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Abstract: Cyber-physical systems (CPS) play an important role in the implementation of new Industry
4.0 solutions, acting as the backbone infrastructure to host distributed intelligence capabilities and
promote the collective intelligence that emerges from the interactions among individuals. This
collective intelligence concept provides an alternative way to design complex systems with several
benefits, such as modularity, flexibility, robustness, and reconfigurability to condition changes, but it
also presents several challenges to be managed (e.g., non-linearity, self-organization, and myopia).
With this in mind, this paper discusses the factors that characterize collective intelligence, particularly
that associated with industrial CPS, analyzing the enabling concepts, technologies, and application
sectors, and providing an illustrative example of its application in an automotive assembly line. The
main contribution of the paper focuses on a comprehensive review and analysis of the main aspects,
challenges, and research opportunities to be considered for implementing collective intelligence in
industrial CPS. The identified challenges are clustered according to five different categories, namely
decentralization, emergency, intelligent machines and products, infrastructures and methods, and
human integration and ethics. Although the research indicates some potential benefits of using
collective intelligence to achieve the desired levels of autonomy and dynamic adaptation of industrial
CPS, such approaches are still in the early stages, with perspectives to increase in the coming years.
Based on that, they need to be further developed considering some main aspects, for example, related
to balancing the distribution of intelligence by the vertical and horizontal dimensions and controlling
the nervousness in self-organized systems.

Keywords: collective intelligence; cyber-physical systems; multi-agent systems; self-organization

1. Introduction

In the last years, there has been a strong pursuit for intelligent, reconfigurable, and
responsive systems to face the pressures imposed by customers that demand more cus-
tomized, low-price, and high-quality products [1,2]. This is aligned with the new trends
promoted by Industry 4.0, which involve the digitization of traditional factories, aiming at
the modernization of industry, with intelligent factories that are more productive, efficient,
flexible, adaptive, reliable, and in the end, more globally competitive [3].

Cyber-physical systems (CPS) [4,5] play an important role in this vision and can be
seen as the backbone platform to implement these innovative systems, complemented by
emergent ICT technologies [5,6] (e.g., Internet of things (IoT), artificial intelligence (AI),
and cloud computing). The adoption of CPS offers an alternative way to design control
systems based on a set of networked distributed and autonomous entities, combining cyber
and physical counterparts, which may cooperate to reach the system’s goals [4,5]. CPS
can be applied to develop large-scale intelligent systems exhibiting self-* properties (e.g.,
healing, adaptation, and organization), namely smart manufacturing, smart healthcare,
smart electrical grids, smart cities, smart transportation, and smart logistics [7].
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Since its conceptualization, CPS have evolved from a few simple physical entities
and software components to a heterogeneous and complex network of intelligent physical
entities and multiple layers of software components and applications driven by advanced
data analysis. In this context, AI is a key enabler that leverages software infrastructures
and applications to provide the required information for supporting the operation and
management of the physical components and systems [8]. In such approaches, the system
intelligence and data analysis capabilities appear in the form of collective intelligence, which
is distributed among the many individual computational nodes and emerges from the
interaction among them, each one contributing with its knowledge and skills to the overall
system behavior. This design perspective allows a chance in the way companies, systems,
and processes operate, from reactive and corrective to a more informative, predictive, and
intelligent manner.

In spite of all the expected benefits, regarding modularity, flexibility, robustness,
responsiveness, reconfigurability, and adaptation, the engineering of such CPS faces several
important challenges, for example, related to the organization and balancing of intelligence,
the non-linearity of the interactions among individuals, the system self-organization, the
myopia due to the narrow view of the surrounding environment, and consequently, the
limited local intelligence scope. In this sense, these aspects should be properly handled
to extract the entire set of benefits and consequently enable the engineering of the next
generation of automation systems.

With this in mind, this paper discusses collective intelligence systems associated with
the novel industrial CPS, expressed in the following three research questions:

• RQ1: Is collective intelligence applied and beneficial in industrial CPS?
• RQ2: What are the main key enabling technologies and application sectors of collective-

intelligence-based industrial CPS?
• RQ3: What are the main challenges in developing collective-intelligence-based indus-

trial CPS?

To address these questions, a comprehensive analysis of the literature was performed.
Firstly, the related concepts are briefly discussed, and based on a further study of collective
intelligence, by analyzing the papers retrieved from scientific repositories, the enabling
technologies and application sectors are analyzed, allowing us to answer RQ1 and RQ2.
An automotive assembly line case study was briefly described in order to illustrate and
contextualize the application, benefits, and concerns of collective intelligence in the devel-
opment of industrial CPS. Based on this, and supported by the literature review, several
challenges and research opportunities were identified and discussed, thus answering RQ3.
In this sense, the answers to these RQs contributed to identifying that the use of collective
intelligence can benefit the industrial CPS by enabling the development of self-adapting
and autonomous components with decentralized control and decision making, where AI,
IoT, and edge computing represent some key enabling technologies.

However, adoption of such approaches is still in the early stages and needs to be
further developed to address some challenges, for instance, related to the balancing of
the distribution of the collective intelligence among several computational layers (e.g.,
cloud and edge) and the management of nervousness in self-organized systems based on
emergent intelligence.

The rest of the paper is organized as follows: Section 2 provides an overview of the
definition of the collective intelligence concept, especially in the industrial CPS context.
Section 3 presents the supporting concepts, enabling technologies, and application sec-
tors associated with the collective intelligence in industrial CPS. Section 4 presents an
example of the application of collective intelligence in an industrial automotive case study,
and Section 5 discusses some challenges and research opportunities in this field. Finally,
Section 6 closes the paper with conclusions and future work.
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2. Characterization of Collective and Emergent Intelligence

The concept of collective intelligence is researched in several fields, including sociology,
biology, business, and computer science [9]. It is generally defined as the complex and
intelligent behavior that emerges from the interaction among a group of distributed and
autonomous entities endowed with simple behaviors and/or limited intelligence that seek
to maximize private utilities that can be aligned with a global system utility [10–12]. This
work focuses on the aspects of collective intelligence in the domain of computer science
regarding the development of intelligent and autonomous systems. The development of
such systems is researched in the field of AI, where different approaches and technologies
are used to enable multiple distributed entities to interact and cooperate, leading to the
emergence of intelligent behaviors and functionalities. In the CPS context, the collective
intelligence capabilities emerge from the interaction and coordination of upper and lower
cyber-physical components. In order to contextualize the collective intelligence in CPS, this
section briefly analyzes some related concepts, methods, and technologies.

2.1. Definitions and Supporting Concepts

The realization of CPS requires methods and technologies that, besides supporting
the development of autonomous components, should be able to handle, in a distributed
manner, the interaction and the coordination/collaboration between spatio-temporally
heterogeneous physical and software components, operating in open and highly dynamic
environments. Such approaches should support the following features:

• Autonomy, that is, the ability to independently control its own structural and behav-
ioral properties, providing decoupled communication interfaces that assure robustness,
flexibility, and loose coupling characteristics.

• Cooperation strategies, including collaboration and negotiation, that is, the capability
to interact and share information with other components to reach the system goals.

• Context awareness, that is, the capability to perceive its own operational context
(environment and internal resources).

• Cognitive computation, that is, the ability to reason about its own status and then
predict, plan, and act for future behaviors (requires context awareness).

• Learning and adaptation, that is, the ability to adapt their behaviors and learn from
the experience.

In this context, the AI is not only present in the data analysis and machine learning (ML)
algorithms, but also in the development of intelligent components and distributed complex
systems. Such collective intelligence emerges from the interaction and collaboration among
individuals that exhibit intelligence at the local/micro level, providing an alternative way
to design intelligent systems, where the traditional centralized pre-programmed control
is replaced by a distributed functioning where the interactions between individuals lead
to the emergence of an intelligent global behavior that is unknown to them [13]. Swarm
intelligence is an example of this emergent collective behavior that is typically made up of
a community of simple homogeneous or heterogeneous individuals following very simple
rules and interacting locally with each other and with their environment [13,14]. Examples
of swarm intelligence include ant colonies, bird flocking, and Wikipedia [14].

2.2. Emergence and Self-Organization

As mentioned earlier, the interaction among these entities contributes to the emergence
of the collective intelligence, making the system much more powerful, but at the same time
more challenging (e.g., due to emergence and self-organization). The emergence concept
defines the way complex systems (macro level) arise from a multiplicity of interactions
among entities exhibiting simple behavior (micro level), without the guidance of a central
entity and only when the resulting behavior of the whole is greater and much more complex
than the simple sum of the behaviors of its parts [15]. Emergence is strongly dependent on
the cognitive aspect of individual entities and their capability to adapt to condition changes,
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as well as to the non-linearity of the multiplicity of interactions and the sensibility of initial
conditions (also known as butterfly effect, i.e., small modifications in input parameters may
provoke high variations in the output parameters).

In terms of evolution, reconfigurability and plugability can be enhanced by applying
self-organization principles [16,17], which, in spite of the several definitions (see e.g., [18]
and the references therein), can be defined as the “ability of an entity/system to adapt dynam-
ically its behavior to external conditions by re-organizing its structure through the modification
of the relationships among entities without external intervention and driven by local and global
forces” [14]. The self-organization principle can be found in several fields, such as biology
(e.g., ants foraging and birds flocking), chemistry (e.g., the Belousov–Zhabotinsky reaction),
physics (e.g., the second law of thermodynamics), and social organization (e.g., traffic
in crowed roads) [14], and it can be applied to potentially solve several large complex
problems, namely in the fields of economics, manufacturing, virology, and logistics.

Another concept related to collective intelligence is ambient intelligence, which refers
to pervasive and ubiquitous computing environments that are sensitive and responsive to
the presence of humans, and which is completely aligned with the Industry 5.0 principles
that aim to combine digitization with sustainability and human integration.

2.3. Multi-Agent Systems

A prominent example of collective intelligence is offered by the multi-agent system
(MAS) [19,20], classified as a distributed artificial intelligence (DAI) technique, which is
based on a set of autonomous and cooperative entities, called agents, that reside in a
physical or virtual environment and communicate with each other to achieve the system
goals. The abstraction of an agent considers a physical or logical component that is able
to perceive/sense and act in its environment, perform actions to change its environment,
reason over its internal states, and communicate with other agents [21]. Besides these basic
capabilities, an agent can be endowed with learning mechanisms that will allow it to adapt
its state and behaviors dynamically in the case of condition changes. In such systems, the
global intelligent behaviors emerge from the interaction between individuals through the
implementation of distributed interaction strategies (e.g., collaboration and negotiation).

In this sense, MAS completely fits the CPS approach, by distributing intelligence
among a network of distributed and intelligent nodes, each one being autonomous and
cooperative and possessing local knowledge and skills and a local perspective of their
surrounding world, as illustrated in Figure 1. The global system behavior emerges from
the cooperation among individual agents, each one contributing with its knowledge and
skills, and decisions are made in a decentralized manner. MASs, and consequently their
CPS implementations, offer an alternative way to design complex systems based on the
decentralization of functions [20], providing modularity, flexibility, robustness, plugability,
loose coupling, adaptability, and re-configurability on the fly, as also illustrated in Figure 1.
This overcomes the typical problems exhibited by the traditional centralized, rigid, and
monolithic control structures, which are no longer sufficient to address the current strong
requirements imposed on manufacturing systems. Note that, since these distributed entities
may suffer from myopia (i.e., lack of information), any decision is based on incomplete and
even, at some point, inaccurate/outdated information.

With this in mind, a CPS can be considered an advanced DAI system, where the
data, intelligence, and control are distributed, eliminating bottlenecks. Additionally, the
horizontal layers of components envisioned by CPS can overcome some of the limita-
tions of traditional distributed systems, where the knowledge about the overall system is
dispersed throughout the entities, which individually have only a partial and imprecise
perspective [22]. This layer creates a hierarchical coordination/control structure [22], where
upper components integrate the data and information for several lower components, with
a global view of the system that can support the lower layers, mainly in the long-term tasks,
since the short-term tasks usually do not require a complete view of the system.
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Figure 1. Features of collective intelligence in an agent-based CPS.

2.4. Holonic Systems

The holonic paradigm translates Koestler’s observations and Herbert Simon’s theories
into a set of appropriate concepts for distributed control systems that are quite similar to
MASs, in the sense that they share some common characteristics, as they are also based on
distributed systems comprising autonomous and cooperative entities, in this case called
holons. However, holonics provide additional concepts (e.g., holarchy and recursivity) that
enhance the ability to design large-scale and complex collective intelligent systems.

The core concept is the holon, which represents simultaneously the part and the whole,
that is, an entity can be a part of a bigger system (e.g., a robot in a assembly line) and at
the same time the whole system (e.g., the robot is the final product comprising several
internal components, such as sensors and actuators), as illustrated in Figure 2. Additionally,
a holon can belong simultaneously to multiple holarchies, an important difference from
the traditional concept of hierarchies, allowing the holon to preserve the stability of the
hierarchy while providing the dynamic flexibility of heterarchical structures.

holarchy #1 
(i.e. emergent collective

intelligence) holarchy #2

holon belonging
to two holarchies

cell
holon

robot
holon

motor
holon

sensor
holon

controller
holon

a holon is
composed of other

holons (whole)

holon is part of
other holon (part) 

(i.e. local behaviour) 

motor
holon

Figure 2. Features of holonic systems.

Holons share some core principles with agents, namely autonomy and cooperation,
but the inherent recursivity capability associated with a holon, and particularly with the
Janus effect (i.e., a holon is simultaneously a self-contained whole to its subordinated parts
and a dependent part when seen from the higher levels), strongly contributes to simplifying
the design of complex problems by dividing the initial problem into several small problems.
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Using these holonics principles, industrial CPS based on collective intelligence can be
designed and deployed to exhibit modularity, reconfiguration, and self-organization in a
quite natural manner. In addition, CPSs inherit some holonics principles in their founda-
tions (e.g., recalling the principle that a holon may combine an information processing part
and a physical asset).

3. Collective Intelligence in Industrial Cyber-Physical Systems

As illustrated in Figure 3, a further study of collective intelligence can be performed
by analyzing the papers retrieved from scientific repositories. In this work, the dataset was
built up by retrieving papers from the Scopus repository according to a set of criteria that
combines the terms described in Table 1 using a combination of OR and AND operators:
the operation OR was performed between the terms of the same group, and the operation
AND was performed between the terms of groups 1 and 2.

Search  Data collection Data analysis Human review
analysis

Exported data in a
CSV file

Clean and structure
data
- remove symbols
- remove stop words
- lemmatisation

Identification of
n-grams

Validation of the most
relevant n-grams 
- concepts
- technologies
- sectors

Search  Data collection Preprocessing

Scientific paper
repository
- query (see table 1)
- papers written in english
- engineering and computer 
  science domain

Data visualisation

Graphical
representation
of the data

Figure 3. The process used to perform the literature review of collective intelligence in industrial CPS.

Table 1. Terms used in the criteria to retrieve the dataset.

Group 1 Group 2

collective intelligence cyber-physical systems
emergent intelligence cyberphysical systems
distributed intelligence CPS
distributed artificial intelligence cyber-physical production systems
distributed AI cyberphysical production systems
DAI CPPS

The search was performed in the title, abstract, and keywords, within the engineering
and computer science domains, and considering only papers written in English. The
obtained dataset contains 59 documents and was analyzed by using automated methods
based on natural language processing combined with a human review analysis to obtain
preliminary insights regarding the current state of the art of collective intelligence in
industrial CPS. For this purpose, the NLTK Python library (www.nltk.org) was used to
perform the preprocessing and the analysis of the n-grams. The preprocessing aimed
to clean and structure the data, and it included removing symbols (e.g., comma and
punctuation) and stop words (e.g., “the”, “a”, and “in”) and performing lemmatization,
a technique for grouping the different inflected forms of a word. With the structured
data, the list of n-grams (i.e., a combination of one, two, or more words) is extracted to
provide possible terms associated with collective intelligence in the industrial CPS context.
Finally, the list of n-grams was reviewed by independent reviewers to validate the most
relevant terms.

The described study has some limitations that should be highlighted. The criteria
used in this paper are specified to find research works related to collective intelligence
in industrial CPS, but not to ensure that all records in this field were found from the
scientific repository. Therefore, some papers may not have been included. In addition, the
exclusion of papers not written in English implies disregarding some publications that
could be relevant.

www.nltk.org
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3.1. Characterization of the Field

Considering the resulting dataset, the initial analysis aims to understand the de-
mographics of the publications associated with collective intelligence in industrial CPS.
Figure 4 illustrates the evolution of the number of publications along the years, clearly
showing three periods of interest: initially, a limited interest in the topic; then, between
2016 and 2019, growth to a high peak of interest; and finally, after 2020, a reduction of
interest, probably justified by the COVID-19 pandemic situation slowing down the interest
in this topic. This clearly shows that—despite it currently being a hot topic, particularly in
sociology, biology, political science, economics, and computer science fields, as illustrated
by the 5650 documents retrieved if considering only the terms of group 1—the application
of collective intelligence in industrial CPS environments has not yet received significant
attention from academia and industry communities. However, it is expected to significantly
grow and gain relevance in the next years.

Figure 4. Evolution of papers over time and demographics.

Figure 4 also shows the geographic distribution of the authors, with the affiliation
of the authors of each article based on a composite score considering all authors listed
in the publication, with linear decreasing weights. The contribution from the United
States corresponds to the majority, followed by Italy, the United Kingdom, France, Aus-
tria, Russia, Spain, Australia, and Germany, where AI and Industry 4.0 programs are
clearly disseminated.

Investigating the concepts and technologies that are associated with collective intelli-
gence is also of interest, and the results from the analysis of the obtained n-grams for the
supporting concepts are illustrated in Figure 5.

Analyzing the results, it is clear that the collective intelligence concept is strongly
linked to some principles related to the distributed nature of such systems, namely distri-
bution, decentralization, and collective knowledge, as well as with some concepts more
related to the dynamics of such systems, namely emergence, self-organization, and self-
adaptation. It is also noticed that the existing works explore the development of collective
intelligence by deploying distributed intelligence systems for complex problem solving
and decision support using knowledge-based approaches. It is important to highlight
the presence of holonics as the major supporting concept, whose theories have provided
inspiration for the development of industrial CPS.
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Figure 5. Supporting concepts for collective intelligence.

In terms of technologies, as illustrated in Figure 6, it is clear that AI, MAS, cloud and
edge computing, IoT, and wireless sensor networks are strongly associated as emergent
ICT technologies for the Industry 4.0 initiative. Big data and data mining are also included
in the list of enabling technologies, which highlights the value of data in such collective
systems. This analysis also shows that different methods are used to implement the AI
capabilities, namely MAS, ML, and natural language processing. Inside the ML cluster,
neural networks and deep learning are the most used techniques to drive intelligence in
each individual entity.

Figure 6. Enabling technologies for collective intelligence.

It is also interesting to analyze the most relevant application sectors for collective
intelligence systems in industrial CPS. Figure 7 indicates that collective intelligence is
successfully applied in several domains, with robotics, manufacturing, and business clearly
standing out from all the others.
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Figure 7. Application sectors of collective intelligence.

However, other sectors also strongly benefit from adopting collective intelligence
principles, namely smart grids, control systems, smart cities, telecommunications, agricul-
ture, and logistics. This clearly shows the broad application of such collective intelligence
systems for solving large-scale and complex problems.

3.2. Collective-Intelligence-Based CPS Approaches

A further analysis of the retrieved research was conducted to better understand the
level of adoption of such systems, as well as the technologies and methods used to achieve
collective intelligence. For this purpose, according to the bibliographic search performed
in the Scopus repository and considering the use of collective intelligence approaches to
achieve the desired levels of autonomy and dynamic adaptation of industrial CPS, the
main research works that directly propose collective-intelligence-based industrial CPS
approaches were identified and analyzed, as summarized in Table 2.

Table 2. Summary of research works that propose collective-intelligence-based CPS approaches.

Research Work Application Domain Solution Approach

Salazar et al., 2022 [23];
Vogel et al., 2021 [24]

Manufacturing system (tested in
a demonstrator for industrial
manufacturing plants)

Multi-agent systems—agents representing products and
resources on a production line. Product agents interact with
resource agents through negotiation mechanisms in order to
produce a certain product

Gavriluta et al., 2020 [25] Energy system (simulated
experiment)

Framework that enables one to test the self-coordination of a
swarm of controllers, aiming to solve the distributed optimal
power flow algorithm in a DC network

Queiroz et al., 2020 [26]
Manufacturing system (tested in
a real case study—automotive
assembly line)

Multi-agent systems—agents embedded with data analysis
capabilities, distributed along the edge, fog, and cloud layers,
enabling the decentralization of data analysis and supporting the
vertical and horizontal collaboration between CPS components

Stadnicka et al., 2020 [27] Manufacturing system
(proposed solution)

Multi-agent systems—agents to manage the manufacturing line
and report problems related to unexpected events
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Table 2. Cont.

Research Work Application Domain Solution Approach

Tan et al., 2020 [28] Industrial robot assembly
(simulated experiments)

Multi-agent systems—agents to provide dynamic modeling and
coordination capabilities to enhance the controlling performance.
Complemented by edge and cloud layers to provide timely
computing and efficient storage for the simulation, control,
and optimization

Nouiri et al., 2019 [29]
Manufacturing/Energy system
(tested in a prototype comprised
by IoT devices)

Multi-agent systems—collaboration between agents to achieve
predictive and reactive energy-efficient scheduling in sustainable
manufacturing systems

Kovalenko et al., 2019 [30] Manufacturing system (tested in
a CPS demonstrator)

Multi-agent systems—propagation and requests of bids over a
dynamic network of agents to improve manufacturing system
flexibility, in particular to reduce the amount of information
available and communication overhead of the agents

Rescati et al., 2019 [31]

Smart application—home and
automotive environments
(experiments using
commercial devices)

Internet-of-things-based approach—IoT devices to distribute
tasks aiming to improve the system performance. Complemented
by edge and cloud layers in order to optimize the trade-off
between latency and power consumption

Luo et al., 2017 [32] Energy system (simulated
experiments)

Multi-agent systems—framework for the coordinated operations
of multiple microgrids. Agents to monitor the resource states and
power deficits, perform control actions, scheduling to balance the
load demand, and interaction by negotiation mechanisms

Wang et al., 2016 [33] Manufacturing system
(simulated experiments)

Multi-agent systems—agents interacting by negotiation
mechanisms to implement self-organized systems

Giordano et al., 2016 [34]

Smart city (preliminary
applications—design,
simulation, and physical
deployment)

Multi-agent systems—agents to provide the intelligence and
cooperative capabilities for IoT systems. Agents deployed in the
fog and cloud layers

Pujo et al., 2016 [35] Manufacturing and in-house
logistics (tested in a testbed)

Holonic paradigm combined with wireless sensor network
technology—holons interact with each other to achieve more
efficiency and flexibility in the internal logistics of a job shop

Chamorro et al., 2014 [36] Energy system (simulated
experiments)

Multi-agent systems—agents to coordinate and control the speed
of multiple induction motors, aiming to synchronize them for
greater system efficiency

In this analysis, most of the works use MAS-based approaches to provide the re-
quired collective intelligence in industrial CPS, particularly using distributed interaction
strategies (e.g., negotiation mechanisms) to achieve collective intelligence, as presented
in [23,24,30,32,33]. Complementary emergent digital technologies were also identified
(e.g., IoT, edge, fog and cloud computing, and AI [26,28,31,34]), usually embedded in MAS
solutions to empower data analysis and intelligence capabilities. It is interesting to note that
these distributed intelligence capabilities are usually balanced among the edge/fog/cloud
computational layers, exploring the benefits they provide to address the particularities of
the different data analysis demands.

It is also noticed that the most common application domain is manufacturing
(e.g., [23,24,26,27,30,33]), where collective intelligence solutions are adopted to deal
with the current trends for highly customized, flexible, and reconfigurable processes to
meet fast-changing market conditions. However, some works propose solutions for the
energy domain (e.g., see [25,32,36]) and IoT-based smart applications (e.g., see [31,34]).
In the energy domain, the potential of collective intelligence has been demonstrated,
particularly when it is enhanced by MAS capabilities, for more energy-efficient systems.
On the other hand, in the IoT-based smart applications, collective intelligence is adopted
to enable distributed and cooperative tasks between IoT devices. Additionally, almost
all solution approaches presented in the analyzed research works were validated in
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demonstrators, testbeds, and simulations. This clearly illustrates the reduced industrial
adoption of such systems, which is an indicator of the need for further research on these
topics, in particular their deployment and validation in real scenarios.

4. Experimental Example of Applying Collective Intelligence

Aiming to illustrate the application of collective intelligence in a practical use case,
this section describes the deployment of an agent-based CPS to implement zero-defect
manufacturing (ZDM) strategies in an automotive assembly line. The case study comprises
a sequential set of work stations, where the car being produced is passed along through its
assembly process. In each station, the cars are monitored in real time with the objective of
achieving early identification of deviations and defects along the different quality control
stages. Besides monitoring the quality of the produced vehicles, the supervisory system
needs to support changes and disturbances in the production process for the proactive and
dynamic adaptation of process and inspection parameters.

An MAS-based system, illustrated in Figure 8 and developed using the Java Agent
Development (JADE) framework [37], was deployed in the automotive assembly line,
considering four types of agents, namely product type agent (PTA), product agent (PA),
resource agent (RA), and independent meta agent (IMA) [38], which are responsible for
collecting and performing data analysis functions in a distributed and collaborative man-
ner regarding the implementation of the ZDM philosophy. The implementation of such
functions using AI algorithms in a distributed manner (i.e., by components deployed in
a cloud or edge level that collaborate to achieve the system goals) allows one to achieve
collective intelligence in a self-organized CPS.
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Figure 8. Application of an agent-based CPS to an automotive assembly line.

Briefly, RA agents represent the inspection stations and are responsible for collecting
the data and performing data-stream analysis aimed at real-time monitoring and early
detection of defects. They can interact with other RA agents, linking the different multi-
stage stations in order to share information and consequently enhancing their knowledge
based on collective intelligence strategies, to support their monitoring and diagnosis
tasks. PA comprises another type of agent; these agents are responsible for managing
the production of the products (i.e., cars) along the multiple production stages of the
factory plant. Similar to the RAs, which represent each inspection station, they represent
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each produced car and, besides integrating and analyzing the data from RAs, can also
employ collective intelligence strategies to interact with each other in order to correlate
data from different assembled cars and collaboratively assess and diagnose the results of
the production and quality inspection process. PTA agents, one for each product model,
represent the catalog of cars that can be produced in the assembly line and contain the
knowledge of the process and product required to produce the car. IMA agents operate
at a strategic level to provide global system optimization by managing the aggregation
of data and the generation of new knowledge. Different from RA and PA, PTA and IMA
agents have a supervisor and manager role, interacting with lower layer agents. Since they
have a broad view of the system and its components, they are able to provide high-level
information and services to support and coordinate lower-level agents. More details can be
found in [38].

In this context, each agent embodies intelligence to perform data analysis tasks, aiming
to achieve its own objectives, and it is necessary to interact with the other agents to exchange
data that will support the execution of data analytics functions that emerge at the macro
level. As an example, RA agents have embedded advanced algorithms (e.g., LOF [39])
to identify abnormalities in the measurements. The LOF algorithm is an unsupervised
anomaly detection method that considers multiple parameters of a data sample to provide
a score, defining an outlier as a sample that substantially deviates from the local density
distribution of the data points. Figure 9 includes charts with the quality outlier score for
each car being produced, based on the scoring performed by the RAs placed at two body
shop stations and integrated by the PAs. The LOF data model was built considering the first
8000 data samples, 100 neighbors, and a contamination factor of 0.1 [38]. Points marked
with ‘X’ indicate cars that did not reach the desired quality levels at an individual station.

PA
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PA

RA RA
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c592854 - passed T2

c592855 - passed T1

c592856 - passed all

c592857 - passed all
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(e.g., all ok | p3, p7 need adjust)
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Inspection Stage A Inspection Stage B Inspection Stage C

Figure 9. Interactions among agents to support the detection of abnormalities during inspection of
the assembly process at the body shop stations.

The RA agents related to the different work stations interact to share data and correlate
the quality outlier scores, aiming to check the evolution of the product quality along
the multiple production stages. This shared information, based on collective intelligence
strategies, can be used, for example, to consolidate their analysis outputs, which can
improve their actions and consequently the early detection of abnormalities. Figure 9 also
highlights the cars (marked with yellow bars) that did not achieve the desired quality levels
at both stations, which requires not only reworking the product but also the diagnosis and
tracking of the related causes at each station, as well as their impact and propagation along
the multi-stage process.

A second example is related to the detection of changes in the measured parameters,
which may require updating the data models and settings used for the monitoring and
forecasting tasks. In this scenario, all four agents interact, as illustrated in Figure 10. For
instance, the process starts when an RA detects a concept drift in one of the monitored
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parameters during inspection of the assembly process. The chart associated with the RA,
in Figure 10, illustrates a concept drift detected in a monitored parameter based on the
algorithm of Page–Hinkley. In this situation, the RA interacts with the IMA to inform
about this event. The IMA is in charge of keeping the monitoring settings of lower-level
agents updated. For instance, when a concept drift event is detected, it is responsible for
taking actions to determine the new settings that are required in the new scenario. The
chart associated with the IMA, which can be seen in Figure 10, illustrates the application of
a clustering algorithm based on the BIRCH method in the previous data samples. Since
this clustering analysis considers many parameters, the principal component analysis
(PCA) algorithm was used to perform a dimensionality reduction in order to enable the
visualization of results. Three clusters were identified, where the blue one represents the
most recent samples that belong to the concept drift. The output of this process produces
a report with statistics that are used by specialists to define the new monitoring settings
and data models that are updated to the lower-level agents (i.e., the RA and PTA). This
collaboration between the distributed components enables them to self-organize and adapt
to the changes in the process.

PA

PA
PA

update settings

KPI_5 - steady

KPI_3 - increasing

KPI_2 - steady

KPI_1 - steady

KPI_4 - decreasing

cX
 KPIs

PTA

identify new 
condition settings

parameter change detected

IMA

update settings

RA

change detected in f01

Figure 10. Interactions among agents to support the detection of changes in the measured parameters
that require updating the monitoring settings.

In this scenario, the PTA also uses the KPIs of each car, provided by the PAs, to monitor
trends in their behaviors. The chart associated with the PTA, which can be seen in Figure 10,
illustrates the trends identified, as well as a short-term forecast that is performed using the
ARIMA model. This chart also illustrates the control boundaries (σ), which, in this case, are
used to determine if the quality of the vehicles is kept at the desired level. In this sense, like
the RA, the settings and data models of the PTA may need to be updated when a change in
the process operating condition is detected.

5. Challenges and Research Opportunities

The engineering of industrial CPS based on collective intelligence that exhibits self-*
capabilities (e.g., self-organization, self-adaptation, self-optimization and self-healing)
poses several important scientific and technological challenges and opens different research
opportunities. Table 3 summarizes the identified challenges, which are clustered according
to five different groups: decentralization, emergency, intelligent machines and products,
infrastructures and methods, and human integration and ethics. Their expected develop-
ment difficulty and business priority are also presented, based on the vision, requirements,
and technologies associated with the fourth industrial revolution. It is also important
to refer that the structure presented in this table is based on similar tables found in the
works of [4,5,40] that discuss general challenges to develop CPS, while this work focuses
on specific challenges to develop collective intelligence in industrial CPS.
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Table 3. Challenges and research opportunities for implementing collective intelligence in indus-
trial CPS.

Key Aspect Major Challenges Difficulty Priority

Decentralization

Decentralized and collaborative data analysis high medium
Synchronize and manage the global and local data analysis medium high
Balance the distribution of intelligence among edge and cloud high low
Manage myopia medium high
Security and data privacy medium high

Emergency

Control the system’s emergent behavior high medium
Control nervousness in self-organization high high
Certify the system’s emergent behavior medium low
Self-reconfiguration and collaborative mechanisms high high

Intelligent machines
and products

Efficient and reliable data acquisition and management low high
Proper ML algorithms for predictive and proactive analytics medium high
Support data uncertainty, reliability, and incompleteness high medium
Synergy between operational and business information medium low

Infrastructures and
methods

Embed AI in constrained device platforms medium medium
CPS frameworks and testbeds medium high
Multi-disciplinary knowledge and expertise in AI and CPS high high
Knowledge representation and sharing low medium

Human integration
and ethics

Human machine interaction high high
Knowledge extraction from the human’s experience high medium
Ethics and responsibility high high

The first cluster is related to the intelligence decentralization aspects, including chal-
lenges related to the decentralization of data analysis, decision making, and control, which
is crucial for achieving industrial CPS that supports distributed and dynamic environments.
In this way, several challenges arise related to implementing collaborative multi-level (local
versus global) data analysis (covering the horizontal and vertical dimensions), as well
as balancing the data-processing capabilities among the different computational layers.
Since such decentralized systems are based on the interaction among individual entities
that possess a limited knowledge of the world, the management of myopia is crucial to
achieving acceptable optimized solutions. In this context, interaction and negotiation
mechanisms and strategies, as well as approaches to develop distributed components and
systems, such those provided by MAS, are essential to cope with these challenges. In the
same manner, with the sharing of data among individual entities strongly required to
achieve the global system’s objectives, and particularly to achieve collective intelligence
behaviour, security and data privacy are important aspects to be considered. The imple-
mentation of cyber-security mechanisms, empowered with AI techniques and designed
for applications with computationally constrained resources, is a challenge that needs to
involve multi-disciplinary research teams, including researchers coming from the ethics
and law fields.

The second cluster includes challenges in coping with the system complexity and
the emergent behavior that arise from the development of decentralized and autonomous
(i.e., intelligent) components. Although this can push the system to its limits, it must
still be controllable, and it must present the desired levels of determinism, especially
in industrial environments. For instance, components should be required to respect a
set of rules and constraints regarding the reliability and security of shared information
and resources. Since the non-linear interaction between individuals and their autonomy
to reorganize may provoke the emergence of inappropriate behaviors, functions, and
properties, it is necessary to develop mechanisms and policies to ensure that only ‘good’
and ‘ethical’ behaviors will emerge. In the same manner, as result of the self-organization
process, some instability may appear in the system, this being necessary to control the
nervousness of individuals (e.g., regarding when and how they adapt to the observed
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events). A key element of controlling this emergent behavior is the design of proper
and robust self-reconfiguration and collaborative mechanisms, which must support the
interaction among the components but also consider the related mechanisms to assure the
desired behavior of the system. In this cluster, another important issue is related to the
development of tools for the verification and certification of such intelligent systems, which
is essential for their adoption and application in real environments. Such tools must be
able to assess the system’s behavior and assure that it will operate properly considering its
environment dynamics.

The third cluster comprises the challenges related to the development of intelligent
machines and products. Besides the interaction and collaborative mechanisms, another
important aspect is the intelligence embodied in each component. In this context, ML and
data analysis play an important role. However, it also implies several challenges, including
the reliable acquisition and integration of operational and business data, and the efficient
use of ML algorithms for predictive and proactive analytics, which besides considering
the dynamics of industrial environments, must also cope with data uncertainty, reliability,
and incompleteness. Note that these environments are mostly characterized by imbalanced
or unlabeled datasets, which restrict the use of supervised learning algorithms, raising
the need to adopt unsupervised or active learning approaches, as well as techniques to
enforce user feedback in the annotation of data samples. Another aspect where collective
intelligence enabled by CPS can support the design principles of Industry 4.0 regards the
synergy between operational and business information, which raises challenges regarding
the inherent complexity and different characteristics of these environments and their
systems and components. Such an integration between the operational business level and
the product-as-a-service business model also poses security issues.

The infrastructures and methods cluster includes challenges that must be met to
design, develop, and manage the aforementioned aspects. These challenges are related to
the design of approaches for embedding AI capabilities in constrained device platforms
located at the edge computing layer that are essential for supporting several CPS aspects,
including those related to distributed and collective intelligence. Directly related to this
challenge is the need for CPS frameworks and testbeds to support the development and
testing of such systems and their features. Moreover, the development and management
of such systems requires the formation of teams with multi-disciplinary skills in AI and
CPS. Another essential aspect to enable collective intelligence capabilities comprises the
representation of the shared knowledge in heterogeneous AI environments, which can be
supported by technologies such as ontologies and semantic webs.

Finally, the last cluster is related to the human integration and ethics and responsibility
challenges. Despite the higher level of automation, a human presence will be still required
to develop, maintain, and operate such complex systems. In this context, beyond the ML
approaches that can automatically extract patterns from data to devise, for example, models
that can identify and predict events, in the scenarios where ML is not applied, approaches
for the extraction of knowledge from the human’s experience are required. Another concern
that such systems must address is related to ethics and responsibility (i.e., their actions must
not cause any harm or endanger operators). This is a challenge in AI systems, especially
those based on ML, which can be biased and lead to forms of discrimination.

Two of the aforementioned challenges, namely the balance and distribution of intel-
ligence among the horizontal and vertical dimensions and the control of nervousness in
self-organized systems, will be discussed in the next sections.

5.1. Balancing the Distribution of Intelligence

The distribution of intelligence by several computational nodes (e.g., following a CPS
structure) requires a proper balance of the intelligence and data analysis capabilities by
the horizontal and vertical dimensions, and particularly by the computational layers (e.g.,
cloud and edge, where the agents are deployed).
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In fact, the traditional IoT-based data analysis approaches, where all the collected
data is sent to be processed at the cloud computational platform, provide a means to
run powerful algorithms using huge batches of aggregated data, with cloud offering
optimization and elasticity to scale up or down according to the computational demands.
In spite of such benefits, the cloud paradigm presents some drawbacks, for example,
related to information security and privacy, accessibility (quality and bandwidth of the
network connection), latency, and responsiveness to condition change. On the other hand,
edge computing enables local and decentralized data processing (i.e., at or close to the
data sources [41]), endowing end devices with data analysis capabilities to increase the
intelligence and responsiveness of physical devices, enabling the collective intelligence
capabilities and consequently the efficiency and autonomy of the whole system. However,
with the use of edge computing, it is not possible to run powerful AI algorithms, so the
aggregation of data and optimized solutions cannot be achieved.

The solution is to manage these trade-offs, moving from the cloud-driven approaches,
where the data analytics functions are centered in the cloud, to cloud-edge approaches,
where the data analytics functions are distributed among cloud-edge levels, with the
filtering and monitoring functions usually deployed at edge nodes and more advanced
analytics functions deployed at the cloud, as illustrated in Figure 11.

cloud
data analysis capabilities:
  f: filtering
  ae: monitoring
  ac: data analytics, prediction 

edge

cloud-driven approach cloud-edge approach

ac ac

f
ae

f
ae

f
ae

Figure 11. Balancing intelligence among edge and cloud computational layers.

The harmonization and balancing of the data analysis functions among the different
computational layers is not an easy task, as it is strongly dependent on several criteria,
including the response time, volume of data, resources’ computational capabilities, and
network infrastructure, as discussed in some research works [42–45]. In this context,
some works also propose approaches that consider such criteria to support the design
of decentralized data analysis in intelligent industrial CPS. For instance, in [46], a multi-
criteria fuzzy logic decision-making system is proposed to support system engineers in
determining the most suitable computational layer where a given data analysis capability
should be deployed. Such a framework illustrates the importance of such tools and how
the fuzzy logic approach can be used to map the knowledge of domain experts to create a
tool that can support less ad hoc decision making regarding the distribution of intelligence
in industrial CPS. Figure 12 provides an overview of the designed fuzzy logic system
that considers seven criteria as input variables, namely responsiveness, processing, data
persistence, bandwidth, number of nodes, message rate, and message size. Based on
this, during the design phase, the values of these criteria must be estimated for each data
analysis capability that must be deployed. In order to reduce the complexity of the fuzzy
system, in terms of the number of fuzzy rules (which increases exponentially with the
number of input variables and linguistic terms), this approach considers a combination of
three sub-fuzzy-logic systems. The first provides as output the level of computing resource
complexity, the second the level of communication infrastructure complexity, and the third
the level of suitability of each computing layer to deploy a given data analysis capability.
More details can be found in [46].
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It is important to note that the fuzzy logic system should be applied during the design
phase of the intelligent CPS system, defining the computational layers where intelligence
capabilities should be deployed, and not during the system deployment or runtime.

Computing Resource
Complexity 

Fuzzy Inference System
(Mamdani) 

Comm. Infrastructure
Complexity 

Fuzzy Inference System
(Mamdani) 

Computing Layer 
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number of nodes

message rate

message size

bandwidth

responsiveness

Use the Fuzzy system to
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identified
data analysis

tasks and
features

CPS architecture

Figure 12. Overview of the fuzzy logic decision-making system to support system engineers in
designing decentralized data analysis in CPS.

5.2. Nervousness Control in Self-Organization

In a dynamic and reconfigurable CPS that sometimes presents self-organizing capa-
bilities, robustness (i.e., the capability of a control system to remain working correctly
and relatively stable, even in presence of disturbances) and stability (i.e., the condition
in which a slight disturbance in a system does not produce a significant disrupting effect
on that system) are very important issues. In fact, due to the presence of nervousness in
some control entities, some undesired instability may appear and should be taken into
consideration during the design of such intelligent systems.

According to the Cambridge Dictionary, nervousness can be characterized as a feeling
of worry and anxiety [47], or in other words, the frequency that an entity changes its inten-
tions during its life-cycle [48]. As expected, a calm profile is not adequate for responding to
condition changes, but a very frequent change of plans can originate undesired behavior,
leading to a loss of system performance, and in extreme cases, to chaotic behavior. This
phenomenon, if properly controlled, may be beneficial since it allows improvement of
the system responsiveness, but if the level of nervousness is too high, the system can fall
into an unstable state, which should usually be avoided. As an example, if drivers in
a rushing highway are constantly changing their lane, it will be probably worse than if
they stay calm and remain in the same lane. As another example, in energy markets, if a
customer is constantly changing its electrical supplier, it will introduce some instability in
the electrical network.

In this context, since the objective is to push these systems to their limits while main-
taining them stably and under control, the study of system nervousness is crucial for
designing dynamic distributed self-organized systems, allowing the system to dynamically
evolve safely into different structures while maintaining high performance and responsive-
ness levels. For this purpose, a certain degree of balance should be considered: reactive
enough to respond to an environmental stimulus but calm enough to remain stable.

One example of research in this area is provided by the ADACOR2 holonic control
architecture [49], which enhances the ADACOR holonic architecture [50] through the use
of self-organization principles to achieve a truly evolvable and reconfigurable system. This
architecture allows the system to operate under a multitude of configurations, instead of
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the two fixed ones defined in the ADACOR, based on a two-dimensional self-organization
mechanism that considers the behavioral and structural vectors [49].

Since nervousness symptoms might make entities unstable and cause systems to
display chaotic behaviors, ADACOR2 proposes the use of stabilization mechanisms em-
bedded in individual entities to avoid instability, comparable to car shock absorbers [48].
By introducing these stabilizers, the system operates in such a manner that it is pushed to
its limits by enhancing the self-organization principles, remaining always under control.
These stabilization mechanisms are organized in a two-layer nervousness control approach,
as illustrated in Figure 13, where the first layer is responsible for regulating the changing
desire imposed by each self-organization module, in terms of structural and behavioral
dimensions, while the second level assesses the previous two nervousness controllers, de-
ciding which emergent self-organization procedure will produce the most valuable action
and if it will be better than the existing one [49].
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Figure 13. PID–based stabilizers to manage the nervousness in self-organized systems.

The nervousness controllers, in the form of stabilizers, as a way to prevent the ap-
pearance of some chaotic behavior, firstly at the holon level and secondly at the system
level, can be implemented in several ways, for example, restricting the number of changes
within a specific time frame, only allowing the entities to change at predefined intervals, or
setting the exploration/exploitation thresholds [48]. ADACOR2 proposes an innovative
technique [48], inspired by classical feedback control theory, namely the proportional, in-
tegrative, and derivative (PID) controller [51], where the integrative component aims to
eliminate the steady state error by limiting the speed of response, and the derivative com-
ponent aims to predict the future behavior of the error by increasing the speed of response.

6. Conclusions

This paper discusses the potential benefits and inherent complexity of collective intelli-
gence systems, particularly those linked with the development of industrial self-organized
CPS. For this purpose, a comprehensive review of scientific papers, retrieved from the
Scopus repository, was performed aiming to answer the three initially established RQs.

Related to RQ1, the literature survey clearly showed the benefits of and growing inter-
est in collective intelligence topics in industrial CPS. This highlights the potential of such
approaches to enable the development of more autonomous and self-adapting components
with decentralized control and decision-making capabilities able to cope with the emerging
Industry 4.0 scenarios. Although its relevance to academic and industrial communities is
still in a earlier stage, it is expected to increase in the next years. Regarding RQ2, the main
supporting concepts were identified, and they were related to knowledge management,
holonics, collective knowledge, self-adaptation, emergence, and decentralization, strongly
aligned with the distributed nature of such systems. In spite of the inherent complexity
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required to enable collective intelligence in industrial CPS, there are several technologies
that can contribute to the implementation of such capabilities, where IoT, MAS, AI, wireless
sensor networks, and cloud and edge computing technologies clearly stand out from this
survey analysis. In this context, the MAS approach in particular represents a hot and
promising topic that offers an alternative way to design complex and large-scale systems,
providing reconfigurability, robustness, and self-* capabilities. This is illustrated with the
application of an MAS-based solution to implement ZDM strategies in an automotive
assembly line, where different data analysis functions are distributed among autonomous
and cooperative agents deployed in different computational layers ranging from the edge
to the cloud.

Despite the benefits and enabling technologies, the answer to RQ3 addresses the chal-
lenges and research opportunities of collective intelligence in CPS, ranging from intelligence
decentralization, emergent behaviors, intelligent machines and products, infrastructures,
and methods, to human integration and ethics. Among these, two main challenges present
a special concern for the implementation of industrial CPS solutions, namely the bal-
ancing of intelligence among the computational layers and the nervousness control in
self-organized systems.

As highlighted in this work, several research opportunities and challenges need
to be handled in the future to make progress in the adoption of collective-intelligence-
based industrial CPS. For this purpose, future work will be devoted to the development
of collective intelligence solutions in industrial CPS use cases, exploring some of these
challenges, namely the use of ML for predictive and proactive analytics and compliance
with ethics and responsibility.
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