
foods

Review

Non-Destructive Imaging and Spectroscopic
Techniques for Assessment of Carcass and Meat
Quality in Sheep and Goats: A Review

Severiano Silva 1,*, Cristina Guedes 1, Sandra Rodrigues 2 and Alfredo Teixeira 2

1 Veterinary and Animal Research Centre (CECAV) Universidade Trás-os-Montes e Alto Douro,
Quinta de Prados, 5000-801 Vila Real, Portugal; cguedes@utad.pt

2 Mountain Research Centre (CIMO), Escola Superior Agrária/Instituto Politécnico de Bragança,
Campus Sta Apolónia Apt 1172, 5301-855 Bragança, Portugal; srodrigues@ipb.pt (S.R.); teixeira@ipb.pt (A.T.)

* Correspondence: ssilva@utad.pt; Tel.: +351-259-35-0417

Received: 15 July 2020; Accepted: 27 July 2020; Published: 7 August 2020
����������
�������

Abstract: In the last decade, there has been a significant development in rapid, non-destructive
and non-invasive techniques to evaluate carcass composition and meat quality of meat species.
This article aims to review the recent technological advances of non-destructive and non-invasive
techniques to provide objective data to evaluate carcass composition and quality traits of sheep and
goat meat. We highlight imaging and spectroscopy techniques and practical aspects, such as accuracy,
reliability, cost, portability, speed and ease of use. For the imaging techniques, recent improvements
in the use of dual-energy X-ray absorptiometry, computed tomography and magnetic resonance
imaging to assess sheep and goat carcass and meat quality will be addressed. Optical technologies
are gaining importance for monitoring and evaluating the quality and safety of carcasses and meat
and, among them, those that deserve more attention are visible and infrared reflectance spectroscopy,
hyperspectral imagery and Raman spectroscopy. In this work, advances in research involving these
techniques in their application to sheep and goats are presented and discussed. In recent years,
there has been substantial investment and research in fast, non-destructive and easy-to-use technology
to raise the standards of quality and food safety in all stages of sheep and goat meat production.
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1. Introduction

The rapid assessment of carcass composition and meat quality is valuable for the development of
breeding programs oriented to the market and for a value-based payment and marketing system [1,2]
and also to achieve the assumption of farm animal production in the near future as resilient, adjusted
and producing safe and healthy food [3–5]. To achieve those ongoing challenges, much research has
been conducted to develop rapid, non-destructive and non-invasive techniques to apply to animal
production and the meat industry. In the last decade, a number of improvements have been made to
the quantitative assessment of carcass and meat traits using imaging and spectroscopic techniques [6,7],
along with tools for assessing and analysing images and new algorithms to effectively predict carcass
and meat quality traits in the industry [8–10]. For all meat species, comprehensive studies using imaging
and spectroscopic techniques to assess carcass and meat traits have recently been published [7,11].
However, there is a gap in the knowledge of these approaches for sheep and goat species. It is, therefore,
the objective of this work to summarize the most recent developments in the use of imaging and
spectroscopic techniques applied to sheep and goats.
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2. Imaging Techniques to Assess Carcass and Meat Quality in Sheep and Goats

In the last decade, significant development of non-invasive and non-destructive imaging techniques
to obtain objective data in carcass and meat quality has been made. In this section, recent improvements
on the use of dual-energy X-ray absorptiometry (DXA), computed tomography (CT) and magnetic
resonance imaging (MRI) to assess sheep and goat carcass and meat quality will be discussed.

2.1. Dual-Energy X-ray Absorptiometry

Dual-energy X-ray absorptiometry (DXA) is a widely accepted method for the assessment of body
composition in human medicine/research [12,13] and also in meat-producing species [14]. Using the
Web of Science search functions, it was possible to identify 59 articles related to DXA in pigs (n = 44),
cattle (n = 3), broilers (n = 3) and sheep (n = 9). No work was found in goats. Table 1 summarizes the
main results of research using DXA to predict fat (% and g) and lean (% and g) of sheep carcasses or
in vivo.

The studies with DXA have as main objective the determination of body or carcass traits that have
importance for the meat industry [14] or animal nutrition [15]. Comparing the results of DXA studies is
not easy because some works focus on predicting the composition based on the amount of chemical or
dissected tissues rather than by the proportion, and this way the composition is powerfully described
by the carcass weight and not by the DXA value. Furthermore, many of the studies were structured
around samples of a reduced number of animals and, therefore, tend to report accuracy indicators as
results within the sample as opposed to the precision demonstrated across a series of slaughter groups
over time [16]. The data in Table 1 show that, despite some modest results, DXA is a technique capable
of predicting sheep carcass composition, rather than other carcass characteristics, which has led several
authors to consider it as very capable for use in the sheep meat industry [16–18]. In a work in which
the same equipment was always used (GE Lunar DPX-IQ), it was observed that the accuracy tends to
be higher in pigs than in sheep [19]. For in vivo studies, the whole body analysis of sheep is strongly
affected by the gastrointestinal tract, resulting in less accuracy compared to pigs [19]. Despite these
limitations, the DXA has been used as an alternative to dissection or chemical composition of sheep
carcasses using equations developed in previous studies. For example, in an investigation [20] that
aimed to study the effect of different finishing diets on carcass traits of lambs, a DXA machine was
used that incorporated calibration equations described in a previous study [21], which found high
prediction accuracies for lean weight (R2 = 0.98) and its percentage (R2 = 0.94). Additionally, Hunter
et al. [17] stated that the estimates obtained by DXA of the weight of tissues of sheep could be used
to predict the in vivo chemical composition of the body (R2 between 0.977 and 0.999) or the carcass
chemical composition (R2 between 0.906 and 0.998). In any case, and despite the high value of accuracy
of the prediction models, its application must take into account the need for calibration and aspects
such as the type of equipment, species, weight and age of the animals.

Obtaining information on the lamb carcass composition at the chain-speed of a slaughterhouse is
very challenging. Still, to address saleable meat yield, which is negatively affected by the excess of fat,
it is necessary to obtain information on the carcass composition [16]. To understand the suitability of
DXA for use in an abattoir, these authors conducted a study at the chain-speed with 607 lamb carcasses.
The carcass reference composition was obtained by CT, which determined the percentages of fat, lean
and bone. The results show excellent accuracy of DXA models for fat% estimation (RMSE = 1.32 and
R2 = 0.89), but less accuracy to predict lean % (RMSE = 1.69 and R2 = 0.69) and bone % (RMSE = 0.68
and R2 = 0.68).
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Table 1. Summary of the principal studies to predict fat (% and g) and lean (% and g) of carcass and in vivo of sheep using DXA.

Scanning
Object n Scanner

Scanning
Time

Data
Analysis

Composition Trait

ReferenceFat (%) Fat (g) Muscle (%) Muscle (g)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Carcass 155 Lunar iDXA ∼3–7 min SMLR 0.920 0.74 0.920 260 0.780 1.99 0.920 220 [22]
Carcass 155 Lunar iDXA ∼3–7 min PLSR 0.880 2.68
Carcass 454 140 kV GADOX Chain speed PLSR 0.910 1.19 0.740 1.54 [18] #
Carcass 607 140 kV GADOX Chain speed PLSR 0.890 1.32 0.690 1.69 [16] #

Cold carcass LR 0.750 0.490 [23]
Carcass LR 0.470 0.130

Cold carcass 24 140 kV GADOX 0.770 2.48 0.660 2.35 [24] #
Carcass 24 140 kV GADOX 0.700 2.77 0.620 2.43
Carcass 93 GE Lunar DPX-IQ 0.730 0.90 0.830 177 0.570 1.76 0.880 197 [19]
In vivo 93 0.510 2.22 0.710 229 0.500 1.88 0.570 369
Carcass 28 Hologic QDR4500A 0.992 0.984 [17]
In vivo 28 Hologic QDR4500A 0.988
In vivo 59 GE Lunar DPX IQ SMLR 0.590 2.13 0.670 251 0.490 1.96 0.670 320 [25]
Carcass 59 GE Lunar DPX IQ SMLR 0.720 1.77 0.820 185 0.520 1.92 0.840 223
Carcass 50 Norland XR-26 ∼2 min LR 0.860 420 0.900 674 [26]
In vivo 50 Norland XR-26 ∼2 min LR 0.700 710 0.720 1005
Carcass 60 Hologic QDR4500W LR 0.942 0.988 0.937 0.985 [21]
Carcass 140 Lunar DPX-L LR 0.771 2.5 0.930 226 [27]

Frozen carcass 24 Hologic QDR 4500A LR 0.920 1.2 0.970 163 0.980 232 [28]

n: number of animals or carcasses; SMLR: stepwise multiple linear regression; PLSR: partial least squares regression; LR: linear regression; R2: coefficient of determination; RMSE: root
mean square error; # percentages determined by computed tomography.
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With the technological advancement of equipment and software, DXA can have the similar
accuracy as CT and MRI in the prediction of carcass and body composition [19]. Obtaining 3D
measurements with DXA represents a step forward in the use of this technique [19]. There is already
equipment that combines DXA and CT technology called DECT (dual-energy computed tomography)
that has been used successfully in the medical field [29]. The possibility of using this type of equipment
for animal imaging in abattoirs or in vivo performance testing represents an opportunity for animal
science [19]. Recently, DXA was validated in a chain-speed abattoir with a diverse lamb carcass sample,
both from a genotypic and phenotypic point of view [16,18], and showed that DXA could be a solution
that provides confidence to producers about the carcass information. This confidence can be the key to
a value-based market system supported by the quantification of saleable meat yield.

2.2. Computed Tomography

Computed tomography (CT) is a fundamental tool for medical diagnosis [30]. This technique
has undergone significant advances in recent years, with reducing costs of acquisition. Nevertheless,
it remains an expensive technique in equipment and operating costs. In animal science, particularly
in meat production, CT has been recognized as useful since the beginning in the early 1980s [31].
Despite its high complexity and cost, in the last ten years CT has gained importance for the knowledge
of body and carcass composition and meat quality of sheep [14,32]. Much of this knowledge results from
research and practical application in several countries with both mobile and fixed CT [33]. For sheep,
CT has been identified as an alternative to carcass dissection, which is destructive, time-consuming,
costly and inadequate for genetic selection programs [32]. That is why the CT applied in vivo has had
a tangible impact on the genetic progress for sheep carcass characteristics [34]. Therefore, the relatively
high costs of selection programs based on CT traits needs to be put into perspective to its benefits [35].
Permanent access to information related to CT images and databases of the composition traits must
also be considered as valuable [14]. It should also be noted that CT, as a non-invasive technique, allows
the modelling of the body composition of the same animal over time, which adds precision to the
decisions about breeding and nutrition [36,37]. Table 2 presents a summary of works that use CT for
prediction of carcass or body composition of sheep and goats.



Foods 2020, 9, 1074 5 of 22

Table 2. Summary of applications of computed tomography imaging for prediction of carcass composition of sheep and goats.

Specie Target n CT Image
Anatomical
Landmarks

Data
Analysis

Tissue (kg)

ReferenceMuscle Fat Bone

R2 RMSE R2 RMSE R2 RMSE

Sheep In vivo 21 2D TV7, LV2, LV5, FEM LR 0.94 0.508 0.93 0.406 0.73 0.262 [38]
In vivo Leg 47 2D CAV3, CAV4, SV4 LR 0.93 0.95 0.83 [39]

Shoulder 32 TV6, CV7 0.93 0.96 0.72
Mid-Region 104 LV4, TV8 0.89 0.98 0.69

In vivo 160 2D ISC, LV5, TV8 0.92 0.078 0.98 0.097 0.83 0.107 [40]
Carcass 120 PLSR 0.94 0.710 0.92 0.600 [41]
In vivo 22 SS (1 mm) LR 0.94 [42] #

SS (5 mm) 0.90
Goats Carcass 19 SS (5 mm) LR 0.95 0.65 [43]

Carcass 10 SS (5 mm) LR 0.95 0.74 0.47 [44]
In vivo 20 SS (3 mm) Volume fatty tissues LR 0.92 0.760 [36] #

n: number of animals or carcasses; SS: Spiral scanning (slice thickness mm); 2D: two-dimensional cross-sectional scans; anatomical landmarks-TV7: 7th thoracic vertebra; LV2: 2nd
lumbar vertebra; LV5: 5th lumbar vertebra; FEM: mid-shaft of the femur; CAV3: 3rd caudal vertebra; SV4: 4th sacral vertebra; TV6: 6th thoracic vertebra; CV7: 7th cervical; LV4: 4th
lumbar vertebra; TV8: 8th thoracic vertebra; ISC: ischium; PLSR: partial least squares regression; LR: linear regression; R2: coefficient of determination; RMSE: root mean square error;
CT: computed tomography; # Body fat.
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Most of the early CT work with sheep uses two-dimensional images of selected anatomical
landmarks of the object [45,46]. As a result, the compromise between precision and the number of
anatomical landmarks was examined and a methodology with three cross-sectional CT scans was
elected [40,45]. With three cross-sectional CT scans it is possible to explain up to 90% of body muscle
and fat amount variation. With advances in CT, it is possible to perform spiral scanning of the entire
body and, in this way, obtain 3D images. The number of slice images depends on the size of the object
and the thickness of the cut, which can be 0.6 mm, the most common being between 2 and 5 mm [33].
The slice thickness and their number are factors that affect CT accuracy. It was found that the slice
thickness between 1 mm and 5 mm does not seem to have a substantial impact on the accuracy of the
prediction of body or carcass composition, but it does have a direct effect on the time acquisition of
CT images. Thicker slices lead to a faster acquisition time, but slighter slice thickness adds further
information to CT images [45]. In a work with goats it was possible to scan the entire carcass in about
60 s [44].

Accurate information about phenotypic characteristics is fundamental to genetic progress for
meat production, and CT can meet this challenge [47]. Furthermore, with the steady progress in the
field of image analysis, it is possible to obtain information based on 3D images quickly and accurately,
which reinforces the ability of CT to obtain information both in vivo and on the carcass [35,48,49].
As mentioned previously, most of the CT work is focused on predicting carcass composition.
However, there are other studies aimed to predict internal fat deposits [42,46], spine length [50]
and muscularity [51]. All these studies clearly showed that CT is competent to evaluate those features.
The results from these studies have implications for meat production, as it will be possible to monitor
fat reserves throughout the production cycle [42,46], increase the number and length of the lumbar
vertebrae and support the muscularity concept improving the conformation and leanness of the
carcass [51,52]. CT has also been used to predict meat quality indicators. Table 3 shows the results for
the prediction of percentage intramuscular fat (IMF), shear force and some sensory attributes of the
Longissimus thoracis et lumborum (LM) muscle.

Table 3. Summary of applications of computed tomography imaging for prediction of meat quality
attributes of sheep.

Target Traits n CT Image Anatomical
Landmarks R2 RMSE Reference

In vivo IMF, % 160 2D ISC,
LV5,LV2,TV8,TV6 0.57 0.608 [53]

In vivo 370 2D ISC, LV5, TV8 0.51–0.68 0.39–0.48 [54]
370 2D LV5 0.51–0.65 0.40–0.48

Loin IMF, % 303 SS (8 mm) 0.36 0.620 [55]
In vivo 377 SS (8 mm) 0.51–0.70 0.48–0.38 [45]

377 SS + 2D ISC, TV8 0.50–0.71 0.47–0.37
Loin Shear force, kgF 303 SS (8 mm) 0.03 −0.830 [55]
In vivo 377 SS (8 mm) 0.02–0.06 0.16–0.16 [45]

377 SS (8 mm) ISC, TV8 0.03–0.13 0.16–0.15
Loin Texture 303 SS (8 mm) 0.08 −0.530 [55]

Flavour 303 SS (8 mm) 0.09 −0.370
Juiciness 303 SS (8 mm) 0.06 −0.370
Liking 303 SS (8 mm) 0.10 −0.390

n: number of animals or cut; IMF: Intramuscular fat; SS: Spiral scanning (slice thickness mm); 2D: two-dimensional
cross-sectional scans; anatomical landmarks-TV7: 7th thoracic vertebra; LV2: 2nd lumbar vertebra; LV5: 5th lumbar
vertebra; FEM: mid-shaft of the femur; CAV3: 3rd caudal vertebra; SV4: 4th sacral vertebra; TV6: 6th thoracic
vertebra; CV7: 7th cervical; LV4: 4th lumbar vertebra; TV8: 8th thoracic vertebra; ISC: ischium; PLSR: partial
least squares regression; LR: linear regression; R2: coefficient of determination; RMSE: root mean square error; CT:
computed tomography.

The results for estimating IMF are quite variable (R2 between 0.36 and 0.70). Concerning shear
force and the sensory attributes, CT does not show the ability to explain its variation with R2 ranging
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between 0.02 and 0.13 [45,55]. The results found for the IMF open the possibility of monitoring the
animals for this characteristic, although this requires attention because of the inverse relationship
between carcass fat and lean yield [56]. The reduced scanning time of the new equipment and the
possibility of making a simultaneous analysis of several small objects allows the optimization of the
use of CT machines for cuts or individual muscles [33,55]. The results found with sheep and goats
confirm that CT is one of the most relevant tools to obtain accurate phenotypic information which
allows the measures to be included either in a breeding program or as a sorting criteria in a meat
processor, which will allow better meat quality and potential valorization by the market [14].

2.3. Magnetic Ressonace Imaging

Magnetic resonance imaging (MRI) is pointed out as the most accurate technique for determining
the body composition and carcass composition of meat-producing animals [14]. This technique has
several attributes that are not observed in the other image techniques previously described. MRI allows
the provision of complete contrast among or within the various tissues and organs in the lean-tissue
category, which makes it possible to measure volumes very precisely [57,58].

MRI is widely available for clinical purposes in humans, but its application in animals,
and particularly to meat science, is limited, which is undoubtedly linked to the significant constraints
that this technique presents. These constraints are related to the high cost, the extended scanning time,
the high operating costs, including temperature control and general maintenance, and the need for
a Faraday cage around the device [58]. A directory of MRI facilities available in 2015 in Europe [33]
shows that only three institutions conducting MRI research in meat species (Institut National de
Recherche en Sciences et Technologies pour Environnement et Agriculture—IRSTEA, Rennes, France;
Livestock Center of the Ludwig—LMU, Munich, Germany, and Institute of Diagnostic Imaging and
Radiation Oncology, Kaposvár, Hungary). The MRI has been used in poultry, turkey, fish, sheep and,
most extensively, swine [33]. For goats, no work with MRI was identified after consulting the Web of
Science. Given MRI’s precision, this technique is considered a reliable alternative to dissection [59] or
can be seen as the reference method for other techniques [58].

For sheep, the results show that MRI has the potential to predict the body composition and carcass
traits accurately [60–64]. Table 4 presents studies to predict in vivo the amount and percentage of body
muscle and fat from MRI in sheep. The results show a highly accurate prediction of body muscle and
fat [60,61]. The MRI proved to have the potential to be a reference technique for body and phenotypic
assessment of carcass traits [65] but the limitations linked to its cost prevent it from being used more
widely. In any case, the development of equipment [66] and algorithms for image analysis [67] will
continue to position this technique as an option for animal and meat science.

Table 4. Values of coefficient of determination and residual mean square error of regression models to
predict in vivo the amount and percentage of body muscle and fat from MRI in sheep.

LW (kg) n

Body Tissue

ReferenceMuscle (g) Fat (g) Muscle (%) Fat (%)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

43 31 0.89 243 0.83 183 0.41 1.72 0.67 1.73 [61]
<30 49 0.96 160 0.96 84 0.78 1.57 0.86 1.49 [62]
>30 84 0.91 261 0.94 195 0.91 1.60 0.90 1.64

n: number of animals; LW: live weight; M: muscle; R2: coefficient of determination; RMSE: residual mean
square error.

3. Spectroscopic Techniques for Assessment of Carcass and Meat Quality of Sheep and Goats

Sheep and goat meat and meat products need monitoring to ensure their quality and safety.
In recent years, the meat industry has been investing in cutting-edge technology to do this monitoring,
which requires fast, non-destructive and easy-to-use technology. Optical technologies are gaining
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importance, and among them, the ones that have deserved more attention are visible and near-infrared
reflectance spectroscopy (VIS–NIRS and NIRS), hyperspectral imaging (HSI) and Raman spectroscopy
(Raman). This section analyses these optical technologies to assess the quality attributes of sheep and
goat meat and meat products.

3.1. Visible and Near-Infrared Reflectance Spectroscopy

Near-infrared spectroscopy (NIRS) underwent significant advances in the last decade which
allowed it to be applied in animal and meat science playing an essential role in evaluating the quality
and safety attributes of the meat [11]. An area of large interaction of NIRS is its potential application in
a slaughter line or in the meat processing industry to assess meat quality to guarantee the quality and
authenticity of the meat products [68,69]. The NIRS which measures the absorption of electromagnetic
radiation in the near-infrared spectrum (750–2500 nm), is fast, reliable, does not use reagents and can
be used to control processes in the industry [11,69]. However, the reflectance in the visible regions of
the spectrum (350–750 nm) is also pointed out as a promising predictor of the quality of meat [70,71].
Thus, the possibility of combining the visible and near-infrared spectra (350–2500 nm) attracted the
attention of the meat industry stakeholders to create a new technology called visible-near infrared
spectroscopy (VIS–NIRS). For sheep, the VIS–NIRS has been used for the evaluation of meat attributes
in a variety of quantitative applications [72,73]. Table 5 summarizes the research using NIRS and
VIS–NIRS to assess meat quality of sheep and goats. After a search in the Web of Science database,
only one work dealing goats meat with NIRS was found [74]. Generally, the work on NIRS and
VIS–NIRS is centred on static equipment under laboratory conditions. This stance is understandable
since it was only recently that research on the application of NIRS and VIS–NIR, online or in real-time,
was carried out with the aim to measure, control or predict the quality of sheep meat and carcasses [72].
Working in a slaughter line environment requires specialized equipment that must be versatile, quick
and simple to use [75]. In general, the results show a good prediction ability for NIRS and VIS–NIRS
as indicated by high R2 for different meat attributes [72,74,76,77]. Besides, VIS–NIRS also estimate
taste traits but with modest capacity R2 < 0.4 [78]. The VIS–NIRS have also been shown to be of
interest for discriminating carcasses of lambs originating in pasture-fed and concentrate-fed diets [73].
This work shows that it is possible based on perirenal fat to discriminate between 98.5 and 100% of
lamb carcasses accurately.

One aspect that deserves concerns is the portability of equipment. There is a clear need for smaller,
hand-held equipment for rapid and real-time classification of lamb carcasses [75]. A recent study [72]
tested a NIRS nano instrument that has the potential to be a fast, ultra-compact and cost-effective for
predicting IMF lamb meat. Other works have also used hand-held NIRS and VIS–NIRS equipment
with positive results and with a very favourable appreciation for the ease with which topside of a
hanging lamb carcass is assessed in-situ [75]. The NIRS and VIS–NIRS technologies are currently
highly versatile tools used in diverse fields including the food industry and, particularly, in animal
science to predict the chemical and physical composition of meat of sheep and goats. Additionally,
those techniques are reliable tools for identification and authentication of meat products, which is
particularly relevant to ensure PDO and PGI brands of origin.
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Table 5. Summary of the research using visible-near infrared spectroscopy (VIS–NIRS) and near infrared spectroscopy (NIRS) to assess meat quality of sheep and goats.

Technology Spectrophotometer Portability WR (nm) n Attributes Object Data
Analysis DA (%) R2 RMSE Reference

VIS–NIRS Labspec5000 Portable 350–2500 498 IMF Freeze-dried ground
lamb meat PLSR 0.76 0.41 [72]

VIS–NIRS Labspec4 Benchtop 350–2500 498 IMF 0.79 0.38
VIS–NIRS Trek Hand-held 350–2500 498 IMF 0.73 0.34

NIRS NIRScan Nano Tellspec Hand-held (Mini) 900–1700 498 IMF 0.27 1.28

VIS–NIRS NIRSystems 6500 Benchtop 400–2500 69 Perirenal fat Pasture #; carcass PLS-DA 98.6 [73]
55 Perirenal fat Indoors ##; carcass 100
65 Perirenal fat Indoors 28 ###; carcass 98.5

Visible MINOLTA CM-700d Portable 400–700 69 Perirenal fat Pasture #; carcass 98.6
55 Perirenal fat Indoors ##; carcass 94.5
65 Perirenal fat Indoors 28 ###; carcass 92.3

NIRS TerraSpec Halo® Hand-held 350–2500 75 IMF Topside; carcass PLSR 0.58 0.85 [75]
IMF Loin; carcass 0.50 0.91

VIS–NIRS NIRSystems 6500 Benchtop 400–2498 232 Taste traits$ LM PLSR <0.40 [78]
IMF 0.84

Moisture 0.67

VIS–NIRS NIRSystems 6500 Benchtop 400–2500 76 SFA, MUFA, PUFA, CLA Raw meat 0.41–0.52 [76]
NIRS 700–2500 SFA, PUFA Ground meat 0.89–0.98

VIS–NIRS 400–2500 MUFA, CLA 0.84–0.98

VIS–NIRS ASD Labspec Hand-held 500–2000 pH LM;ST PLSR 0.49, 0.70 [79]
Shear force LM carcass 0.34; 0.30

IMF LM carcass 0.55; 0.63

VIS–NIRS ASD FieldSpec Benchtop 350–2500 250 IMF LM PLSR 0.69 1.6 [80]
SFA 0.60 192.21

MUFA 0.60 168.72
PUFA 0.67 27.86

NIRS InfraAlyzer500 Benchtop 1100–2500 131 DM Freeze-dried LM PLSR 0.96 0.38 [77]
118 Protein 1.00 0.92
120 Fat 1.00 0.43%

NIRS Master™ N500 Benchtop 420–1000 66 Protein Goats ground meat PLSR 0.87 0.43 [74]
62 Moisture 0.94 0.48
16 Fat 0.60 0.49

n: number of samples or carcasses; WR: wave length range; DA: discrimination ability; R2: coefficient of determination; RMSE: root mean square error; IMF: Intramuscular fat; PLSR:
partial least square regression; PLS-DA: partial least square discriminant analysis; Pasture#: Fattened at pasture; Indoors##: Stall-fattened indoors on commercial concentrate and straw;
Indoors 28###: Finished indoors with concentrate and straw for 28 days after pasture-feeding; Taste traits$: Taste panel traits (texture, juiciness, flavour, abnormal flavour and overall
liking); LM: Longissimus thoracis et lumborum muscle; ST: semitendinosus muscle; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids;
CLA: conjugated linoleic acid; DM: dry matter.
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3.2. Hyperspectral Imaging

Hyperspectral imaging (HSI) technology was initially developed for military purposes [81].
Like many other technologies that have developed in the military field, the use of HSI has been
extended to several fields of animal science, with enormous success [82]. HSI has assumed a significant
role in meat science as a reliable, non-destructive and non-invasive tool in the evaluation of quality
and safety of meat and meat products [68,83]. Its characteristics are in line with the need to predict the
quality and the classification of meat and, as such, making HSI a very attractive technique for meat
quality and safety programs [84,85].

In the past five years, numerous studies have recognized the merits of applying HSI in the meat
industry, as it provides a versatile, rapid, non-invasive measurement, without complicated and tedious
sample preparation, reagents or procedures [85]. In this section, emphasis will be placed on the
use of HSI to evaluate attributes in sheep meat to evaluate sensory, chemical, and technological and
classification attributes. Additionally, the classification proposed by [85] for the quality attributes of
red meats will be used. For goats, like other techniques, there is no information.

Table 6 shows sensory, chemical, and technological, adulteration, authentication and discrimination
attributes, which were investigated using HSI for sheep meat.

Sensory attributes significantly influence consumers’ assessment of meat quality. Generally,
colour is used as an indicator of meat freshness, and an attractive and stable colour in meat is what
the consumer values [86]. In general, HSI predicts meat colour very well [87]. Several studies used
HSI as a technique for measuring meat colour, and it was found that HSI and multivariable models
have good capacity to predict the colour component L* (R2 from 0.77 to 0.97). However, for the other
colour components, the predictions show some inconsistencies (R2 of 0.48 and 0.84, and R2 of 0.26 and
0.82, for b*and a*, respectively). These results point to the need for refinements of the technique in
future research [88]. The HSI was used to predict tenderness, and Warner–Bratzler shear force (WBSF)
and the result was favourable for WBSF (R2 = 0.84) and also for sensory tenderness (R2 = 0.69) [89].
Regarding the estimation of the chemical composition by HSI, several studies were carried out with
sheep meat [90,91]. In these studies, the results show that HSI allowed estimates with good accuracy
for fat (R2 > 0.91), protein (R2 > 0.80) and water (R2 > 0.88). In a more recent study [92], an HSI
system (400–1000 nm) was able to estimate the water content of sheep meat, beef and pork, with high
accuracy (R2 = 0.97). These results confirm that HSI is a technology capable of estimating the chemical
composition of red meat.

For lamb, few studies have been conducted using HSI to estimate IMF% and fatty acid content.
A recent study, [93] used an HSI system (550–1700 nm) for the simultaneous prediction of the IMF% and
the level of 34 fatty acids in LM lamb muscle samples and the results show a modest capacity of HSI to
predict the fatty acid content, with R2 values between 0.03 for lignoceric acid (C24: 0) and 0.70 for oleic
acid (C18: 1c9). Additionally, it was observed that the accuracy for the prediction of IMF%, saturated
fatty acid—SFA, monounsaturated fatty acid—MUFA and polyunsaturated fatty acid—PUFA was
0.67, 0.68, 0.70 and 0.53, respectively. The results were pointed out by the authors as promising and,
thus, it is possible to anticipate that, with refinement, it will be possible to improve the robustness
of HSI to carry out an objective, rapid and non-invasive assessment of the quality of lamb meat.
In addition to sensory and chemical attributes, the ability of HSI to predict technological attributes,
such as pH, shear force and water holding capacity (WHC), in sheep meat was also investigated.
The results are variable, but the HSI shows a capacity to predict those attributes. For example, for the
estimation of pH, the models found showed a consistent performance of prediction (R2 between 0.38
and 0.71). The HSI was also used to predict the cutting force value of lamb meat obtained either by
WBSF or with the MIRINZ technique [88,89].

The results obtained indicate a good accuracy of HSI to predict WBSF (R2cv of 0.84 and 0.89),
but with lower results with the MIRINZ technique (R2 = 0.41). Regarding the WHC a HSI in a system
using 237 wavelengths and a PLSR model, made it possible to find an R2 value of 0.77 [94]. In a more
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recent study, the same team tested with good results (R2 = 0.92) an HSI system in a project for online
monitoring of WHC in beef, lamb and pig [95].

Table 6. Summary of applications of HSI for evaluating quality attributes of sheep meat.

Attributes n WR (nm) Data Analysis DA (%) R2 References

Sensory* a* 29 400–1000 PLSR 0.84 [96]
a* 80 400–863 PCA. SVM 0.48 [88]
b* 29 400–1000 PLSR 0.82 [96]
b* 80 400–863 PCA. SVM 0.26 [88]
L* 42 900–1700 PLSR 0.91 [94]
L* 29 400–1000 PLSR 0.97 [96]
L* 80 400–863 PCA. SVM 0.77 [88]

Tenderness 100 900–1700 PLSR 0.69 [89]

Chemical Protein 81 900–1700 PLSR 0.85 [95]
Protein 126 1021–1396 MLR 0.80 [91]
Water 126 900–1700 PLSR 0.88 [90]
Water 126 1021–1396 MLR 0.91 [91]

Fat 126 900–1700 PLSR 0.91 [90]
Fat 126 1021–1396 MLR 0.95 [91]

IMF% 1020 550–1700 PLSR 0.67 [93]
SFA 1020 550–1700 PLSR 0.68 [93]

MUFA 1020 550–1700 PLSR 0.70 [93]
FPUFA 1020 550–1700 PLSR 0.53 [93]

Technological pH 42 900–1700 PLSR 0.65 [94]
pH 80 400–863 PCA. SVM 0.38 [88]
pH 2406 550–1700 PLSR 0.71 [93]

MIRINZ SF 80 400–863 PCA. SVM 0.41 [88]
WBSF 100 900–1700 PLSR. MLR. SPA 0.84 [89]
WBSF 128 400–1000 PLSR 0.89 [97]
WHC 42 900–1700 PLSR 0.77 [94]
WHC 81 400–1000 PLSR. LS-SVM 0.92 [95]

Adulteration Minced lamb meat 200 900–1700 PCA. PLSR. MLR 0.98 [98]
Red-meat products 75 548–1701 CNN 94.4 [99]

Discrimination Raw meat 29 900–1700 PCA. PLS-DA 98.7 [96]
LM, PM, ST, SM 30 380–1028 PCA. LMS 96.7 [100]

LM, PM, ST 105 900–1700 PCA. LDA 100.0 [101]
Raw meat 61 1000–2500 LDA 100.0 [102]
Raw meat 90 1000–2500 LDA 87.5 [103]

* Sensory and colour attributes; n: number of samples; LS-SVM: least square support vector machine; MLR:
multiple linear regression; PCA: principal WR: wave length range; DA: discrimination ability; PLSR: partial
least square regression; PCA: principal component analysis; SVM: support vector machine; MLR: multiple linear
regression; LS-SVM: least square support vector machine; CNN: convolution neural networks; PLS-DA: partial
least square discrimination analysis; LMS: least mean square LDA: linear discriminant analysis; R2: determination
coefficient; WHC: water holding capability; IMF%: intramuscular fat percentage; SFA: Saturated Fatty Acid; MUFA:
Monounsaturated Fatty Acid; PUFA: Polyunsaturated Fatty Acid: WBSF: Warner–Bratzler shear force; MIRINZ SF:
MIRINZ shear force; LM: Longissimus thoracis et lumborum muscle; PM: Psoas major; SM: Semimembranosus;
ST: Semitendinosus.

The adulteration of meat is a very challenging domain that has yet to be fully resolved. However,
HSI have been used as a reliable solution to identify meat adulteration problems of different
species [104–107]. An HSI system was used to detect the level of adulteration of lamb meat with
minced pork, lung, heart and kidney by 2–40%, in 2% increments [98]. The results showed that
with a visual evaluation in RGB images, it was not possible to identify the degree of adulteration
in the different samples. In contrast, with HSI, this adulteration is clearly distinguished in images.
In addition to adulteration with the meat of other species, HSI is also able to detect adulteration of meat,
considering its state of conservation (frozen, thawed, fresh and packaged/unpacked). In a similar work,
it was found that HSI allowed overall discrimination of 94%, of lamb, beef, or pork meat regardless of
their state of conservation (fresh, frozen, thawed, and packing and unpacking) [99].
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In lamb carcasses, it was also possible to verify that HSI can discriminate between different
muscles and meat of different species. HSI and multivariate analysis [100] in lamb carcasses were able
to correctly discriminate 96.7% of four muscles (LM, PM, ST, SM). Other authors [101] show that it is
possible to accurately discriminate three muscles (LM, PM, ST) of the lamb carcass.

3.3. Raman Spectroscopy

Among the various spectroscopic technologies that have been applied to assess meat quality,
Raman spectroscopy (Raman) has shown to be one of those that, in recent years, has received more
attention [108,109]. Raman is considered to be of great interest in assessing the composition and
quality of meat [108,110,111]. In this section, recent works investigating the use of Raman in the
evaluation of meat quality in sheep and goats will be addressed. Raman applied in the evaluation of
meat characteristics have been mainly oriented towards pork [109,112] and beef [113,114]. However,
there are also several studies in which Raman has been applied to sheep. Table 7 presents results from
the application of Raman to sheep meat. For goats, however, little information is available, and only
two articles were identified in Web of Science [115,116]. In the first of those studies, aspects related to
the origin of the meat were studied and in the second, the characterization of fats from several species,
including the goats, was carried out. The Raman application in sheep aimed to predict some meat
quality attributes, such as shear force, colour, cooking losses and pH [108]. The prediction of those
attributes in lamb LM muscle using Raman is significant, but there is some discrepancy in the results.
Examples are the works presented by [117] and [118]. In the first study, the prediction of the shear force
of the lamb LM muscle showed reduced accuracy (R2cv = 0.06) in contrast to [118], which obtained
coefficients of determination (R2) of 0.79 and 0.86 for this attribute, measured in two sites of the LM
muscle. Good results were also observed for prediction of shear force in the Semimembranosus (SM)
muscle [119]. This study reports that the use of Raman is better to predict shear force than traditional
predictors such as sarcomere length, pH and particle size. With Raman models, reductions in RMSE
of 12.9% and 7.6% were observed in the shear force with SM muscle ageing for one day and five
days, respectively. All the works presented in Table 7 were performed with the same portable Raman
device and analysed the same muscles (LM and SM) of lambs with similar weight; however, they differ
in some aspects of the methodology that may explain the differences found. The state in which the
samples were analysed was different. In the work of [117] in measurements made with Raman, fresh
muscle samples were used, whereas in the work of [118] Raman measurements were performed after
the muscle was frozen and thawed. To understand this issue, [120] carried out a study in which they
used Raman to estimate meat quality characteristics in two experiments; one with fresh SM muscle
samples and the other with freeze/thaw SM muscle samples. With this work, it was concluded that
Raman was not able to predict the shear force after freezing and thawing. However, for other meat
quality attributes, the prediction was possible (R2 from 0.22 to 0.59).
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Table 7. Summary of Raman spectroscopy studies for evaluating quality attributes of lamb meat.

Quality Attributes n Muscle Ageing
Time (day)

Multivariable
Analysis R2 R2CV RMSE RMSECV Reference

Technological properties Shear force (N) 70 LM 1 PLSR 0.79 0.11 0.31 [118]
Shear force (N) 70 LM 1 0.86 0.10 0.26
Shear force (N) 80 LM 1 PLSR 0.06 13.60 [117]
Shear force (N) 80 LM 5 10.00
Shear force (N) 80 SM 1 PLSR 0.27 11.48 [119]
Shear force (N) 81 SM 5 0.17 12.20

Cooking loss (%) 70 LM 1 0.79 3.20 0.09 [118]
Cooking loss (%) 70 LM 1 0.83 0.03 0.08

Purge loss (%) 80 SM 1 0.42 0.90 [120]
Purge loss (%) 80 SM 5 0.33 0.94

pH24 80 SM 1 PLSR 0.48 0.12
pHu 80 SM 1 0.59 0.07

L 80 SM 1 0.32 1.96
L 80 SM 5 0.22 1.87

Fatty acids/IMF PUFA (mg/100 g) 80 LM 1 PLSR 0.93 0.21 46.57 [121]
MUFA (mg/100 g) 80 LM 1 0.54 0.16 400.30

SFA (mg/100 g) 80 LM 1 0.08 0.01 358.72
PUFA:SFA 80 LM 1 0.21 0.13 0.06

IMF (mg/100 g) 80 LM 1 0.08 0.02 1.12

n: number of samples; N: Newton; LM: Longissimus thoracis et lumborum muscle; SM: Semimembranosus muscle; PLSR: partial least squares regression; R2: coefficient of determination;
R2cv: coefficient of determination for cross validation; RMSE: root mean square error; RMSECV: root mean square error of validation; PUFA: Polyunsaturated fatty acid; MUFA:
Monounsaturated fatty acid; SFA: Saturated fatty acid; IMF: Intramuscular fat.
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Several works with Raman have also shown that this technique is capable of classifying samples
of meat from different species. For example, [122] applied a combination of Raman with multivariate
analysis methods, and neural networks achieving an accuracy between 96.7% and 99.6% in the
classification of chicken, bovine, lamb and pork fat. This capacity for discrimination is also observed
by others, working with Raman and using principal component analysis, to successfully classify
fat samples from seven different types of meat (cattle, sheep, pigs, fish, birds, goats and buffaloes)
and their salami products [115]. These authors suggest Raman as a useful tool in the detection of
adulterations in the meat industry which will contribute to tempering consumers concerns about the
meat they consume.

In addition to this ability to classify quality attributes of meat and fat, Raman was also adequate
to predict the concentration of the main groups of fatty acids such as PUFA, MUFA and SFA and
also the IMF [121]. The use of Raman to estimate fatty acids has a substantial practical advantage
since it goes beyond the time-consuming and tedious processes of extracting and purifying fatty acids.
Additionally, traditional methods are expensive, destructive, require chemicals and extensive sample
preparation. Raman was also considered valid to discriminate between the SM muscle of fresh tough
and tender lamb, using the intensity of spectral peaks that correspond to the tyrosine doublet at 826
and 853 cm−1 and α-helix at 930 cm−1 [119].

In the development of spectroscopic equipment to be used in the assessment of carcass composition
and meat quality, special attention has been paid to its portability and ease of use [111,123]. This attention
has been applied to Raman, which rarely requires sample preparation; it is possible to perform an
analysis in a few seconds, and there is portable equipment suitable for practical application in the
meat industry [108,118]. Raman used in most of the described lamb studies; it is portable equipment
that had a robust waterproof encase to protect the sensor [124] and is considered a more versatile
approach for application in the meat industry than a bench instrument [108,125]. As with all other
spectroscopic techniques, Raman spectra have numerous dependent variables; therefore, it is necessary
to use multivariate analysis techniques. The discriminant analysis of partial least squares performed
well for classification [122] and the PLSR analysis has been the most used multivariate analysis method
for this technique [108].

When compared with other spectroscopic techniques such as NIRS or HSI, relatively few studies
have been carried out with Raman to predict meat quality and also to classify meat in sheep and goat
species. Of the few studies with sheep, the inconsistent results in some of them did not adequately
demonstrate the ability of the Raman technique to assess the quality of sheep meat. Still, the encouraging
results and the characteristics of robustness, manoeuvrability and speed analysis are attributes that
could elect this technique with great potential for practical use in an industrial meat environment.
However, with the advancement of technology, more research will be needed, before Raman can be
adopted extensively in the industry.

4. Summary of Attributes across All Technologies Discussed

Table 8 summarizes several attributes of the imaging and spectroscopic techniques that were
previously presented. The scores given to the different attributes were obtained from the information
presented by the various authors. In all techniques, there are significant variations for all the attributes
considered, but what is shown to be the most variable are speed and cost. For example, the speed of use
depends mostly on the characteristics of the equipment but also on the size of the object. For the cost
of equipment, there is also much variation. For example, a CT scanner cost can vary between 80,000 to
more than 300,000 €, and an HSI system can vary between 17,000 and 70,000 € [33,126]. The scores were
therefore considered for the more common use for each of the techniques. Pictures and information
about the imaging and spectroscopic techniques can be found in several works based on the Farm
Animal Imaging COST Action FA1102 project [19,33,125,127].
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Table 8. Summary of several attributes of the imaging and spectroscopic techniques.

Attributes Techniques

Imaging Spectroscopic

DXA CT MRI NIRS and VIS–NIRS HSI Raman

Fundamentals

X-ray attenuation
coefficients (R value)

of a low and of a high
energy X-ray spectral
level related with soft

tissue and
bone mineral

Attenuation of X-rays
passing an object is

transformed into
Hounsfield units

which are related to a
given tissue

A phenomenon called
nuclear magnetic

resonance is the basic
principle in which an
atomic nuclei with an

odd number of protons or
neutrons or both (e.g.,

hydrogen nucleus) will
absorb and re-emit radio
waves when placed in a

magnetic field.

Food molecules contain
functional groups like C-H,
N-H and O-H, which are

closely related to bands in
spectra. The VIS–NIRS

ranges from 350–2500 nm
and NIRS which measures

the absorption of
electromagnetic radiation in
the near-infrared spectrum

(750 to 2500 nm)

The HSI spectral ranges
from circa 200 nm

(ultraviolet range) to 2500
nm (NIR range). The HSI
spectral bands cover most

food analysis
applications. HSI

combines imaging with
spectroscopy, which

simultaneously provides
physical and geometrical

features of an object

Raman spectroscopy
is based on the

inelastic scattering of
light that occurs when
a sample is exposed

to a high-energy
monochromatic beam
of light such as a laser,
which interacts with
the sample molecules

Target object In vivo; carcass;
cuts; meat

In vivo; carcass;
cuts; meat

In vivo; carcass;
cuts; meat Carcass; cuts; meat Cuts; meat Carcass; cuts; meat

Potential
dependent
variables

Tissue and chemical
composition;
bone density

Tissue and chemical
composition; volume

and texture

Tissue and chemical
composition; volume and

texture

Chemical composition;
technological parameters;

classification

Chemical composition;
sensorial and

technological parameters;
classification

Chemical
composition;
sensorial and
technological
parameters;

classification
Accuracy **** **** ***** **** **** *****

Speed *** ** * ***** *** ****
Cost *** ** * **** *** ****

Portability ** * * ***** *** *****
Ease to use **** *** ** **** *** ****
References [14,19] [14,33] [14,33] [72,75] [84] [82,108]

DXA: dual-energy X-ray absorptiometry; CT: computer tomography; magnetic resonance imaging; NIRS and VIS–NIRS: near-infrared spectroscopy and visible-near infrared spectroscopy;
HSI: Hyperspectral imaging; Raman: Raman spectroscopy. Scores: *—Unfavourable; **—Not very favourable; ***—Favourable ****—Very favourable; *****—Highly favourable;
Note: the scores attributed to each technique are based on the several articles [14,33,108,125,126] and considerations that the various authors present throughout the works for the
considered attributes.
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5. Conclusions

Meat production and, in particular, ruminant meat production are facing pressures to deliver
an environmentally sustainable product with high nutritional value, safe and that can meet the
expectations of consumers as well as all stakeholders in the production chain. At the moment, the best
possibility of predicting carcass and meat quality seems to be accomplished by combining the traditional
classification system with additional measurements provided by imaging and spectroscopic techniques.
There are few information/research results available for goats, but since the techniques discussed allow
measuring carcass and meat traits well in sheep, it is reasonable to presume that the same could be
possible in goats. The application of these techniques to evaluate the quality of carcass and meat
of sheep and goats still has much to be learned. However, the results presented in this work for all
techniques show that the journey is already underway and, with future technological developments,
tangible cost-effective benefits for the industry can be expected through their use.
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