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Abstract The significance of Digital Twins is considered vital in the reshaping of
the manufacturing field with the emergence of the fourth industrial revolution. The
potential of applying the Digital Twin technology is being studied extensively as a
key enabler of engineering cyber-physical systems. However, it is still in its infancy,
and only a few scientific papers are describing its applicability in case-studies, pro-
totypes or industrial systems. Bearing this in mind, this paper presents a comprehen-
sive overview of Digital Twins in the manufacturing domain and defines a concep-
tual architecture that considers simulation capabilities to support the optimisation of
production processes. The designed approach is applied to a proof-of-concept case
study that considers a flexible production cell and uses the simulation of the system
to dynamically support decision making to optimise the production processes when
changes occur in the real production system.

1 Introduction

Industry 4.0 is changing the manufacturing industry landscape, considering the digi-
tisation and the value of data as its foundations. Most of the companies that consider
adopting the Industry 4.0 paradigm has to bear in mind the application of, amongst
others, Cyber-Physical Systems (CPS), Artificial Intelligence (AI) and Internet-of-
Things (IoT) [5]. In the manufacturing environment, the implementation of CPS
comprises the digitisation of systems, merging the real and virtual worlds. This
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characteristic has provided the opportunity to the Digital Twin to emerge as one
of the key enabling technology.

The concept of the Digital Twin was proposed by M. Grieves, in 2002, stating
features as the real space, the virtual space and the connection between them [7].
With the 4th industrial revolution, the rapid evolution of certain technologies, e.g.,
IoT, simulation, Big Data and Machine Learning, allowed to boost this approach,
making its application in the manufacturing domain a reality [1], [2].

The scientific and industrial world have been directing their attention towards the
Digital Twin technology. According to [10], the interest and research about Digital
Twin technology have not only grew in the academic field but also among industry
practitioners. In 2017, a study conducted about the Digital Twin market showed that
it is expected to reach $15.66 billion by 2023 [15]. A new study conducted in 2019
showed that the Digital Twin market would reach $35.8 billion by 2025 [16].

Although there has been a growing interest of the scientific community in the
Digital Twin, there is still a lack of applications that include the decision support
functionality [10], [12], mainly using simulation and what-if engines. Bearing this
in mind, the main goal of this paper is to reduce the gap that exists in the current
research literature related to Digital Twin applications in the manufacturing domain,
including decision support capabilities. The main scientific contribution of this pa-
per is the development of a conceptual Digital Twin architecture that considers sim-
ulation capabilities to support decision-making and its application in a case study
for a proof-of-concept Digital Twin providing decision support in the manufacturing
domain. The presented case study is a flexible production cell with monitoring and
decision support supported by the Digital Twin based simulation. The experimental
results allowed to verify the applicability of using the Digital Twin to support the
production managers in decision-making when a change in conditions occurs.

The rest of the paper is organised as follows. Section 2 presents the Digital Twin
concept in the manufacturing sector, and Section 3 reviews the decision support
approaches based on Digital Twin concept and introduces the proposed system ar-
chitecture. Section 4 describes the implementation of the Digital Twin simulation
architecture to the case study and analyses the achieved results. Finally, Section 5
rounds up with the conclusions and points out some future work.

2 Digital Twin in the Manufacturing Domain

The manufacturing domain has evolved since the 1st industrial revolution, with the
invention of the steam engine as a new source of energy. Today, the world finds itself
in the fourth industrial revolution [3], [4].
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2.1 Digital Twin: The Concept Evolution

The German government launched the Industry 4.0 initiative to drive the digital
revolution in the manufacturing industry [5]. According to [5], the manufacturing
environment compliant with the Industry 4.0 principles comprise the implementa-
tion of CPS, requiring the digitisation of systems, and the convergence between the
real and digital worlds. Bearing this in mind, the digitisation of the manufacturing
environment has been the main focus of both academia and industry in the last few
years. In this context, the Digital Twin concept has emerged and received attention
in the scientific community as a promising new field of investigation for the digiti-
sation of the manufacturing environment [6].

Grieves proposed the foundations of the Digital Twin technology in 2002. At
the time, the concept, called ”Mirrored Spaces Models”, comprising of features
as the real space, the virtual space and their connections allowing the flow of data
[7]. In 2011, the concept was adopted by the US National Aeronautics and Space
Administration (NASA) entering the field of aeronautics to determine the health of
aircrafts and predict their structural life [8].

From this point on, the evolution of the concept has grown rapidly covering sev-
eral sectors, e.g., the manufacturing sector. One of the first authors to bring the
concept of Digital Twin to the manufacturing sector was [9], that defined the Digital
Twin as a ”the coupled model of the real machine that operates in the cloud plat-
form and simulates the health condition with an integrated knowledge from both
data-driven analytical algorithms as well as other available physical knowledge”.
The concept is increasing and ”has evolved into a broader concept that refers to a
virtual representation of manufacturing elements such as personnel, products, as-
sets and process definitions, a living model that continuously updates and changes
as the physical counterpart changes to represent status, working conditions, prod-
uct geometries and resource states in a synchronous manner” [10]. Another recent
definition was provided by [6] that defines the Digital Twin as ”a method or tool
for modelling and simulating a physical entity’s status and behaviour”, that can
”realise the interconnection and intelligent operation between the physical manu-
facturing space and virtual space”.

The growing interest in Digital Twin technology is illustrated in Fig. 1 that
presents the evolution over the time of the number of scientific papers related to
the Digital Twin retrieved from the Scopus database using the search query TITLE-
ABS-KEY(”digital twin” AND ”manufacturing”). This analysis shows that the num-
ber of scientific publications regarding the use of Digital Twin in Manufacturing is
growing exponentially since 2016. This can be translated to a growing interest from
the scientific community and consequent production of knowledge about the Digital
Twin technology in the field of the manufacturing sector.
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Fig. 1 Evolution of the number of scientific publications in the Scopus database related to Digital
Twin (Query TITLE-ABS-KEY(”digital twin” AND ”manufacturing”)) over the years.

2.2 Challenges of Digital Twin

Despite the rapidly growing scientific interest in the Digital Twin technology in the
manufacturing domain, there are several challenges to be addressed.

According to [6], the main focus of Digital Twin research in manufacturing tack-
les two main challenges, namely 1) lack of standard framework the physical and
virtual worlds to enable real-time interaction between them, and 2) lack of unifica-
tion in the development of models in various lifecycle phases and domains within
the manufacturing environment (e.g., product model for data transmission/sharing).

On the other hand, the study conducted by [10] identified seven key research is-
sues in this field, namely the existence of a pattern architecture for a Digital Twin,
the required communication latency between the physical system and its Digital
Twin, the data collection mechanisms, the existing standards for Digital Twins, the
decision-support functionality of the Digital Twin, the existence of Digital Twin
model version for management and, finally, the human role in the Digital Twin ap-
plications for the manufacturing domain.

The authors of [11] have concluded that the conducted research in applying Dig-
ital Twin in the manufacturing area is still in its infancy, and there is a lack of publi-
cations that address end-to-end implementation and integration of Digital Twins in
the industrial domain. The existing literature takes into consideration smaller parts
and fewer aspects of the Digital Twin (e.g., virtual modelling or monitoring) and
uses ad hoc integration methods to connect digital and physical space.

3 Decision Support based on the Digital Twin

The Digital Twin is gaining significant attention in the scientific and industrial com-
munity for its versatile embedded functionalities and benefits in the manufacturing
sector. A particular aspect is that the Digital Twin can enhance the manufacturing
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systems ability to use the simulation for decision support using what-if analysis and
optimisation techniques in the virtual space.

3.1 Literature Review

The simulation paradigm evolved throughout the years. Initially, around 1960, the
simulation was mostly used for individual applications in particular topics, e.g. me-
chanics. In 1985, simulation started to be used as a standard tool to provide answers
to specific problems in specific engineering design domains (e.g. fluid dynamics).
Around 2000, the system-level simulation was developed, which allowed for a sys-
tematic multi-level and multi-disciplinary approach. Over the last decade, simula-
tion models are considered for use beyond the design phase, i.e. connected to physi-
cal assets to enable dynamic optimisation of systems and help in providing decision
support [2], giving birth to the concept of Digital Twins (see Fig. 2).

1960 1985 2000 2015

Individual
Application

Simulation
Tools

Simulation based
System Design

Digital
Twin

Simulation as core
functionality

Simulation limited to
specific topics

Simulation is a
standard tool

Simulation allows
systemic approach

Fig. 2 Evolution of the simulation capabilities (adapted from [2]).

The use of simulation-based Digital Twin for providing decision support is be-
coming an important area of research. As previously stated, the literature review
performed by [10] concluded that most of the reported work about Digital Twin is
conceptual and the developed applications are mainly focusing on monitoring and
prediction functions. Although most of the applications can be seen as decision-
aiding systems, very few of them have included the direct and/or autonomous feed-
back control system (i.e. Digital Twin control over the physical object). The authors
in [13] propose a decision support framework, based on the Digital Twin and using a
simulation model, to be applied for the order management process in manufacturing
systems. The proposed decision-making process is supported by the collection of
data from the physical elements connected to the automatic model generator, which
automatically generates a simulation model. In [14], the authors propose a method-
ology for implementing a Digital Twin for decision support for designing automated
flow-shop manufacturing systems (AFMS). The proposed model provides the use of
a hybrid approach, including discrete event models together with system dynamics
models, to evaluate the decisions over the AFMS design. By applying the Digital
Twin model in a sheet material processing enterprise case study, it was possible
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to design a new AFMS solution that enabled the reduction of motion waste and
decreasing the unit cost. In [17], the authors make an exploratory study about the
benefits that can come from using the Digital Twin for decision support asset life-
cycle management. The study refers to the literature review of the area and provides
two case studies with some details about the decision support provided.

Bearing this in mind, few scientific publications are addressing the application
of the Digital Twin concept with the decision support functionality. This shows the
current need for researching the applicability of decision-making systems and sim-
ulation capabilities in the manufacturing area.

3.2 Digital Twin Simulation Architecture

Having this in mind, this paper proposes a general architecture for the Digital Twin
decision-support based on simulation capabilities, illustrated in Fig. 3. This archi-
tecture is constrained by the following requirements: definition of the physical entity
to virtualise (e.g., product, asset, process or factory), modelling of the physical en-
tity into a simulation model (e.g., DES model), establish the connectivity between
the physical and virtual through the use of standard industrial network protocols,
realise real-time monitoring of the collected data, use simulation to perform optimi-
sation of the physical entity, and offer decision support to the human operator based
on the real-time data and the performed simulations.

Virtual World
Physical World

Manufacturing

Digital Twin

Connectivity

Product Asset Process Factory

Data Storage

Visualisation &
Monitoring Simulation

Human Interface

Operator

Warnings

Data Analysis

DES
Optimizer What-if Analysis

Process Simulation

Real Time
Data

Historical
Data

Simulation
Data

Real Time
Data

Historical
Data

Simulation
Data

Parameter
Update

Simulation
Request

Fig. 3 General architecture for the decision support based on Digital Twin simulation.
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The proposed Digital Twin architecture consists of five main modules:

1. Connectivity Module: allows the communication between the physical and vir-
tual world through the use of industrial network protocols (e.g., OPC-UA and
Modbus TCP/IP), supporting the collection of information/data from shop-floor
devices (e.g., robots IoT devices, PLCs and sensors). The collected data is trans-
formed into contextual and readable formats. This module also allows sending
commands and deploying new operating configurations, after validation by the
user.

2. Data Storage Module: designed to store the real-time and historical data from
the shop-floor machines/devices, as well as the simulation knowledge created
during the execution of various simulation scenarios by the Simulation module.
The data stored in this module can be accessed by the other modules using stan-
dard interfaces.

3. Visualisation and Monitoring Module: responsible for monitoring and visual-
ising the real-time status of the production system, as well as the historical data
and future trends based on the results from the simulation scenarios. This module
provides monitoring functions by performing, in the background, data analysis of
the retrieved data (e.g., real-time data, historical data and simulation data) from
the Data Storage module and displaying the warnings related to the detection
of performance degradation and condition change (including machine learning
techniques and control rules).

4. Simulation Module: comprehends two stages, namely the building of the virtual
system model and the performance of discrete event simulation (DES) following
the requirements of what-if analysis. The DES optimiser will perform different
simulation scenarios allowing the system to find the optimal result for the physi-
cal system in the proposed conditions and requirements.

5. Human Interface Module: In this module, the human operator, based on the
knowledge and information presented to him by the Visualisation and Monitoring
module, can request the performance of new simulation scenarios to the Simula-
tion module. The real-time data can be used as a trigger for the human operator to
request the simulation of the virtual model or even to feed the simulated model.
If the operator verifies that the results are optimising the system according to its
requirements, this can apply as new parameters to the shop-floor devices. The
Connectivity module will transform this new information into readable formats
for the shop-floor devices.

The proposed Digital Twin architecture aims to overcome some of the identified
gaps in the literature and addresses some key issues, for example, the inclusion of
the human operator in the Digital Twin applications, the application of a feedback
control option based on the decision support provided by the Digital Twin and the
conjugation of the Digital Twin with the decision support functionality. This allows
a better decision-making since it includes the ability of test the real system through
the application of what-if scenarios, verifying what will be the impact and what will
the most profitable operational strategy to be followed.
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4 Flexible Production Cell Case Study

This section presents the implementation and results of the proposed architecture
into a case study related to a flexible production cell.

4.1 Description of the Case Study

The case study considered in this work comprises a Fischertechniks flexible pro-
duction cell that is producing different parts, as illustrated in Fig. 4. This figure also
illustrates the virtual system model developed using the FlexSim software.

1

2

3

4

5

Physical System Virtual System

Fig. 4 Case study flexible production cell (physical System and virtual model).

The flexible production cell consists of five assembly stations, two punching sta-
tions (1-2), two indexing stations (3-4), and one pneumatic processing centre (5).
All of the stations have their conveyor belts, a set of light sensors and RFID (Radio-
Frequency IDentification) readers. The stations are controlled by a programmable
logic controller (PLC), in this case, the Schneider Modicon M340. Parts are moved
between the stations according to their process plans through the use of an IRB 1400
ABB robot. Additionally, the parts are fed to the stations through an input conveyor
and leaves the system through an output conveyor.

For this case study, the process plan for a typical part comprehends the following
steps: the robot picks a piece from the input conveyor and feeds it to the punching
station; after the punching operation is concluded, the robot transfers the part to one
of the indexing stations; and finally, after the conclusion of the indexing operation,
the robot transfers the part to the output conveyor.

The developed Digital Twin for this production cell can monitor the performance
of the physical system in real-time. When a condition change is detected, the Dig-
ital Twin performs a simulation of different scenarios for the virtual system model
aiming to define the best strategy that improves the system performance.
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4.2 Implementation of the Digital Twin

The implementation of the Digital Twin for the flexible production cell followed the
architecture previously defined. Fig. 5 represents the technological implementation
for the case study.

Virtual World
Physical World

Physical System
PLC

Operator

DES Model

KepServer

Fig. 5 Technological architecture for the case study flexible production cell.

As shown in Fig. 5, this technological architecture is divided into two domains:
the physical and the virtual. The physical system and the operator are the sources
of information for the Digital Twin, and the virtual model and the visualisation and
monitoring dashboard are the main components in the virtual domain. Physical-
virtual connectivity is achieved through the Modbus TCP/IP industrial communica-
tion protocol, which allowed to collect data from the PLC used to control the pro-
duction cell workstations. The data was collected through the use of the KEPServer
software, which supports several types of communication protocols, such as Mod-
bus TCP/IP, MQTT (Message Queuing Telemetry Transport) protocol and OPC DA
(OPC Data Access). In this work, the communication with the DES model was per-
formed using the OPC DA, and the MQTT protocol realised the communication
with the developed visualisation and monitoring dashboard.

The DES model representing the digital copy of the production cell was devel-
oped using the FlexSim simulation software (see the right side of Fig. 4). This vir-
tual model is fed with the real-time data collected from the physical system through
Modbus and OPC DA, being possible to be simulated according to different scenar-
ios devised by the user.

The dashboard for monitoring and visualisation was developed by using NodeRED
which allows the operator to visualise the actual operating parameters from the
physical system and to receive the warnings on performance degradation or con-
dition change as well as the simulation results. The user can also configure different
scenarios to be simulated by the DES, e.g., modifying the availability of machines,
processing time, production line configuration and production demand.
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4.3 Experimental Results

The flexible production cell was tested in a configuration that comprehends an input
conveyor, a punching station, an indexing station, an output conveyor and the robot,
having a maximum capacity of 523 parts per shift. In this situation, the resource
utilisation of the punching station, the indexing station and the robot are 56.4%,
56.3% and 87.2% respectively.

During the production system operation, the Digital Twin is collecting the real-
time data that is displayed on the visualisation and monitoring dashboard. The mon-
itoring mechanisms are running in parallel aiming to detect abnormalities, condi-
tion changes or performance degradation. To simulate a production demand change
scenario, the system is fed with a new demand of 580 parts per shift, which gener-
ates production demand change warning on the dashboard. Since it is impossible to
reach this demand with the current production configuration, the production man-
ager should take decisions on how to increase the production capacity efficiently to
meet the new production demand.

Using the implemented Digital Twin, and particularly the available simulation
capabilities, the production manager can simulate different scenarios involving dis-
tinct configurations and variations, and then analyse the results from each simulated
scenario and decide the best action plan to meet the increase in the production de-
mand. Note that this what-if simulation is performed in the background, i.e. not
impacting the current operation of the production system.

In this case, the strategic manager considers four different alternatives to solve
the problem by considering the following four scenarios:

• Scenario 1: addition of one punching station the current configuration.
• Scenario 2: addition of one punching station and one indexing station to the

current configuration.
• Scenario 3: addition of one indexing station to the current configuration.
• Scenario 4: increase the speed of the robot, maintaining the current configura-

tion.

The results for the simulation of these four scenarios are listed in Table 1, assess-
ing different key performance indicators (KPIs), e.g., throughout per shift, through-
put per hour, mean resource utilisation and profit margin.

Table 1 Achieved results for the four simulated testing scenarios.

Throughput Throughput
per Hour

Mean Resource Utilisation (%) Profit
(euro)Punching Indexing Robot

Current 523 65,4 56,4 56,3 87,2 2571,2
Scenario 1 523 65,4 78,1 56,3 87,3 2555,2
Scenario 2 598 74,8 58,3 58,2 100,0 2910,0
Scenario 3 523 65,4 56,4 28,2 87,2 2551,2
Scenario 4 612 76,5 61,7 61,6 76,6 3016,0
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The table also includes the expected profit for each scenario, that is calculated in
a simplified manner using the Eq. 1. The calculation of this parameter is based on
revenues (calculated by multiplying the number of parts produced per hour by the
part value and the production time) and expenses (calculated through the sum of the
multiplication between the cost per hour of the machine i and the production time).

Pro f it = NParts ×PartValue ×ProdTime −
n

∑
i=1

Ci ×ProdTime (1)

The achieved results show that from the four simulated scenarios, only Scenarios
2 and 4 can attain the desired production demand. In fact, in Scenario 2, the pro-
duction capacity is increased but not doubled since the robot manipulator becomes
the bottleneck (utilisation of 100%). In Scenario 4, the capability of the robot to
perform more operations per time unit leads to an increase in the throughput. On the
other hand, for Scenario 1, although a punching station was added, the one indexing
station in the system becomes a bottleneck, maintaining the productivity capacity
equal to the current production configuration. The same is happening to Scenario 3,
where the existing punching station becomes the bottleneck.

Having two scenarios that address the initial requirements, the production man-
ager needs to decide which alternative is better. For this purpose, the profit parameter
can be analysed to take the decision. In this case, Scenario 4 is the one that fulfils
the requirements and presents the highest profit, since there is not a need to add new
stations to the current configuration. Based on the achieved results, the manager can
make an informed and supported decision about which would be the most profitable
configuration to face the increase in production demand.

5 Conclusions and Future Work

The emergence of Digital Twin technology in the manufacturing domain has shifted
the attention of the scientific community. The research in this field is still in its in-
fancy. The existing scientific articles are predominantly theoretical and conceptual,
lacking practical demonstrations of the application of the technology. This paper
provides a conceptual Digital Twin architecture for enabling decision support based
on simulation capabilities and illustrates its applicability in a production cell case
study as a proof-of-concept.

The development of the proposed architecture for the proposed case study used
various technologies, namely Modbus, MQTT and OPC DA protocols to implement
the connectivity module, the Node-RED to implement the visualisation and moni-
toring module, and the FlexSim software tool for the simulation module. With the
implementation of this Digital Twin, the user can assess the real-time monitoring of
the physical system, as well as simulate different scenario configurations aiming to
optimise the production processes.

As future work, the case study will be further developed by integrating more
workstations, smart AGVs and robot manipulators, and also the integration of the
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control functionality. The developed Digital Twin architecture will also be further
developed and will consider the possibility to introduce the human operator trust in
the Digital Twin decision-making cycle.
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