, 814), and in the mTSP150 instance, the
depot used was (2310, 236). For all of the remaining instances, the first city was set as the
depot. There were five small instances called 11a, 11b, 12a, 12b, and 16. Instances 11a, 12a,
and 16 comprised the first 11, 12, and 16 cities of mTSP51. Instances 11b, 12b, and 128 were
derived from the sp11, uk12, and sgb128 datasets [44]. The mTSP instances with n = 51,
100, and 150, kroD100, and rat783 were based on the TSPLIB [45].

3.1. Parameters of the ACO Algorithm

The performance of metaheuristics such as the ACO algorithm directly depends on
the choices of parameter values. As described in Section 2.2, the original ACO has few
parameters to initialize: the pheromone evaporation rate, ρ, the number of ants running per
iteration, Ants, the number of the best ants who deposit pheromones Bests, the exponent
of the pheromones α (a higher value of alpha provides pheromones with more relevance),
and, finally, β, the exponent of distance (a higher value of beta provides the distance with
more weight). As usual, the choice made for each parameter value is based on the method’s
efficiency. For both ACO algorithms, the parameter values were the same. The number of
cycles performed until the stop condition was satisfied was 240 iterations. The number of
ants used was 3200, and the number of ants that spread pheromones was 45. The remaining
parameters used with their values were ρ = 0.05, α = 1, and β = 1.



Algorithms 2023, 16, 37 10 of 17

3.2. Computational Results

In order to evaluate the proposed algorithm’s performance, several benchmark mTSP
instances were tested. All of the experiments were performed on the Google Colab platform,
which allowed code in the Python language to be run.

The instances used considered several numbers of cities and m = {3, 5, 10, 15} sales-
men, leading to 19 different problems. Each instance was run, and the results are presented
in Table 2. Columns 1 and 2 indicate the numbers of cities and salesmen. Column 3 presents
the total cost of each solution. In the next columns, Avg and Std present the average and
standard deviation, respectively. The following five columns indicate each tour’s cost in
descending order. The first five tours are in black in the line, and for the ten- and fifteen-
salesman problems, the next five and last five are in gray in the second and third lines,
respectively.

Table 2. Total and partial distance traveled by salesmen when using the ACO-BmTSP algorithm.

TSP N.º (l = {0, 1, 2, 3})

Name m Total Avg. Std. 1 + 5l 2 + 5l 3 + 5l 4 + 5l 5 + 5l

mTSP51 3 468.09 156.03 4.19 160.73 154.69 152.68 – –
5 523.78 104.75 7.41 117.36 105.00 101.91 100.92 98.58

10 765.83 076.58 9.30 093.44 088.11 082.39 079.43 76.61
074.41 070.36 068.39 066.64 66.06

mTSP100 3 24,455.04 8151.69 579.15 8580.49 8381.72 7492.87 – –
5 27,309.44 5461.89 311.23 5772.65 5664.10 5591.60 5255.97 5025.12

10 43,824.70 4382.47 689.43 5264.51 5136.02 4942.60 4870.01 4508.78
4148.68 4119.31 4086.25 3619.29 3129.26

mTSP150 3 39,471.09 13,157.03 076.97 13,211.62 13,190.47 13,069.00 – –
5 44,322.33 08864.47 146.69 9082.80 8922.60 8845.47 8763.26 8,708.21

10 58,298.47 05829.85 508.42 6221.31 6188.45 6125.01 6103.19 5,974.78
5957.49 5936.46 5700.35 5587.74 4503.69

11a 3 224.18 74.73 5.12 78.17 77.17 68.85 – –

11b 3 265.09 88.36 10.80 96.31 92.71 76.07 – –

12a 3 226.53 75.51 3.77 78.17 77.17 71.20 – –

12b 3 3073.08 1024.36 108.56 1100.77 1072.21 900.10 – –

16 3 271.79 90.60 4.38 93.89 92.28 85.62 – –

mTSP128 10 47,256.11 4725.61 1268.96 6304.43 6247.17 6163.11 5954.47 3967.22
3954.17 3904.04 3902.46 3765.28 3093.76

15 75,394.28 5026.29 1187.69 6190.42 6143.34 6127.44 6020.33 5995.13
5954.85 5886.04 5655.69 5006.01 5001.86
3601.67 3600.24 3565.89 3382.81 3262.55

kroD100 3 26,009.03 8669.68 1077.89 9828.23 8484.31 7696.49 – –
5 32,808.35 6561.67 0926.92 7929.75 6918.62 6528.11 5770.61 5661.26

10 47,256.09 4725.61 1268.96 6304.43 6247.17 6163.11 5954.47 3967.22
3954.16 3904.04 3902.46 3765.27 3093.76

rat783 20 25,089.70 1254.55 136.22 1413.45 1374.56 1365.69 1353.25 1347.03
1345.72 1338.38 1322.84 1313.55 1303.64
1299.97 1289.81 1276.78 1231.01 1221.94
1201.95 1157.57 1023.50 1005.08 0903.99

For the problem with 51 cities and three salesmen, a total cost of 468.09 and tour
costs of {160.73, 154.69, 152.68} were obtained. The tours had a difference of 8.05 between
the maximum and the minimum cost, leading to an average of 156.03 and a standard



Algorithms 2023, 16, 37 11 of 17

deviation of 4.19. On the other hand, for m = {5, 10}, an average and standard deviation
of 104.75 and 76.58 were achieved, respectively. Considering the problem with 100 cities,
the average costs obtained were {8151.69, 5461.89, 4382.47} for 3, 5, and 10 salesmen, and
the standard deviations obtained were {7.10%, 5.69%, 15.7%}. Finally, for the mTSP150
problem, the average costs and standard deviations were {13,157.03, 8864.47, 5829.85}
and {76.97, 146.69, 508.42} for 3, 5, and 10 salesmen, respectively. Considering the small-
sized group of instances (11a, 11b, 12a, 12b, and 16, which were all for three salesmen),
the average costs obtained were {74.73, 88.36, 75.51, 1024.36, 90.60}, and the standard
deviations obtained were {5.12, 10.80, 3.77, 108.56, 4.38}, respectively. For the problem
with 128 cities and ten salesmen, the average costs obtained were {4725.61, 5026.29}, and
the standard deviations obtained were {1268.96, 1187.69}. For the instance kroD with
100 cities, the average costs were {8669.68, 6561.67, 4725.61}, and the standard deviations
were {12.4%, 14.1%, 26.9%, 15.7%} for 3, 5, and 10 salesmen, respectively. Finally, for the
rat783 instance, which considered 783 cities and 20 salesmen, the average costs were 1254.55,
and the standard deviation was 136.22.

The results obtained enabled to conclude that salesmen’s paths were generally well
balanced, and the difference in the distances was minor. The algorithm found balanced
routes for all salesmen. Additionally, as the number of salesmen increased, the cost of
individual tours decreased.

To perform the best interpretation of the results, Figures 5–7 show the real paths
traveled by each salesman for 51 cities. Each color identifies the cities visited by a salesman.
Salesman 1 (TSP1) follows the path whose cities are represented by blue, TSP2 by red, and
TSP3 by green. In problems with five and ten salesmen, TSP4 travels through pink cities
and TSP5 through gray cities. Finally, in problems with ten salesmen, TSP6 travels by cities
represented by yellow, TSP7 by maroon, TSP8 by dark gray, TSP9 by cyan, and TSP10 by
magenta. It is possible to see the positions of all cities in the space and the path for each
salesman. Figures 8–10 show the real paths traveled by each salesman for 100 cities.

TSP1 TSP2 TSP3

O0

1

2

3

4

5

6

7

10

11

12

13

15

16

17

18

2023

24

25

26

27

28

29

31

33

36

39

40

41

42

43

44

45

46

47

48

50

8

14

38

19

21

30

32

34

35

37

49

9

22

Figure 5. Tour for 3TSP51.



Algorithms 2023, 16, 37 12 of 17

TSP1 TSP2 TSP3 TSP4 TSP5

O0

1

2

3

4

5

6

7 8

9

10

11

12

13

15

17

20

21

23

24

25

26

27

28

29

30

31

33

36

37

38

39

40

41

42

43

44

45

47

48

14 16

18

19

22

32

34

35

46

49

50

Figure 6. Tour for 5TSP51.

TSP1 TSP2 TSP3 TSP4 TSP5 TSP6 TSP7 TSP8 TSP9 TSP10

O0

1

2

7 8

9

10

11

13
17

23

24

25

26

27

28

29

30

31

33

38

39

40

41

42

43

44

45

47

3

5

14 16

18

19

2022

34

35

46

49

6

36

21

32

12

15

37

4

50

48

Figure 7. Tour for 10TSP51.



Algorithms 2023, 16, 37 13 of 17

TSP1 TSP2 TSP3

O0

11

14

15

20

39

52

53

54

63

78

79

87
93

99

4

5

7

8

12

19 24

28
29

33
36

37

44

45

50

56

57

61

68

69

71 74

80

81

88
91

98

16

18
25

26
40

46

75

76

1

3

13

17

21

23

30
32

34

35

41

42

43

47

51

55 59

6062

66

70 72

73

77

92
96

2

86

27

6

10

48

49

82

94

95

9
22

31

38

5864

65

67

83

84

85

89

90

97

Figure 8. Tour for 3TSP100.

TSP1 TSP2 TSP3 TSP4 TSP5

O0

11

14

20

39

52

53

54

63

78

79

87
93

99

4

5

7

8

12

15

19 24

28
29

33
36

37

44

45

50

56

57

61

68

69

71 74

80

81

88
91

98

16

18
25

26
40

46

75

76

1

3

13

17

21

23

30
32

34

35

41

42

43

47

51

55 59

6062

66

70 72

73

77

92
96

2

86

27

6

10

48

49

82

94

95

9
22

31

38

5864

65

67

83

84

85

89

90

97

Figure 9. Tours for 5TSP100.

TSP1 TSP2 TSP3 TSP4 TSP5 TSP6 TSP7 TSP8 TSP9 TSP10

O0

11

14

15

20

39

52

53

54

63

78

79

87
93

99

4

5

7

8

12

19 24

28
29

33
36

37

44

45

50

56

57

61

68

69

71 74

80

81

88
91

98

16

18
25

40

46

75

76

26

1

3

13

17

21

23

30
32

34

35

41

42

43

47

51

55 59

6062

66

70 72

73

77

92
96

2

86

27

6

10

48

49

82

94

95

9
22

31

38

5864

65

67

83

84

85

89

90

97

Figure 10. Tours for 10TSP100.

To compare the developed algorithm with others found in the literature, its perfor-
mance was compared with that of algorithms that used the minimax function as an objective,
since they also somehow promoted the tours’ balancing. To make this comparison possible,
the longest tour was extracted from the obtained solution and compared with those in the
other works that used the minimax function. The entirety of the tours of a solution was



Algorithms 2023, 16, 37 14 of 17

not compared because the other works only provided the minimax values. This paper’s
proposed technique not only considered the minimization of the longest tour, but also
promoted achieving balanced tours. Additionally, the proposed algorithm did not use local
heuristics, since these techniques enhance the solution quality.

Table 3 shows the results of the proposed algorithm, ACO-BmTSP, and those of other
algorithms found in the literature. The ACO-BmTSP algorithm used (10), while the other
algorithms used a minimax objective. It can be observed that the ACO-BmTSP algorithm
obtained good results in some of the problems.

Table 3. Comparison with other algorithms.

Name m TCX ACO GVNSSeq-VND MOAT-ACO ACO-BmTSP
[46] [28,47] [29,38] [48]

mTSP51 3 203 160 160 160 161
5 154 118 118 118 117

10 113 108 112 112 93

mTSP100 3 12,726 8817 8509 8511 8580
5 10,086 6964 6767 6845 5773

10 6402 6370 6358 6358 5265

mTSP150 3 18,019 13,885 13,376 13,169 13,211
5 12,619 9270 8647 8467 9083

10 8054 6132 5674 5565 6221

11a 3 77 – 77 – 78

11b 3 73 – 73 – 96

12a 3 77 – 77 – 78

12b 3 983 – 1101 – 1101

16 3 94 – 94 – 94

mTSP128 10 5912 – 2980 – 6304
15 5295 – 2305 – 6190

kroD100 3 – 8511 – – 9828
5 – 8467 – – 7929

10 – 6358 – – 6304

rat783 20 – 1509 1579 – 1413
– Not calculated.

4. Discussion of the Algorithm and Results

This paper presents a metaheuristic algorithm for solving the TSP. Although they do
not guarantee exact solutions, metaheuristic algorithms are important in certain
circumstances—for example, when it is not possible to solve a problem in time or to
provide an initial solution for exact algorithms.

The proposed algorithm is based on the ACO algorithm with minor modifications.
It has the advantage of selecting cities with ants and was inspired by the original ACO
algorithm; it avoids combinations of metaheuristics and introduces other techniques that
increase the algorithm’s complexity.

The results show that the proposed algorithm can obtain competitive results with
respect to those of other algorithms, and in many problems, it obtains better results.

5. Conclusions and Future Work

The multiple traveling salesman problem (mTSP) extends the widely used traveling
salesman problem (TSP). The mTSP is more suitable for real-world modeling problems.
This new approach aims to balance the tours traveled by all salesmen and to minimize the



Algorithms 2023, 16, 37 15 of 17

total cost of traveled paths. This new approach obtains balanced tours for the mTSP and
obtains better results in several problems than those of other works found in the literature.

In addition to the proposed ACO algorithm naturally extending the single-TSP ACO,
which has one salesman, to the mTSP with m salesmen, the optimization algorithm uses
only one objective function to minimize the total cost and balance the tours.

In future work, local search mechanisms will be implemented in order to increase the
ACO-BmTSP algorithm’s performance. On the other hand, the algorithm will be used in
real engineering problems in which the solution of the mTSP solves the problem, e.g., in
offshore wind farm layout.

Author Contributions: Conceptualization, S.d.C.P. and E.J.S.P.; software, S.d.C.P. and E.J.S.P.; vali-
dation, S.d.C.P., E.J.S.P., and P.B.d.M.O.; formal analysis, S.d.C.P.; investigation, S.d.C.P.; writing—
original draft preparation, S.d.C.P.; writing—review and editing, S.d.C.P., E.J.S.P., and P.B.d.M.O.;
supervision, E.J.S.P. and P.B.d.M.O. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
2. Zhan, S.C.; Xu, J.; Wu, J. The optimal selection on the parameters of the ant colony algorithm. Bull. Sci. Technol. 2003, 19, 381–386.
3. Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D. Thesis, Politecnico di Milano, Milano, Italy, 1992.
4. Gambardella, L.M.; Dorigo, M. Ant-Q: A reinforcement learning approach to the traveling salesman problem. In Machine Learning

Proceedings 1995; Elsevier: Amsterdam, The Netherlands, 1995; pp. 252–260.
5. Dorigo, M.; Gambardella, L.M. Ant colonies for the travelling salesman problem. Biosystems 1997, 43, 73–81. [CrossRef] [PubMed]
6. Bullnheimer, B.; Hartl, R.; Strauss, C. A New Rank Based Version of the Ant System—A Computational Study. Cent. Eur. J. Oper.

Res. 1999, 7, 25–38.
7. Guntsch, M.; Middendorf, M. A population based approach for ACO. In Proceedings of the Workshops on Applications of

Evolutionary Computation, Kinsale, Ireland, 3–4 April 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 72–81.
8. Blum, C. Theoretical and Practical Aspects of Ant Colony Optimization; IOS Press: Amsterdam, The Netherlands, 2004; Volume 282.
9. Heinonen, J.; Pettersson, F. Hybrid ant colony optimization and visibility studies applied to a job-shop scheduling problem. Appl.

Math. Comput. 2007, 187, 989–998. [CrossRef]
10. Huang, K.L.; Liao, C.J. Ant colony optimization combined with taboo search for the job shop scheduling problem. Comput. Oper.

Res. 2008, 35, 1030–1046. [CrossRef]
11. Xiao, J.; Li, L. A hybrid ant colony optimization for continuous domains. Expert Syst. Appl. 2011, 38, 11072–11077. [CrossRef]
12. Rahmani, R.; Yusof, R.; Seyedmahmoudian, M.; Mekhilef, S. Hybrid technique of ant colony and particle swarm optimization for

short term wind energy forecasting. J. Wind. Eng. Ind. Aerodyn. 2013, 123, 163–170. [CrossRef]
13. Kefayat, M.; Ara, A.L.; Niaki, S.N. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic

optimal placement and sizing of distributed energy resources. Energy Convers. Manag. 2015, 92, 149–161. [CrossRef]
14. Alsaeedan, W.; Menai, M.E.B.; Al-Ahmadi, S. A hybrid genetic-ant colony optimization algorithm for the word sense disambigua-

tion problem. Inf. Sci. 2017, 417, 20–38. [CrossRef]
15. Karakonstantis, I.; Vlachos, A. Hybrid ant colony optimization for continuous domains for solving emission and economic

dispatch problems. J. Inf. Optim. Sci. 2018, 39, 651–671. [CrossRef]
16. Tseng, H.E.; Chang, C.C.; Lee, S.C.; Huang, Y.M. Hybrid bidirectional ant colony optimization (hybrid BACO): An algorithm for

disassembly sequence planning. Eng. Appl. Artif. Intell. 2019, 83, 45–56. [CrossRef]
17. Wang, Y.; Deng, Q. Optimization of maintenance scheme for offshore wind turbines considering time windows based on hybrid

ant colony algorithm. Ocean. Eng. 2022, 263, 112357. [CrossRef]
18. Castro Pereira, S.D.; Solteiro Pires, E.J.; Oliveira, P.M. Genetic and Ant Colony Algorithms to Solve the Multi-TSP. In Proceedings

of the International Conference on Intelligent Data Engineering and Automated Learning, Manchester, UK, 25–27 November
2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 324–332.

19. Harrath, Y.; Salman, A.F.; Alqaddoumi, A.; Hasan, H.; Radhi, A. A novel hybrid approach for solving the multiple traveling
salesmen problem. Arab. J. Basic Appl. Sci. 2019, 26, 103–112. [CrossRef]

20. Gomes, D.E.; Iglésias, M.I.D.; Proença, A.P.; Lima, T.M.; Gaspar, P.D. Applying a Genetic Algorithm to a m-TSP: Case Study of a
Decision Support System for Optimizing a Beverage Logistics Vehicles Routing Problem. Electronics 2021, 10, 2298. [CrossRef]

http://doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1016/S0303-2647(97)01708-5
http://www.ncbi.nlm.nih.gov/pubmed/9231906
http://dx.doi.org/10.1016/j.amc.2006.09.023
http://dx.doi.org/10.1016/j.cor.2006.07.003
http://dx.doi.org/10.1016/j.eswa.2011.02.151
http://dx.doi.org/10.1016/j.jweia.2013.10.004
http://dx.doi.org/10.1016/j.enconman.2014.12.037
http://dx.doi.org/10.1016/j.ins.2017.07.002
http://dx.doi.org/10.1080/02522667.2017.1385162
http://dx.doi.org/10.1016/j.engappai.2019.04.015
http://dx.doi.org/10.1016/j.oceaneng.2022.112357
http://dx.doi.org/10.1080/25765299.2019.1565193
http://dx.doi.org/10.3390/electronics10182298


Algorithms 2023, 16, 37 16 of 17

21. Akbay, M.A.; Kalayci, C.B. A Variable Neighborhood Search Algorithm for Cost-Balanced Travelling Salesman Problem. In
Proceedings of the Metaheuristics Summer School, Taormina, Italy, 15 April 2018; Greco, S., Pavone, M. F., Talbi, E.-G., Vigo, D.
Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 23–36.

22. Muñoz-Herrera, S.; Suchan, K. Constrained Fitness Landscape Analysis of Capacitated Vehicle Routing Problems. Entropy 2022,
24, 53. [CrossRef]

23. Garn, W. Balanced dynamic multiple travelling salesmen: Algorithms and continuous approximations. Comput. Oper. Res. 2021,
136, 105509. [CrossRef]

24. Xu, H.-L.; Zhang, C.-M. The research about balanced route MTSP based on hybrid algorithm. In Proceedings of the 2009
International Conference on Communication Software and Networks, Chengdu, China, 27–28 February 2009; pp. 533–536.

25. Khoufi, I.; Laouiti, A.; Adjih, C. A Survey of Recent Extended Variants of the Traveling Salesman and Vehicle Routing Problems
for Unmanned Aerial Vehicles. Drones 2019, 3, 66. [CrossRef]

26. de Castro Pereira, S.; Solteiro Pires, E.J.; de Moura Oliveira, P.B. A Hybrid Approach GABC–LS to Solve mTSP. In Proceedings of
the Optimization, Learning Algorithms and Applications, Póvoa do Varzim, Portugal, 24–25 October 2022; Pereira, A.I., Košir,
A., Fernandes, F.P., Pacheco, M.F., Teixeira, J.P., Lopes, R.P., Eds.; Springer International Publishing: Cham, Switzerland, 2022;
pp. 520–532.

27. Carter, A.E.; Ragsdale, C.T. A new approach to solving the multiple traveling salesperson problem using genetic algorithms. Eur.
J. Oper. Res. 2006, 175, 246–257. [CrossRef]

28. Zheng, J.; Hong, Y.; Xu, W.; Li, W.; Chen, Y. An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen
Problem. Comput. Oper. Res. 2022, 143, 105772. [CrossRef]

29. Soylu, B. A general variable neighborhood search heuristic for multiple traveling salesmen problem. Comput. Ind. Eng. 2015,
90, 390–401. [CrossRef]

30. Patterson, M.; Friesen, D. Variants of the traveling salesman problem. Stud. Bus. Econ. 2019, 14, 208–220. [CrossRef]
31. Matai, R.; Singh, S.P.; Mittal, M.L. Traveling salesman problem: An overview of applications, formulations, and solution

approaches. In Traveling Salesman Problem, Theory and Applications; IntechOpen: Rijeka, Croatia, 2010; Volume 1.
32. Agra, A.; Cerveira, A.; Requejo, C. Lagrangian relaxation bounds for a production-inventory-routing problem. In Proceedings

of the International Workshop on Machine Learning, Optimization, and Big Data, Volterra, Italy, 26–29 August 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 236–245.

33. Cerveira, A.; Agra, A.; Bastos, F.; Gromicho, J. A new Branch and Bound method for a discrete truss topology design problem.
Comput. Optim. Appl. 2013, 54, 163–187. [CrossRef]

34. Cerveira, A.; Pires, E.J.S.; Baptista, J. Wind Farm Cable Connection Layout Optimization with Several Substations. Energies 2021,
14, 3615. [CrossRef]

35. Alves, R.M.; Lopes, C.R. Using genetic algorithms to minimize the distance and balance the routes for the multiple traveling
salesman problem. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May
2015; pp. 3171–3178.

36. Bektas, T. The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega 2006,
34, 209–219. [CrossRef]

37. Cheikhrouhou, O.; Khoufi, I. A comprehensive survey on the Multiple Traveling Salesman Problem: Applications, approaches
and taxonomy. Comput. Sci. Rev. 2021, 40, 100369. [CrossRef]

38. Wang, Y.; Chen, Y.; Lin, Y. Memetic algorithm based on sequential variable neighborhood descent for the minmax multiple
traveling salesman problem. Comput. Ind. Eng. 2017, 106, 105–122. [CrossRef]

39. Dorigo, M.; Di Caro, G.; Gambardella, L.M. Ant algorithms for discrete optimization. Artif. Life 1999, 5, 137–172. [CrossRef]
40. Al-Ebbini, L.M.K. An Efficient Allocation for Lung Transplantation Using Ant Colony Optimization. Intell. Autom. Soft Comput.

2023, 35, 1971–1985. [CrossRef]
41. Dong, Y.; Wu, Q.; Wen, J. An improved shuffled frog-leaping algorithm for the minmax multiple traveling salesman problem.

Neural Comput. Appl. 2021, 33, 17057–17069. [CrossRef]
42. Solteiro Pires, E.; Tenreiro Machado, J. A GA perspective of the energy requirements for manipulators maneuvering in a

workspace with obstacles. In Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 July
2000; Volume 2, pp. 1110–1116. [CrossRef]

43. Pires, E.S.; de Moura Oliveira, P.B.; Machado, J.T. Manipulator trajectory planning using a MOEA. Appl. Soft Comput. 2007,
7, 659–667. [CrossRef]

44. Burkardt, J. CITIES—City Distance Datasets. Available online: https://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html
(accessed on 22 December 2022).

45. Ruprecht-Karls. TSPLIB. Available online: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95 (accessed on 22 Decem-
ber 2022).

46. Yuan, S.; Skinner, B.; Huang, S.; Liu, D. A new crossover approach for solving the multiple travelling salesmen problem using
genetic algorithms. Eur. J. Oper. Res. 2013, 228, 72–82. [CrossRef]

http://dx.doi.org/10.3390/e24010053
http://dx.doi.org/10.1016/j.cor.2021.105509
http://dx.doi.org/10.3390/drones3030066
http://dx.doi.org/10.1016/j.ejor.2005.04.027
http://dx.doi.org/10.1016/j.cor.2022.105772
http://dx.doi.org/10.1016/j.cie.2015.10.010
http://dx.doi.org/10.2478/sbe-2019-0016
http://dx.doi.org/10.1007/s10589-012-9487-6
http://dx.doi.org/10.3390/en14123615
http://dx.doi.org/10.1016/j.omega.2004.10.004
http://dx.doi.org/10.1016/j.cosrev.2021.100369
http://dx.doi.org/10.1016/j.cie.2016.12.017
http://dx.doi.org/10.1162/106454699568728
http://dx.doi.org/10.32604/iasc.2023.030100
http://dx.doi.org/10.1007/s00521-021-06298-8
http://dx.doi.org/10.1109/CEC.2000.870771
http://dx.doi.org/10.1016/j.asoc.2005.06.009
https://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
http://dx.doi.org/10.1016/j.ejor.2013.01.043


Algorithms 2023, 16, 37 17 of 17

47. Liu, W.; Li, S.; Zhao, F.; Zheng, A. An ant colony optimization algorithm for the multiple traveling salesmen problem.
In Proceedings of the 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009;
pp. 1533–1537.

48. Lu, L.C.; Yue, T.W. Mission-oriented ant-team ACO for min–max MTSP. Appl. Soft Comput. 2019, 76, 436–444. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2018.11.048

	Introduction
	Methodology
	Basics of the Multiple Travel Salesman Problem
	The ACO Algorithm
	Applying ACO to the BmTSP
	The Proposed Approach: ACO-BmTSP Algorithm

	Experimental Results and Analysis
	Parameters of the ACO Algorithm
	Computational Results

	Discussion of the Algorithm and Results 
	Conclusions and Future Work
	References

