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Resumo

A inteligência artificial em videojogos é uma área de investigação de longa data. É um

conceito importante em muitos jogos e estuda como utilizar tecnologias de IA para

alcançar o desempenho a nível humano durante o jogo. No entanto, quando se trata de

IA e videojogos, a Reinforcement Learning tem de ser mencionada. RL define os

agentes que enfrentam os problemas que aprendem a tomar boas decisões apenas

através da acção e observação.

Este projecto centra-se na integração de um algoritmo de Machine Learning chamado

Reinforcement Learning no desenvolvimento de um videojogo do género Tower

Defense. O projeto foi desenvolvido pelo motor Unity3D que incorpora um agente que

utiliza a técnica RL para simular o comportamento de um jogador humano e continuar a

melhorá-lo, com base em experiências de jogo anteriores, até ser totalmente optimizado

com uma pontuação imbatível pelo jogador médio.

O agente irá imitar o comportamento de um humano, comprando, actualizando e

colocando torres enquanto obtém a pontuação mais alta, utilizando o menor número de

moedas. Além disso, o relatório irá também rever vários conceitos de Aprendizagem

Automática, incluindo o Processo de Decisão de Markov e o Q-Learning.

Palavras-chave: "defesa da torre", "inteligência artificial", "reinforcement learning",

"machine learning", "redes neuronais".
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Abstract

Artificial intelligence in video games is a longstanding research area. It is a major

concept in a lot of games and it studies how to use AI technologies to achieve

human-level performance when playing games. However, when it comes to AI and

video games, Reinforcement Learning has to be mentioned. RL defines the

problem-facing agents that learn to make good decisions through action and observation

alone.

This project focuses on integrating a Machine Learning algorithm called Reinforcement

Learning in the development of a video game of the Tower Defense genre developed by

the Unity3D engine that incorporates an agent that uses the RL technique to simulate

the behavior of a human player and keep on improving it, based on previous game

experiences, until it’s fully optimized with a score unbeatable by the average player.

The agent will imitate the behavior of a human, buying, upgrading, and placing towers

while getting the highest score by using the lowest number of currencies. Moreover, the

report will also review several Machine Learning concepts, including Markov-Decision

Process and Q-Learning.

Keywords: "tower defense", "artificial intelligence", "reinforcement learning",

"machine learning", “neural networks”.
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Chapter 1: Introduction

1.1. Technical Proposal

Video game development has evolved significantly from the early days of computer
games and the first versions of Nintendo and Atari, with the main goal being to provide
entertainment for children and adults alike. Nowadays video games have become more
lifelike than ever, leaving the days of pixelated screens and limited sounds as a distant
memory. This made digital gaming so appealing that it became a temporary escape from
the pressures of the real world for many, but the question is what exactly helped game
development rise that much?

While the easy answer could be the evolution of video game graphics, gameplay, or
even storylines, it’s something else, every gamer looks for when a new video game is
released on the market and that is how real-life alike is the artificial intelligence in that
game.

Artificial intelligence (AI) in video games is a longstanding research area. It is a major
concept in a lot of games and it studies how to use AI technologies to achieve
human-level performance when playing games. These AI-powered interactive
experiences are usually generated via non-player characters (NPCs) or even enemies,
that act intelligently or creatively, as if controlled by a human game-player or were
acting with a mind of their own, and without it would be hard for a game to provide an
immersive experience to the player.

The proposed Final Degree Project showcase the usage of a Machine Learning
algorithm called Reinforcement Learning in the development of a video game of the
Tower Defense genre developed by the Unity3D engine that incorporates an agent that
uses the RL technique to simulate the behavior of a human player and keep on
improving it, based on previous game experiences, until it’s fully optimized with a score
unbeatable by the average play.

1.2. Project Motivation

Since the development of the game Nim in 1951, one of the first examples of AI in
computerized games, machine learning has been integrated into games as a way to
challenge the player; however, several times the AI has been based on rules that often
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become predictable, which then leads to the player’s loss of desire to continue playing
as he would learn the AI’s approaches and reactions to the possible actions outdone by
the player.

This led me to look at a specific machine learning technique called Reinforcement
learning, which takes a suitable action to maximize reward in a particular situation by
learning from its previous experience, which makes sure to get rid of the predictability
since it has no training dataset.

However, while it would be optimal for the agent to fully behave like a human, it would
take the fun out of the games if the agents tend to usually outsmart the players. We want
the agents to be as smart as it is necessary to provide fun and engagement, but not
exceed the limit. A perfect agent should be imperfect, imitating a human-like behavior
while still providing entertainment.

1.3. The game

The game chosen to demonstrate the work is a single-player Tower Defence game [16]
developed using the Unity 3D engine [21]. To best exhibit the Reinforcement Learning
techniques, a strategy-based game was chosen where the player’s target is to defend an
end area from the opposition by building towers that impede the opponent's movement.

The player starts the game with a currency that can be used to buy and upgrade different
types of towers. There are several types of towers to choose from, with varying of
different costs and abilities. The towers can be placed in specific tiles and upon that can
be upgraded up to three levels, given that the player has enough currency to do so.

The game is won after all 10 waves of enemies are destroyed by the towers and the
player’s final health has not to be depleted by the enemies.

1.4. Objective

The main objective is to develop an agent that uses Reinforcement Learning to imitate
the behavior of a human, buying, upgrading, and placing towers while getting the
highest score by using the lowest number of currencies. This will come as a result of
previous experiences which the agent will learn from other games while applying some
of the Reinforcement Learning techniques. The agent must always detect the best action
given a game status.

1.5. Target

The game is a single-player Tower defence game that is suitable for all ages of causal
gamers who are looking for a light game to pass the time while still having a
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competitive and quick reaction edge in it. The game might be very difficult at the latter
level, which adds the fun element as well.

1.6. Expected results

The main objective of the work is to integrate the Reinforcement Learning algorithm in
a Tower Defence video game while understanding the main aspects behind the
algorithm and what makes it special from other Machine Learning-like algorithms.

This alongside creating a well-structured agent to be able to win the game with the
highest score. The agent not only must win the game with the optimal score, but tries to
imitate the behaviour of a human being as much as possible in terms of currency
handling and strategic tower placements.

14



15



Chapter 2: What is Machine Learning?

The concept of Machine Learning [20] has changed in recent years from the past and
that’s mainly because of new computing technologies emerging. The term Machine
Learning refers to pattern recognition and the theory that computers can learn without
being programmed to perform specific tasks. It is seen as a subset of artificial
intelligence and its algorithms build a mathematical model based on a data sample,
known as “training data”, in order to make predictions or decisions without being
explicitly programmed to do so.

The iterative aspect of machine learning is important because as models are exposed to
new data, they are able to independently adapt. They learn from previous computations
to produce reliable, repeatable decisions and results.

Machine learning algorithms are used in a variety of ways. Applications, such as email
filtering and computer vision, where it is difficult or impractical to develop traditional
algorithms to perform the required tasks

There are different ways to train machine learning algorithms, each with its own
advantages and disadvantages. To understand the pros and cons of each type of machine
learning, we must first look at the four types it's divided into which are:

1) Supervised Machine Learning.
2) Unsupervised Machine Learning.
3) Semi-Supervised Machine Learning.
4) Reinforcement Learning.

2.1. Supervised Machine Learning

Supervised machine learning is based on supervision, as its name suggests. In the
supervised learning approach, this implies that we train the machines using the labeled
dataset, and then the machine predicts the output based on the training. Here, the labeled
data indicates which inputs have already been mapped to which output. More precisely,
we may state that after training the machine with input and related output, we ask it to
predict the outcome using the test dataset.

Assume we have a dataset of photos of dogs and cats as our input. Therefore, we will
first train the computer to comprehend the photos, teaching it things like the size and
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form of a dog's tail, the shape of a cat's eyes, their color, and their height (dogs are taller
than cats, for example). After training, we input a cat image and ask the computer to
recognize the object and forecast the outcome. Now that the machine is educated, it will
examine every characteristic of the thing, including height, form, color, eyes, ears, tail,
and so on, and determine that it is a cat. As a result, it will be classified as a cat.

This is how the computer recognizes things in Supervised Learning, and the technique's
main objective is to map the input variable (x) with the output variable (y). Applications
of supervised learning in the real world include spam filtering, fraud detection, and risk
assessment.

2.2. Unsupervised Machine Learning

In contrary to Supervised Machine Learning, Machine learning techniques that don't
have a known or labeled output are referred to as "unsupervised" algorithms. They have
a predetermined output that has been labeled.

Knowing the difference enables you to comprehend why unsupervised machine learning
techniques cannot be used to solve regression or classification issues since you are
unsure of the potential value or solution for the output data. You can't train an algorithm
as normally as you would if you don't know the value or solution; however, it is
possible to apply unsupervised learning to identify the fundamental structure of the data.

An example would be in a scenario like this: You're at the grocery store and spot a fruit
that isn't labeled that you've never seen before. You can distinguish the unknown fruit
from other fruit around based on your observations of the shape, size, or color of the
unusual fruit. This approximately describes the process of unsupervised machine
learning.

The technique’s primary goal is to classify or group the unsorted dataset based on
commonalities, patterns, and differences. The hidden patterns in the input dataset are to
be found by the machines.

2.3. Semi-Supervised Machine Learning

A mix of both Supervised and Unsupervised Machine Learnings, It employs both vast
amounts of unlabeled data and little labeled data, combining the advantages of both
supervised and unsupervised learning without the difficulties associated with obtaining
a lot of labeled data. Therefore, it’s not needed to utilize as much labeled training data
when training a model to label data.
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2.4. Reinforcement Learning

Reinforcement Learning [1] [20], which is the Machine Learning technique used in my
project, is different from supervised learning as it relies only on the experiences of the
agents.

With RL, an AI agent autonomously explores its surroundings by striking and trailing,
acting, learning from experiences, and increasing performance. Reinforcement learning
operates on a feedback-based method.

The objective of a reinforcement learning agent is to maximize the rewards since the
agent is rewarded for every good activity and penalized for every negative action.

Reinforcement Learning will be discussed in detail in the next section, but for now,
check the following comparison between the mentioned Machine Learning types in
figure 1.

Figure 1: Machine Learning Types[22]
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Chapter 3: Deep dive into Reinforcement

Learning

As was previously discussed, Reinforcement learning, a type of machine learning
technique, enables an agent to learn in an interactive environment via trial and error
while using feedback from its own actions and experiences.

Although both Supervised Learning and Reinforcement Learning use the mapping
between input and output, the latter uses rewards and punishments as signals for
positive and negative behavior, in contrast to Supervised Learning, which provides the
agent feedback in the form of the proper set of actions to perform a task.

Moreover, Reinforcement Learning has distinct goals from Unsupervised Learning.
While finding similarities and differences between data points is the aim of
unsupervised learning, the aim of Reinforcement Learning is to identify an appropriate
action model that would maximize the overall cumulative reward of the agent. The
action-reward feedback loop of a general RL model is shown in figure 2.

Figure 2: Reinforcement Learning Process

Although the developer establishes the reward scheme or the game's rules, he offers the
agent no tips or advice on how to win or reach the optimal solution. The agent must
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determine how to complete the objective to maximize the reward, starting with
completely arbitrary trials and ending with complex strategies and superhuman abilities.

If a reinforcement learning algorithm is performed on supercomputer infrastructure,
artificial intelligence can learn from thousands of concurrent

games, unlike humans. The best way to demonstrate an RL problem is through a classic
game of Pac-Man.

In a game of Pac-Man, the main goal of the agent (Pac-Man) is to consume all the food
in the grid (interactive environment) while dodging ghosts. The reward, in this case, is
awarded when the agent consumes food while he gets punished when is killed by a
ghost (loses the game).

The states represent the agent's position within the grid, and the agent's final cumulative
reward is winning the game. However, in order to reach the optimal policy, the agent
must decide how to explore new states while simultaneously maximizing its total
reward. A trade-off between exploration and exploitation is what this is. To balance
both, the agent might also make short-term sacrifices to gather sufficient data to enable
future decision-making at the highest level.

To formulate a basic Reinforcement Learning problem in a Pac-Man game (figure 3),
the key terms of an RL problem can be seen like this:

1) Environment — The game’s grid.
2) State — The location of the Pac-Man in the grid world.
3) Reward — The amount of food consumed by Pac-Man.
4) Cumulative Reward — Pac-Man winning the game.
5) Policy — Method to map Pac-Man’s state to actions.
6) Value — Future reward that Pac-Man would receive by taking an action in a

particular state.

Figure 3: PacMan

However, as we mention the Environment, it’s should be noted that there are two types
of environments when it comes to Reinforcement Learning, Deterministic and
Stochastic as seen in figure 4.
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Deterministic refers to a scenario in which the reward model and state transition model
are both deterministic functions. Simply put, if an agent repeats an action in a given
state, it can anticipate receiving the same reward and moving on to the next state.

While when it’s with a random likelihood of happening is said to be stochastic. In such
a setting, an agent cannot be certain that repeating an action would result in the same
reward or the next state.

Figure 4: Determistic vs stochastic

3.1. Model-Based vs Model-Free Reinforcement Learning

Although there are many distinct kinds of Reinforcement Learning algorithms,
Model-Based and Model-Free RL are the two main types [7]. Both of them are
motivated by our knowledge of how humans and animals learn, and are demonstrated in
figure 5.

The law of effect, which was put forth by psychologist Edward Thorndike in the late
nineteenth century, states that responses that have negative effects become less likely to
occur in the future and actions that have positive effects in a situation become more
likely to occur again in that situation.

Later, the law of effect helped to establish behaviorism, a school of psychology that
looks at stimuli and responses to explain how people and animals behave.

The foundation of Model-Free Reinforcement Learning is the Law of Effect. An agent
senses the environment acts and measures the reward in model-free reinforcement
learning. Typically, the agent begins by performing random behaviors before eventually
repeating those that are linked to greater rewards.
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Model-Free Reinforcement Learning lacks any direct world knowledge or world
models. Trial and error must be used by the RL agent to directly feel every result of
every action.

Thorndike's Law of Effect was widely used until Edward Tolman, a different
psychologist, made a significant discovery while examining how quickly rats could
learn to navigate mazes. Tolman discovered during his research that animals could
discover their surroundings without being rewarded.

A rat released into a maze, for instance, would freely explore the tunnels and gradually
come to understand the layout of the surroundings. The same rat can achieve its
objective considerably more quickly than animals who were not given the chance to
explore the maze if it is later reintroduced to the same environment and is given a
reinforcement signal, such as finding food or looking for the exit. Latent learning is
what Tolman referred to as.

Latent Learning gives both animals and people the ability to create a mental model of
their environment, simulate potential outcomes in their thoughts, and predict the
conclusion. Additionally, this is the cornerstone of Model-Based Reinforcement
Learning.

Model-Based reinforcement learning's key advantage is that it spares the agent from
having to learn through trial and error in its surroundings. For instance, Model-Based
RL will enable you to mentally simulate alternate routes and alter your course if you
learn that an accident has closed the road you usually use to work. You wouldn't be able
to apply the new information using model-free reinforcement learning. As soon as you
get to the accident scene, you would update your value function and begin investigating
further options.

The Model-Based approach is useful when creating AI systems that can master
deterministic board games like chess and go.

In some circumstances, it is either impossible or too complex to construct a good model
of the environment. Additionally, Model-Based Reinforcement Learning has the
potential to be exceedingly time-consuming, which in instances where time is of the
essence may prove to be hazardous or even fatal.

In essence, neither Model-Based nor Model-Free Reinforcement Learning offers the
ideal solution. Additionally, there is a good likelihood that any Reinforcement Learning
system solving a challenging task is utilizing both Model-Based and Model-Free RL
and perhaps even additional learning methods.
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Figure 5: Model-Based vs Model-Free

3.2. Markov-Decision Process

The Markov-Decision Process is a way to mathematically model how agents make
decisions. It can be used to find the optimal decision in any situation where there are a
finite number of options and outcomes. The process involves breaking down the
decision into a series of smaller decisions, each of which can be represented by a
Markov chain. This makes it possible to use dynamic programming to find the best
decision for each situation.

It's often used in artificial intelligence and machine learning applications, as it can help
agents learn how to make optimal decisions in uncertain environments.

A Markov Process is defined by (S, P) where S are the states, and P is the
state-transition probability. It consists of a sequence of random states S₁, S₂, … where
all the states obey the Markov Property. See figure 6.

Markov Property requires that “the future is independent of the past given the present”.

Figure 6: Markov Property
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3.2.1. Markov Reward Process (MRP)

An MRP is defined as (S, P, R, ), where S are the states, P is the probability of state
change, R s is the reward, and is the discount factor (will be covered in the coming
sections).

The state reward R_s is the anticipated reward across all potential states that one could
enter after leaving state s. For being in the state S t, you get this prize. By convention, it
is treated as R (t+1) and is said to have been received after the agent departs the state.

3.2.2. Markov Decision Process (MDP)

MDP [3] can be used to model and solve problems in which an agent needs to make
decisions in order to maximize some goal. For example, an MDP could be used to help
a robot navigate through an unknown environment by choosing the best action at each
step in order to reach its goal.

Figure 7: Markov Decision Process

(S, A, P, R) is the definition of an MDP [12], where A is the set of actions. Essentially, it
is MRP with actions. Since the state transition probability and state rewards were
previously more or less stochastic, the introduction of actions generates a sense of
control over the Markov Process. Now, though, the agent's choice of action also affects
the rewards and the subsequent condition. In essence, the agent is now in charge of its
own destiny.

3.2.2.3 Bellman Expectation Equation

In decision theory, the Bellman expectation equation, figure 8, is a key result that
provides a way to optimize decisions when agents face uncertainty. This equation was
first proposed by Richard Bellman in 1957 as a way to deal with the "curse of
dimensionality" in dynamic programming.

The curse of dimensionality refers to the fact that the number of possible states that an
agent can occupy grows exponentially with the number of variables considered.
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Bellman's equation provides a way to reduce the number of states that need to be
considered by focusing on expected values.

It’s is derived from the Bellman optimality principle, which states that an optimal
decision must be made in every state such that the expected value of the total reward is
maximized. The total reward is composed of two parts: the immediate reward R_(t+1)
and the future reward γ.v(S_(t+1)). The future reward is often unknown, so it must be
estimated.

This estimation is done using the concept of discounting, which assigns a lower value to
future rewards than to immediate rewards. The discount rate reflects how much value an
agent places on future rewards relative to immediate rewards.

Figure 8: Bellman Expectation Equation

3.3. Q-Learning

Given the agent's present state, Q-learning [5] is a model-free, off-policy reinforcement
learning technique that will determine the appropriate course of action, meaning the
agent will choose what to do next based on its state in the environment.

Its primary goal is to determine the optimum course of action given the situation as it is
and in order to accomplish this, it could devise its own set of rules or might deviate
from the prescribed course of action. This indicates that there is no real need for a
policy, which is why it is referred to as an off-policy.

The ‘Q’ in Q-learning stands for quality. Quality here represents how useful a given
action is in gaining some future reward.

3.3.1. Important Terms in Q-Learning

1. States: The State, S, represents the current position of an agent in an
environment.

2. Action: Action, A, is the step taken by the agent when it is in a particular state.
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3. Rewards: For every action, the agent will get a positive or negative reward.
4. Episodes: When an agent ends up in a terminating state and can’t take a new

action.
5. Q-Values: Used to determine how good an Action, A, taken at a particular state,

S, is. Q (A, S).
6. Temporal Difference: A formula used to find the Q-Value by using the value of

current state and action and previous state and action.

Let's take a look at a simplistic example of Q-Learning [4] that would clear the logic
more. Imagine, there is an agent that’s the main objective is to find a way through a
maze. However, there are hidden mines on the road and the agent can only move one
tile at a time. The accumulative reward for the agent is to reach the final point in the
shortest time possible, while the negative reward for him is if he steps on the mine and
dies. See figure 9 for demonstration.

The scoring/reward system is as below:

1. The robot loses 1 point at each step. This is done so that the robot takes the
shortest path and reaches the goal as fast as possible.

2. If the robot steps on a mine, the point loss is 100 and the game ends.
3. If the robot gets power, it gains 1 point.
4. If the robot reaches the end goal, the robot gets 100 points.

Figure 9: Q-Learning example 1

To train the agent to reach the end goal and achieve the accumulative reward, a concept
called Q-table is introduced. Using a Q-Table, we can determine the maximum
predicted future rewards for action in each stage as seen in figure 10.
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Figure 10: Q-Learning example 2

Taking a look at figure 11, four actions could be taken by the agent, either moving up,
down, right, or left. This can be mapped and converted into a lookup Q-Table, where
columns are the actions and rows are the states.

Figure 11: Q-Learning example 3

The greatest projected future reward for each action that the agent would take at that
stage is represented by the Q-Table score. As we need to enhance the Q-Table at each
iteration, this is an iterative procedure. However, to calculate the respective values, a
Q-Learning algorithm is applied, which uses the Bellman equation (figure 12) and
takes two inputs: state (s) and action (a).
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Figure 12: Q-function

Starting with all zero values, using the above function, we can get the values of Q for
the cells in the table, but this is only the start of an iterative process of updating the
values. As we start to explore the environment, the Q-function gives us better and better
approximations by continuously updating the Q-values in the table.

The process can be summarized in figure 13 but will be discussed in detail in the
upcoming section.

Figure 13: Q-Learning algorithm process

3.3.2. Q-learning algorithm process

Step 1: Initialize the Q-Table

As mentioned before, the Q-table start with all-zero rows (m) and columns (n), where n
stands for the number of actions and m for the number of states. In the example
mentioned earlier, there are four actions (up, down, right, left) and five states (start, end,
blank, power, mine).
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Steps 2 & 3: Choose and perform an action

Based on the Q-Table, the agent will select an action (a) in the state (s). However, as
was already established, at the beginning of the episode, each Q-value is 0, and this is
where the trade-off between exploration and exploitation comes into play. For this, the
epsilon greedy approach will be used to select the action with the highest estimated
reward most of the time. See figure 14.

The epsilon rate is always higher in the beginning, which would force the agent to
explore the environment and randomly chooses an action. With more exploration, the
epsilon rate decreases and the agent instead opts to exploit the environment.

Figure 14: Q-Learning example 4

Steps 4 & 5: Evaluate and repeat

After an action was taken, the outcome and reward will be calculated, leaving the
Bellman equation to be updated like the following, and the action with the highest value
will be taken. The same function will keep on being repeated, making the Q-Table
always updated until achieving the goal with the optimal score.

Figure 15: Q-function equation
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3.4 Reinforcement Learning with Neural Network

While creating and using a Q-table is easy in simple situations, it can be extremely
challenging in some real-world environments. It is quite inefficient to manage Q-values
in a table because there can be thousands of actions and states in a real-life scenario.
Here, rather than using a table to forecast Q-values for actions in a given state, we can
use neural networks [2]. In the Q-learning process, we initialize and train a neural
network model rather than initialize and update a Q-table.

Each layer of a neural network is made up of several processing nodes that are coupled
closely together, and these layers are made up of three things.

1) Input Layer: The input layer typically has a predetermined number of nodes
that match the input data, like the number of states in an environment.

2) Hidden Layers: The architecture of a neural network often has one or more
hidden layers. The architecture's hyperparameters include the number of layers
and nodes in each layer.

3) Output layer: Likewise contains a predetermined amount of nodes that
correlate to the output that is needed, such as the number of actions in an
environment.

An example if exists 16 states in the environment, they will be represented with the
same number of nodes in the input layer, while the number of actions in the
environment will be represented by nodes in the output layer. Moreover, there is a
fully-connected single hidden layer comprised of 20 nodes as demonstrated in figure 16.

Figure 16: Neural Networks

Depending on the inputs received from the preceding nodes, weights, and biases it
learns, a processing node generates an output while also making use of an activation
function. The goal of that is to give the output, which is primarily linear, with some
non-linearity, which makes the neural network able to learn complex and real-world
patterns. [6]
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Given that selecting an activation function for a neural network involves optimization, it
is included in the list of hyperparameters. But we may get off to a solid start by
considering the nature of the incoming data and the desired outcome. We'll use the
Linear activation function (figure 17) in the output layer and the Rectifier Linear Unit
(ReLU) as the activation function in the hidden layer.

To lower the error in the predictions that they can make, Neural Networks operate by
iteratively updating the model's weights and biases. To need to be able to determine the
model inaccuracy at any given time, the loss function is used. In Neural Network
models, loss functions are frequently used like cross-entropy and mean-square-error.

Figure 17: Activation Function

The square value of the difference between the prediction and the target is measured by
the mean-squared-error loss function:

Figure 18: Mean-squared-error loss function

The idea behind calculating the loss function is to update the weights by taking the
feedback backward through the network. This process is referred to as backpropagation
and can be accomplished using a variety of algorithms, starting with the conventional
stochastic gradient descent.
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Chapter 4: The Game concept

As mentioned before, the game chose to demonstrate the work is a single-player Tower
Defence game developed using the Unity 3D engine (figure 19). Tower Defence games
are of a strategic/tactical subgenre, in which the player must protect their territory from
waves of enemy attackers.

Figure 19: Tower Defence menu

Typically, the player must line the path where the waves of enemies are moving down
with towers and traps. However, the player doesn't have direct control over these towers
as they only start a fire when the enemy comes closer to them.

Tower Defence games are often used to test and develop AI algorithms, as they provide
a challenging environment in which to learn and optimize strategies.

This project has been much more oriented to getting a functional game where the
ML-Agents plugin [10] could be tested and a nice result in terms of machine learning
could be obtained.

4.1. Game walkthrough

There isn’t much difference in the game used to other games out there, as the player
finds themselves having the choice of selecting of a number of levels, each one with a
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different environment, towers, and enemies. However, the main difference comes in the
difficulty, with higher levels having several paths for the enemy tanks to pass through,
which makes it harder to defend the base.

For simplicity and demonstration, the level chosen for our work will be the first level,
see figure 20, where there is only one path for the enemy to go through, making it easier
and faster for the agent to develop an approach to stop and destroy the tanks and defend
the base.

Figure 20: Tower Defence environment

4.2. Environment

As it’s seen in figure 20, there is a single entry, where the enemies start to try to reach
the base, shown in red, which the player must defend. For each second the enemy tank
stay in the base, the health, in the top left corner, will drop by one, meaning tanks can’t
stay for more than 10 seconds in the base or the player will lose the game.

On the other hand, to win the game, the player must survive the ten waves without
losing the full health he started with. The higher health he ends the game with, the more
the final score he achieves.

Moreover, the player can place towers in 22 different placements, three grids, and four
singles, where two towers can’t be placed in the same placements. The towers are
purchased by a game currency, shown in the top left corner as a blue thunder icon,
where each tower has a different cost, depending on its power and range.
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4.2.1. Towers types

Figure 21: Tower Defence types

1) Assault Cannon (Tier 1): The cheapest option with a price of 4 currencies. Has
the shortest of ranges, but a high fire rate; however with low damage (1.00
DPS).

2) Assault Cannon (Tier 2): An upgrade of tier 1 with a price of 8 currency. It
Posses the same attributes of the tier 1, with the difference coming in the
damage (1.50 DPS).

3) Assault Cannon (Tier 3): An upgrade of tier 2 with a price of 14 currency.
Posses the same attributes of the tier 1 and 2, with the difference coming in the
damage (2.00 DPS).

4) Rocket Platform (Tier 1): Starts at the price of 12 currency. Has a higher
range and damage, but only affects ground enemies (2.70 DPS).

5) Rocket Platform (Tier 2): An upgrade of tier 1 with the price of 24 currency.
The same attributes of tier 1, but with higher damage (3.50 DPS).

6) Rocket Platform (Tier 3): An upgrade of tier 2 with the price of 32 currency.
Has a higher range and damage, but only affects ground enemies (6.00 DPS).

7) Plasma Lance (Tier 1): The most powerful tower available with a huge range;
however, with a very slow fire rate starts at the price of 15 currency (3.60 DPS).
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8) Plasma Lance (Tier 2): An upgrade on the damage of tier 1 with the price of 30
currency (5.60 DPS).

9) Plasma Lance (Tier 3): An upgrade on the damage of tier 2 with the price of 40
currency (8.00 DPS).

4.2.2 Actions

Figure 22: Tower Defence actions

While there are several actions the player can take in the game, in our work the agent
will just have three actions to choose from, see figure 22, which include:

1) Buy a new tower and place it in an empty placement tile.
2) Upgrade an existing tower.
3) No action.

The actions will be made after taking into consideration the currency available, the
progress of the game, health, etc... However, this will leave some actions out of the
hands of the agent, which include:

1) Sell a tower.
2) Restart the game.
3) Add currency (a cheat button that was added for testing reasons)
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4) Pause the game.
5) Quit.

4.2.3 Software needed

• Unity3D 2020.3.36f1 engine with the C# programming language, for the development
of video game and artificial intelligence techniques. [15]

• Tensorflow 1.4 open source software library for high performance numerical
computation. [14] [17]

• Machine Learning Agents (ML-Agents) 0.3 and TensorFlowSharp as the plugins to
integrate reinforcement learning along with Unity.

• Anaconda 3 5.1.0, which includes Python 3.6.4, Conda 4.4.10, and Jupyter Notebook
4.4.0 under which Tensorflow runs. [13] [18] [19]

• Visual Studio 2019 version 16.11 as integrated development environment IDE.

4.3. Adding neural networks to the video game

As Reinforcement Learning witnessed a huge breakthrough recently, Unity made it
easier for developers to implement the Machine Learning algorithm in their projects
using a toolkit called Unity ML-Agents. It’s a plugin that was developed only in 2017
and it allows developers to use the Unity Game Engine as an environment builder to
train agents.

The benefits of using ML-Agents also include it being open source [11] with a very easy
setup that requires minimal coding. Moreover, it has strong documentation with great
example projects, making AI/Machine Learning expertise not required to master.

Reinforcement Learning in ML-Agents works following the Markov Decision
Processes, which were discussed earlier in the report.

Within this context, the main functions within the learning loop are introduced. Calling
the agent’s RequestDecision() executes the following process, called Experience:

1) Observing the environment with the CollectObservations() function.
2) Taking an action using the OnActionReceived() function.
3) Get rewards returned from the SetAgentReward() function.
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4.3.1. Observations, actions, and rewards for the video game

The ideal course of action is attempted via Reinforcement Learning given several
observations. The observations must be sufficiently indicative of the state of the game
because the agent will base its actions on these observations and its prior experiences
each time it is asked to make a new decision.

All observations the agent has to take into consideration are shown in table 1.

The Number of Towers is retrieved for the agent to decide whether the agent should
take the decision of buying a new tower or instead upgrade an existing one. Similarly is
the number of empty placements, which the agent can decide upon the maximum
number of towers he can buy in the future. Meanwhile, the number of currency decide
whether the agent can buy a new tower, upgrade an existing one, or just do nothing.
Finally, the number of lives is a way of penalizing the agent, because if the number falls
to zero, the agent will lose the game, and subsequently gets a negative reward.

Table 1: Observations Table

Depending on the observations retrieved from each state, the agent has the choice of
making three different actions, which are to either buy a new tower, upgrade an existing
one, or just take no action at all. See table 2.

These three actions are directly affected by the number of towers existing, the number
of currency, and the number of empty placements. However, several times, the agent
will observe empty placements and will have a huge number of currencies, but will still
decide to take no action because it wouldn’t affect its final reward.

Table 2: Actions Table
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The Reward Function is an incentive system that instructs the agent through reward and
punishment on what is right and wrong. The agent will always want to maximize overall
rewards and will even sometimes forego immediate rewards to increase overall rewards.

In this case the reward system is simple, the agent will get a positive reward in case he
manages to win the game and punishment when he loses. See table 3.

Table 3: Rewards Table.

4.3.2 Code

While the ML-Agent package allows minimal coding, there are some classes needed to
be coded to implement the Reinforcement Learning algorithm. These classes each serve
as a GameObject for a specific purpose.

It’s recommended to take a look at the several examples that come with the ML-Agent
plugin, especially the 3D-Ball Environment one, as its simplicity acts as a great
introduction to how the plugin works. The plugin also comes in with great and in-depth
GitHub documentation that will clear any doubt you may face.

However, in this section, we will not get into every class or piece of code that has been
written, but just two important ones that shaped the project to the way it’s right now.

The first step was to create the AgentAI class which is responsible for several aspects,
including collecting observations, actions received, and several other methods which
will be explained in detail later. The primary purpose of the Agent class, which is a
GameObject with a script that inherits from the Agent Unity class, is to provide the
brain with observations and rewards while also computing the actions the brain returns
to it.

Agents in an environment operate in steps. At each step, an agent collects observations,
passes them to its decision-making policy, and receives an action vector in response. In
general, agents make observations using ISensor implementations; however, the
ML-Agents have several implementations for visual observations, including
CameraSensor, RayPerceptionSensor, and VectorSensor, which all can be added as
components to an agent's GameObject. For the usage of these vector observations, the
CollectObservations(VectorSensor) function can be implemented in the Agent class,
which the agent will use before taking an action.

A decision-making policy can be implemented for the agent using a
BehaviorParameters component attached to the agent's GameObject. The BehaviorType
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setting determines how decisions are made:

● Default: Decisions are made by the external process, when connected.
Otherwise, decisions are made using inference. If no inference model is
specified in the BehaviorParameters component, then heuristic decision-making
is used.

● InferenceOnly: Decisions are always made using the trained model specified in
the BehaviorParameters component.

● HeuristicOnly: when a decision is needed, the agent's Heuristic(Single[])
function is called. The implementation is responsible for providing the
appropriate action.

The following are different fields, properties, and methods that are necessary for the
implementation of the agent.

Fields:

MaxStep: The max step value determines the maximum number of steps the agent
takes before being done.

Methods:

OnEpisodeBegin(): Called to set up an Agent instance at the beginning of an episode,
with EndEpisode() called at the end to set the done flag to true and reset the agent. See
code block 1.

Code block 1: OnEpisodeBegin

public override void OnEpisodeBegin() {

if(!first_scence)

{

string currentSceneName = SceneManager.GetActiveScene().name;

SceneManager.LoadScene(currentSceneName);

}

first_scence = false;

}

41



CollectObservations(): An agent's observation is any environmental information that
helps the agent achieve its goal. For example, for our project, the observations include
the number of towers, the number of lives left, and the number of currencies. See code
block 2.

Code block 2: CollectObservations

public override void CollectObservations(VectorSensor sensor)

{

int TowerCounterInt = spawnManager.GetTowerCount();

sensor.AddObservation(TowerCounterInt);

int currencyCounterInt = spawnManager.GetCurrency();

sensor.AddObservation(currencyCounterInt);

}

OnActionReceived(): Specifies the agent behavior at every step, based on the provided
action. An action is passed to this function in the form of an array vector. The array is
used to direct the agent's behavior for the current step. Actions for an agent can be either
Continuous or Discrete, and can be of any size. In our case, the agent has three actions
to choose from, either place a tower, upgrade a tower, or do nothing, meaning we had to
use an array size of three. See code block 3.

Code block 3: OnActionReceived

public override void OnActionReceived(ActionBuffers actions)

{

int placementIndex = actions.DiscreteActions[0];

int towerIndex = actions.DiscreteActions[1];

int action = actions.DiscreteActions[2];

if(action == 1)

spawnManager.TowerPlacementAI(placementIndex,towerIndex);

else if(action == 2)

{

spawnManager.upgradeTowerAI(towerIndex);

}

}
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AddReward(): One of the most important methods in the agent class and its purpose is
to increment the step and episode rewards by the provided value. The method is used
for both positive (to reinforce desired behaviour) and negative (penalizing mistakes)
rewards. Moreover, the SetReward is used to assign a specific reward to a certain and
current step, rather than increasing or decreasing it. See code block 4.

Code block 4: AddReward

public void SetAgentReward(float Reward)

{

AddReward(Reward);

reward += Reward;

}

public void gameWin()

{

AddReward(50f);

reward += 50;

Debug.LogWarning("gameWin...." + reward);

EndEpisode();

}

public void gameLose()

{

AddReward(-50f);

reward += -50;

Debug.LogWarning("gameLose...." + reward);

EndEpisode();

}

Finally, the SpwanManager class, which acts as the preparator for the agent and the
ML-Agent. It can be viewed as the one who takes care of setting up the environment,
and agent, starting the waves, updating the level, as well as placing and upgrading the
towers. It also retrieves the number of towers each state, the number of currencies, and
the number of lives left so the agent can act accordingly.

Overall it has 10 methods, each one with different purposes, and while it doesn’t
directly affect the training, it acts as a facilitator for the agent to observe and act on the
environment. The class can be seen in the code block 5 in the appendix.
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4.3.3 Training the agent

After writing the code for the AgentAI class, the next step is to implement it as a
GameObject inside the Unity with Behavior Parameters so that we can start training the
agent in real-time as seen in figure 23.

The first thing we can notice in the Behavior Parameters is that the AgentAI has a
Vector Observation of Stack Size 2 because as was mentioned before, there are only two
observations that matter for the agent to take actions, which are the Tower count and the
Currency count.

Meanwhile, the Actions has 3 discrete branches, specifying the actions of placing a
tower, upgrading a tower, or taking no action, with the first having 23 branches, which
relates to the number of placements tiles.

It can also be seen that the model has a model called AgentAI and a behaviour type of
Interference Only because this image was taken after the agent already was trained.

Figure 23: Agent Behaviour
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After specifying the Behavior Parameters inside Unity, the next step that is needed to be
done is to open the cmd and move to the directory of the game this will be followed by
moving into the TrainerConfig folder, where the following command will be triggered:

“mlagents-learn trainer_config.yaml --run-id="TowerDefence_1"

The trainer_config.yaml refers to the trainer_config file inside the folder, while the
run-id can be called anything the user wants.

Figure 24: Unity Terminal

A Unity logo should appear inside the cmd terminal, see figure 24, as now the agent is
ready to be trained. The only thing left to do so is to return back to the Unity Engine and
press the play button and let the AI train in real time.

To speed up and stabilize the training, multiple agents could be trained together at the
same time and this is done by duplicating the Agent GameObject multiple times inside
the environment.
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4.3.3.2. Understanding the trainer_config.yaml file

The trainer_config.yaml is a configuration file responsible for specifying the
hyperparameters and other settings specific to ML-Agents, including the training. While
these values can be altered optionally, their values are specified to adapt to the way the
agent learns.

Let’s have a look at the most important parameters inside the file of our project.

Batch Size: Refers to the number of training examples utilized in one iteration. The
default size is 1024, which was applied in our project given its simplicity.

Buffer Size: Indicates how many experiences (observation, action, rewards loop)
should be collected before updating the model. The larger the experience replay, the less
likely correlated elements will sample, hence the more stable the training of the NN will
be. The default value is 10240, which was left in our project.

Learning Rate: Often referred to as alpha or α, can simply be defined as the amount
that the weights are updated during training. It usually has a small positive value, often
in the range between 0.0 and 1.0. The default value is 0.0003 and has been used.

Gamma: This decides whether the agent should be in favour of a long-distant future
reward or an immediate one, the higher the values, the more future rewards the agent
will search for. In our game, we opted for the default value of 0.99 to take into
consideration more observations.

Lambda: The lambda parameter decides how much you bootstrap on earlier learned
value versus using the current Monte Carlo roll-out. This indicates a trade-off between
more bias (low lambda) and more variance (high lambda). In many cases, initiating
lambda to zero is already a fine algorithm, but setting lambda higher helps speed up
things. The typical range is between 0.9 and 0.95, and the latter was used in the project.

Max Steps: Indicates how many steps there are in the current training procedure. When
loading older models from which further learning is desired, it must be enhanced. The
higher the number the more complex problem, but since our project is simple, we used
the default values of 500000.

Beta: Its objective is to regularize the entropy, which ensures the agent properly
explores all the possible actions during training. . The typical range is between 0.0001
and 0.01, and in our project, the values used were at 0.005.

Number of Layers: Refers to how many hidden layers are present after the observation
input. More layers may be necessary for complex control problems. The typical range
values are between 1 and 3. The default is 2 and it was used.

Hidden Units: Correspond to how many units are in each fully connected layer of the
neural network. For problems where the correct action is a simple combination of the
observations, this should be small. The typical range is between 32 and 512. The default
is 128 and 64 was used.
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Chapter 5: Results

The results are retrieved after several runs of the training have finished and the agent
has managed to find the optimal and highest reward possible. The process was done and
the graphs were made using TensorBoard.

TensorBoard [9] provides the visualization and tooling needed for machine learning
experimentation, including tracking and visualizing metrics, visualizing the model
graph, viewing histograms of weights, biases, or other tensors, and many more.

We will not review every metric that has been retrieved, but the main ones that provide
significant information regarding the quality of the training.

5.1 Tensorboard summaries

Figure 25: Cumulative reward

Figure 25 represents the average cumulative reward for all training agents. Since the
goal is to get the agent to reach the biggest reward possible, it ought should rise after a
productive training session. As we can from our training, the graph goes frequently ups
and some downs, resulting in successful training.
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Figure 26: Episode Length

The mean length of each episode in the environment for all agents, and as it’s shown in
figure 26, has seen a severe drop during the training. This is due to the agent finding the
optimal reward fast.

Figure 27: Policy Loss

The mean magnitude of the policy loss function. Pertains to the rate of change of the
policy (process for deciding actions). The magnitude should decrease during successful
training, which is seen in figure 27.

The Value Loss, figure 28, refers to the mean loss of the value function update. This
measures how accurately the model can forecast the value of each state and it should
increase while the agent is learning and the reward is increasing and decreasing once the
reward becomes stable. See figure
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Figure 28: Value Loss

Figure 29: Entropy

Figure 29 corresponds to how random the decisions of a Brain are. This should
consistently decrease during training. If it decreases too soon or not at all, beta should
be adjusted (when using discrete action space), which should have happened during the
training. In other words, the higher the entropy, the harder it is to draw any conclusions
from the given information.

Figure 30: Learning Rate
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Figure 30 representes how large a step the training algorithm takes as it searches for the
optimal policy. Should decrease over time, which is exactly what happened in the Tower
Defence game.

Figure 31: Value Estimate

The mean value estimate for all states visited by the agent. Should increase during a
successful training session as the cumulative reward increases, which can be seen in
figure 31. They correspond to how much future reward the agent predicts itself to
receive at any given point.

5.2 Mistakes in setting up observations and rewards

As mentioned before in the adding neural networks into the video game section, only
four observations were getting retrieved for training, namely the number of towers,
number of currency, number of lives, and number of empty placements, which were
enough to make the agents win with the highest score, but not enough to give a
human-like behaviour.

The most noticeable example would be the agent in the final wave, wave ten, (figure 32)
having 267 currencies left, and several tier one towers. Moreover, it can be seen that
there are only four Rocket Platform towers all of tier one, and only one of Plasma
Lance, also of tier one. This is all despite it being possible to upgrade all the towers to
the highest tier.

However, the reason the agent decided to take such an action (do nothing) was that it
was specified that currencies and the number of towers have no impact on the score,
while which it’s understandable from the agent's perspective, it shows the difference
between how a typical gamer would play the game to an AI agent.
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Figure 32: Tower Defence wave 10

Also as the game score only gets affected by the number of lives left, the agent didn’t
try to destroy all the enemy tanks as far away from the base, with his only concern
being finishing the game with all ten of his lives left.

Had a reward been for destroying the enemy as far away from the base as possible,
something which most human players would have preferred to do, the observations
would have changed as well, and the last two issues wouldn’t have appeared during the
training and the agent would have used all of his money to buy new towers, while
upgrading all of them, especially the ones closer to the starting point. See figure 33.

Another issue that was discovered by the Tensorflow board is the increase of the
Entropy over time, which reveals that the agent randomness continued even after
managing to reach the final and optimal reward. The way that would have had us avoid
that would be adjusting the hyperparameters, especially the beta.
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Figure 33: Tower Defence wave 6
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5.3 Unexpected problems

Several issues arose during the installation of python, Unity, and the rest of the software
applications; however, they were due to permissions. Moreover, due to the longevity of
the development process, several software, namely Unity3D and Tensoflow changed
their versions, which led to complications to resume the development process and the
integration of the software with each other.

When it comes to the development part, an issue was found with the agent’s ability to
place the towers in the grid placements. This is due to the gird’s size being 3x8 while
the single tower is at 2x2, meaning a tower can be placed in a different format, which
will affect the placements of the future towers. See figure 34.

This led to the agent getting confused when placing towers in the grid and as a result,
sometimes it would place just two or three towers in the grid when the maximum can
reach up to four towers per grid.

Figure 34: Tower Defence wave 7

After long research, the solution was found to be specifying four extra single-placement
tiles over the grid, as that would force the agent to place the tiles in a 2x2 format and
wouldn’t lead to a situation in which the agent places just two or three agents because of
bad placements
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5.4 Areas to Improve and future work

As mentioned before, while the agent managed to achieve the highest score possible, his
behaviour wasn’t fully similar to that of a human player. This is due to the way the
observations and rewards have been set, and its only concern is to achieve a three-star
rating as seen in figure 35.

Figure 35: Tower Defence score

Therefore, new observations and rewards should be added based on the distance
between the start point and the base as it would make the agent try to destroy the
enemies as away from the base as possible, which will most humans will do in a Tower
defence game.
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Chapter 6: Conclusion

This chapter will conclude the study by summarising the key research findings in
relation to the research aims and questions. It will also review the limitations of the
study and propose opportunities for future research.

The purpose of the project was aimed at creating integrating the Reinforcemet Learning
algorithm in a Tower Defence video game, with the following objectives being met:

● Research and fully apprehend the Reinforcement Learning algriothim.
● Restructure the Tower Defence video game to be AI-integeration ready.
● Integrate the Reinfrocemet Learning to the game.
● Create a well-structured agent to be able to win the game with the highest score.

Further findings show that while Reinforcement Learning and Machine Learning in
general have developed a lot recently, it’s quite obvious that an agent would still not be
able to 100% imitate a human-being. While, yes the agent managed to finish the game
with the highest score, the little challenges a normal player would do, the agent didn’t
consider as it’s only goal was to win the game.

This could be an argument of why Machine Learning would never be able to 100%
replace humans despite being fast, more accurate, and consistently rational, but they
aren't intuitive, emotional, or culturally sensitive; however, they will for sure help make
humans smarter and more efficient.

Moreover, I explored different aspects of the Reinforcement Learning, including the
Markov-Decision Process as well as the Q-Learning algorithm, with the latter being
used in a clear and simple example that it would act as a starting points for anyone
interested in learning the topic.The topic of Reinforcement Learning with Neural
Network was also given the highlight with some examples.

Some development using C# and Unity3D was made during the work of that project,
alongside some solutions to future problems that would face the developers when it
comes to setting up the game for Artificial Intelligence, and in doing so, this report
could act as a reference for any future work related with Machine Learning in game
development.
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Regarding improvements and future works, extra observations and rewards should be
considered by the developer in order to make the agent more human-like as it still has
the limitation that its actions are made with a logic not comparable to the one of a
human.

As an improvement proposal, the developer should consider observations in regards of a
normal gamer that would set personal challenges for himself aside from the game score.

Summarizing on a personal level, the project has taught me a lot regarding Machine
Learing in general and Reinforcement Learning in specific, while also giving me an
insight on how game development is done. Moreover, it helped me learn the importance
goals-seeting, deadline meeting, communication, research, and working under pressure.
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Appendix

Code block 5: Spawnmanager class

public class SpawnManager : MonoBehaviour

{

[SerializeField]

public Tower[] Towers;

[SerializeField]

public TowerPlacementGrid[] TowerPlacementGrids;

[SerializeField]

public SingleTowerPlacementArea[]

singleTowerPlacementAreas;

[SerializeField]

public AgentAI agentAI;

private List<Tower> TowersSpawned;

public int state = 0;

private bool done = true;

void Start()

{

TowersSpawned = new List<Tower>();

}

private void Update()

{

if (LevelManager.instance.levelState ==

LevelState.Win)

{

done = true;

gameWin();

}

if (LevelManager.instance.levelState ==

LevelState.Lose)

{

done = true;

gameLose();

}

if (LevelManager.instance.levelState ==

LevelState.Building && done)

{
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Debug.LogWarning("press Start Wave");

startWaves();

done = false;

}

}

public void gameWin()

{

agentAI.gameWin();

}

public void startWaves()

{

GameObject.FindGameObjectWithTag("StartWaveButton").GetComponent<

Button>().onClick.Invoke();

}

public void gameLose()

{

agentAI.gameLose();

}

public int GetCurrency()

{

return LevelManager.instance.currency.currentCurrency;

}

public int GetTowerCount()

{

return TowersSpawned.Count;

}

public int GetLifes()

{

return

(int)LevelManager.instance.GetAllHomeBasesHealth();

}

public void TowerPlacementAI(int gridIndex, int

towerIndex)

{

Utilities.IntVector2 newTowerPosition = new

Utilities.IntVector2(0, 0);

bool successfulPurchase = false;
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if(TowerFitStatus.Fits ==

singleTowerPlacementAreas[gridIndex].Fits(newTowerPosition,

Towers[towerIndex].dimensions))

successfulPurchase =

LevelManager.instance.currency.TryPurchase(Towers[towerIndex].pur

chaseCost);

if (successfulPurchase)

{

if (TowerFitStatus.Fits ==

singleTowerPlacementAreas[gridIndex].Fits(newTowerPosition,

Towers[towerIndex].dimensions))

{

Tower newTower =

Instantiate(Towers[towerIndex]);

newTower.Initialize(singleTowerPlacementAreas[gridIndex],

newTowerPosition);

TowersSpawned.Add(newTower);

}

}

}

public void upgradeTowerAI(int index)

{

if(index < TowersSpawned.Count)

{

int newLevelCost =

TowersSpawned[index].GetCostForNextLevel();

if (newLevelCost != -1 &&

LevelManager.instance.currency.CanAfford(newLevelCost))

{

TowersSpawned[index].UpgradeTower();

agentAI.SetAgentReward(5);

}

}

}

}

}
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