

This is the author’s accepted manuscript of the following book chapter: Teresa

Gomes, Luisa Jorge, Rita Girão-Silva, Jose Yallouz, Péter Babarczi, Jacek

Rak. Fundamental Schemes to Determine Disjoint Paths for Multiple Fail-

ure Scenarios. In: Jacek Rak, David Hutchison (eds) Guide to Disaster-

Resilient Communication Networks, chapter 17, pages 429-453. Com-

puter Communications and Networks. Springer, Cham, 2020. DOI:

10.1007/978-3-030-44685-7 17, which has been published in final form at https:

//link.springer.com/chapter/10.1007/978-3-030-44685-7_17.

Fundamental Schemes to Determine Disjoint Paths for

Multiple Failure Scenarios∗

Teresa Gomes†‡ Lúısa Jorge§‡ Rita Girão-Silva†‡ Jose Yallouz¶

Péter Babarczi‖ Jacek Rak#

teresa@deec.uc.pt ljorge@inescc.pt rita@deec.uc.pt jose@joseyallouz.com

babarczi@tmit.bme.hu jrak@pg.edu.pl

January 2020

∗This chapter is based on work from COST Action CA15127 (“Resilient communication services pro-
tecting end-user applications from disaster-based failures – RECODIS”) supported by COST (European
Cooperation in Science and Technology). This work is funded by ERDF Funds through the Centre’s
Regional Operational Program and by National Funds through the FCT - Fundação para a Ciência e
a Tecnologia, I.P. under the project CENTRO-01-0145-FEDER-029312. This work was also partially
supported by FCT under project UIDB/00308/2020.
†University of Coimbra, Department of Electrical and Computer Engineering, Rua Śılvio Lima, 3030-

290 Coimbra, Portugal
‡INESC Coimbra, Rua Śılvio Lima, 3030-290 Coimbra, Portugal
§Instituto Politécnico de Bragança & CeDRI, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
¶Technion, Israel Institute of Technology, Department of Electrical Engineering, Haifa, Israel
‖Budapest University of Technology and Economics, MTA-BME Future Internet Research Group, H-

1111 Muegyetem rakpart 3, Budapest, Hungary
#Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G.

Narutowicza 11/12, PL-80-233 Gdansk, Poland

1

https://link.springer.com/chapter/10.1007/978-3-030-44685-7_17
https://link.springer.com/chapter/10.1007/978-3-030-44685-7_17

Abstract

Disjoint path routing approaches can be used to cope with multiple failure sce-

narios. This can be achieved using a set of k (k > 2) link- (or node-) disjoint path

pairs (in single-cost and multi-cost networks). Alternatively, if Shared Risk Link

Groups (SRLGs) information is available, the calculation of an SRLG-disjoint path

pair (or of a set of such paths) can protect a connection against the joint failure of

the set of links in any single SRLG. Paths traversing disaster-prone regions should be

disjoint, but in safe regions it may be acceptable for the paths to share links or even

nodes for a quicker recovery. Auxiliary algorithms for obtaining the shortest path

from a source to a destination are also presented in detail, followed by the illustrated

description of Bhandari’s and Suurballe’s algorithms for obtaining a pair of paths

of minimal total additive cost. These algorithms are instrumental for some of the

presented schemes to determine disjoint paths for multiple failures scenarios.

1 Introduction

The capability of a network to deliver services in the presence of failures of network el-

ements, known as survivability, is undoubtedly one of the critical issues in the design of

resilient communication systems. Concerning the multi-hop routing, survivability is typi-

cally assured by additional communication paths called backup (or alternate) paths used to

restore the network traffic affected by a failure of network elements traversed by a primary

(working) path [1, 2]. As failures in communication networks can refer to either network

links or nodes, backup paths should be link- (or node-) disjoint with the respective work-

ing paths, i.e., have no common links (transit nodes) with the associated working paths,

accordingly (see Fig. 1).

An important observation is that nodal-disjointness includes link-disjointness. There-

fore, a scheme protecting against a failure of a network node automatically provides pro-

tection against a link failure, but the reverse relation is not true.

In some cases, establishing a pair of end-to-end disjoint paths may be not possible. It

can happen for instance due to topological constraints of the network graph, or because

of the network segmentation issues (i.e., when different parts of the network are owned by

different operators not willing to share the intra-network information among networks).

In such cases, establishing a set of communication paths traversing joint links/nodes can

be the only solution. Similarly, in the case of large problem instances (e.g., for large

networks and distant end-nodes of a demand), to reduce the computational time, it may

2

1

2

working path backup path

4

5

863

11

10

1

2

4

5

863

11

10

(a) (b)

7

9 9

7

Figure 1: Examples of (a) link- and (b) nodal-disjointness of working and backup paths
for a demand between nodes 1 and 11 to assure protection against a failure of a network
link/node

working path backup paths

1

2

4

5

863

11

10

(a) (b)

9

71

2

4

5

863

11

10

7

9

region of failures

Figure 2: Example survivability schemes for a demand (1, 11) for multiple failures of net-
work elements (a) occurring in a given region, and (b) without region-dependent correlation

be reasonable to introduce segmentation of the network graph and calculate a set of disjoint

paths for each such segment.

For a given demand, a pair of link-(node-) disjoint paths is sufficient to provide protec-

tion against a failure of a single link (node), which, based on statistics, covers over 70% of

all failure scenarios [3]. Also, based on meteorological observations related to the frequency

of occurrence of natural disasters, as well as statistical results related to malicious human

activities, the risk of occurrence of simultaneous failures of multiple network elements is

raising [4]. In the former case, a backup path should be region-disjoint / geographically-

diverse with the associated working path, while in the latter case of non-correlated multiple

(k -1) failures, a scheme of k disjoint paths seems necessary, as shown in Fig. 2.

Other causes of multiple failures include physical co-location of multiple links in the

3

same physical concrete conduit defining a Shared Risk Link Group (SRLG), i.e., a group

of links subject to a simultaneous failure after a conduit cut.

If a cost of a network link is the same for each of k paths of a demand, this scenario

is referred to as a single-cost network case. Otherwise, if differentiated costs of a link are

applied when finding each of k paths, the scheme is known to be the multi-cost network

case [1], as, e.g., under backup path sharing, where the cost of a backup path link is only

a part of its cost from working path computations [5].

A common objective function of the optimization problem related to the calculation

of disjoint paths is the minimization of the total cost of communication paths of a given

demand (assuming a given metric of link costs), or for the entire set of demands. In the

first case, an optimal solution for a given demand can be obtained in a fast way (i.e., in

polynomial time) for some problem instances (e.g., for single-cost networks). However,

for minimization of the total path cost for all demands jointly, no time-efficient solution

has been proposed so far, and the problem is, therefore, still considered as a non-easy one

requiring sub-optimal heuristic schemes.

In our opinion, all issues highlighted above form the set of fundamental concepts nec-

essary to understand before deploying any routing scheme resistant to multiple failures.

Therefore, the objective of this chapter is to discuss in detail all mentioned aspects as well

as to provide description of characteristics of major schemes of path calculations available

in the literature designed to enable restoration of the the affected traffic after simultaneous

failures of multiple network elements.

The remaining part of this chapter is structured as follows. In Sect. 2, the basic

optimization problems related to resilient routing are defined. Section 3 highlights the

concept of SRLG and its role in determination of a set of paths resistant to multiple failures.

Section 4 presents and illustrates two algorithms for shortest path determination (Dijkstra’s

and Modified Dijkstra’s algorithms). Further sections provide description of representative

schemes to establish a set of disjoint paths, including Suurballe’s and Bhandari’s algorithms

(Sect. 5) for single-cost networks, k -Penalty scheme for multi-cost networks (Sect. 6), and

schemes to obtain the partially disjoint paths (Sect. 7). Finally, Sect. 8 concludes the

chapter.

4

2 Algorithms for Disjoint Routing

Several disjoint routing problems can be formulated as optimization problems. Some of

them can easily be solved by effective algorithms, which are presented in the next subsec-

tions.

Consider the network to be represented by a directed graph G(V,A), where V =

{v1, v2, . . . vn} is the set of nodes and A = {a1, a2, . . . , am} is the set of directed arcs,

where n and m are the size of sets V and A, respectively. Each element a of A is an

ordered pair of elements of V , hence a = (vi, vj), and arc a may also be represented as

aij. In a single cost network, each arc is assigned a cost represented by ca or cij, usually

positive. Often the cost represents an additive metric, e.g., length, cost or delay. In those

cases the cost of a path is the sum of the cost of the arcs in the path.

When bandwidth is the relevant cost, then the metric is no longer additive, because

a path bandwidth is determined by its arc with the smallest bandwidth. However, the

algorithm in Sect. 4.1, with a suitable modification [6], can be used to calculate the widest

path from a source to a destination node.

The most common disjoint path calculations are the min-sum, min-min and min-max

problems. In the min-sum problem, one seeks a pair of paths such that the sum of their

cost is minimal. The min-min problem seeks the minimum cost path for which a disjoint

path can be found. Finally the min-max problem seeks to minimize the cost of the most

expensive path of the pair. Only the min-sum can be solved in polynomial time. However

the maximization of the sum of the bandwidths of the paths is NP-complete [7].

Variants of these three problems can be obtained if additional constraints are consid-

ered, namely if the paths must be SRLG-disjoint [8], or geodiverse (to make them less

prone to geo-correlated failures) [9–11]. For security reasons, it may also be necessary that

the paths visit some specified nodes [12,13]. Algorithms for calculating the most available

path pairs have also been proposed [14]. A description of an algorithm for calculating the

most available path pair with geodiversity constraints can be found in [15] and in Chapter

3.2.

To illustrate how to formalize these problems, we use the min-sum problem. Let PA

designate the feasible design space of path pairs (p1, p2) from a source node s to a desti-

nation node d (s, d ∈ V) such that p1 and p2 are arc-disjoint paths. The solution to the

min-sum problem for the arc-disjoint case is (p∗1, p
∗
2) given by:

(p∗1, p
∗
2) = arg min

(p1,p2)∈PA

c(p1) + c(p2) (1)

5

with c(pk) =
∑

a∈pk ca with k = 1, 2.

For presenting an Integer Linear Problem (ILP) formulation some additional notation

is necessary:

xkij =

{
1 if path pk traverses an arc (vi, vj) ∈ A
0 otherwise

k = 1, 2 (2)

The formulation is as follows, with cij > 0:

min
∑

(vi,vj)∈A

cij(x
1
ij + x2ij) (3a)

subject to:

∑
j:(vi,vj)∈A

xkij −
∑

j:(vj ,vi)∈A

xkji =

1 if vi = s

−1 if vi = d

0 otherwise

, ∀vi ∈ V, k ∈ {1, 2} (3b)

x1ij + x2ij ≤ 1, ∀(vi, vj) ∈ A (3c)

xkij ∈ {1, 0}, ∀(vi, vj) ∈ A, k ∈ {1, 2} (3d)

where Eq. (3b) are the flow conservation constraints and Eq. (3c) ensures the paths are

arc-disjoint. Because it is assumed cij > 0, ∀(vi, vj) ∈ A, the minimization of the total cost,

ensures no cycles will be present in pk, with k = 1, 2. If the paths were to be node-disjoint,

then constraints in Eq. (3c) would have to be written as
∑

j:(vi,vj)∈A(x1ij + x2ij) ≤ 1,∀vi ∈
V : vi 6= s∧ vi 6= d, which ensures arcs from p1 and p2 do not share an intermediate (head)

node. In this case an additional constraint (x1sd + x2sd ≤ 1) is also needed to avoid using

link (s, d) in both paths.

3 SRLG-disjoint Routing

A Shared Risk Link Group (SRLG) is a group of links subject to simultaneous failure due to

a common risk of failure, such as co-location of multiple links in the same physical concrete

conduit. In Fig. 3(a) the optical links (lightpaths) are represented by ei, i = 1, 2, . . . , 5,

and in Fig. 3(b) the conduits that contain them are represented by gη, η = a, b, c, d, e, f, i.

A failure at a lower network layer can appear as a set of multiple failures at an upper layer

(e.g., the cut of conduit ga at the physical layer in Fig. 3(b) will result in the failure of

6

1
e

e
24

e 5
e

3
e

B

D C

A

(a)

g

gg

gg

g g

a b

c

de

f i

B

D C

A

(b)

Figure 3: Layered architecture of an optical network – adapted from [16]; (a) Lightpath
Layer, (b) Physical Layer

two optical links e1 and e5 at the optical lightpath layer in Fig. 3(a)). Hence SRLGs can

be used to represent multiple failures due to the multi-layered nature of communication

networks. Moreover, SRLGs can be used to represent geographically correlated failures, as

shown in [17] and in Chapter 1.4.

Let R be a set of risks that may cause faults in the network. Let Ar represent the

subset of network optical lightpaths (corresponding to a graph where arcs have an assigned

capacity) that can be affected by risk r ∈ R. Hence Ar is an SRLG associated with r.

For example, assume each edge in Fig. 3(a) is represented by a pair of arcs (in opposite

directions) linking its end nodes. Then A1 (associated with risk r = 1 of an event cutting

conduit ga and causing the failure of optical links e1 and e5, as previously mentioned) is

given by {(A,B),(B,A),(A,C),(C,A)} for the directed representation of the network (where e1

is given by {(A,B),(B,A)} and e5 is given by {(A,C),(C,A)}).
Let

Rp = {r ∈ R : path p contains elements of Ar} (4)

Based on [8] the SRLG problem can be defined as follows.

Definition 1 Find two paths p1 and p2 between a pair of nodes s and d, such that

Rp1 ∩Rp2 = ∅. We also say that p1 and p2 are two SRLG-diverse paths (with respect

to R).

To formalize the min-sum version of the SRLG-disjoint routing problem, the following

notation is used:

7

– hrij with r ∈ R and (vi, vj) ∈ Ar indicates if SRLG Ar contains arc (vi, vj).

hrij =

{
1 if (vi, vj) ∈ Ar
0 otherwise

(5)

– zkr is the decision variable of the SRLG associated with risk r affecting path pk

(k = 1, 2)

zkr =

{
1, if pk contains an arc of Ar

0, otherwise
(6)

The min-sum version of the SRLG-disjoint routing problem is then given by (with

cij > 0) [8]:

min
∑

(vi,vj)∈A

cij(x
1
ij + x2ij) (7a)

subject to:

(3b)− (3d) (7b)∑
(vi,vj)∈A

hrijx
k
ij ≤ |A|zkr , r ∈ R, k = 1, 2 (7c)

z1r + z2r ≤ 1, r ∈ R (7d)

hrij, z
k
r ∈ {0, 1}, ∀(vi, vj) ∈ A, k ∈ {1, 2}, r ∈ R (7e)

Equation (7c) ensures that if risk r affects pk then some arc from Ar must be present in

the path, otherwise no arc in Ar can be selected for path pk. The coefficient |A| is used

because pk may contain more than an arc affected by a given risk r. Equation (7d) ensures

no element from R affects simultaneously both paths.

In [8] it is shown that finding an SRLG-disjoint path pair is NP-complete, hence several

heuristics have been proposed for solving this problem: in [16,18] for the min-sum version

and in [19,20] for the min-min version. Note, however, that the optimal stopping condition

proposed in [18] is not valid for general SRLGs, as shown in [21].

8

4 Shortest Path Algorithms

The objective of the original version of Dijkstra’s algorithm proposed in 1959 in [22] is to

find a single path between a pair of source s and destination d nodes in a network graph

characterised by the lowest cost defined as a total cost of all traversed links. Other variants

of the algorithm introduced later on focus, e.g., on finding the shortest-path tree from a

specific source node to all the other nodes in the graph. Although this algorithm, and

others presented in this section, consider directed graphs, these algorithms also apply to

networks with undirected edges, if each of those edges are represented by a pair of arcs

in opposite directions with the same cost (provided the cost is non-negative). Dijkstra’s

algorithm is currently widely used by routing protocols such as IS-IS [23], or OSPF [24].

Next, in Sect. 4.1, Dijkstra’s algorithm is presented together with an illustrative ex-

ample. This is followed, in Sect. 4.2, by a variant which can be used in a network with

negative costs, but without negative cycles. A negative cycle is a path where the only

repeated nodes are the source and destination node, such that its total cost is negative.

This variant is necessary for presenting Bhandari’s algorithm in Sect. 5.2.

4.1 Dijkstra’s Algorithm

When finding a path between a given pair of source s and destination d nodes, execution

of the original Dijkstra’s algorithm is started at node s. All network nodes vi (i = 1, . . . , n)

are initially marked as unvisited (i.e., with unknown optimal cost of paths from node s to

these nodes vi). The labels which store tsi, the cost of paths from node s to all the other

nodes vi ∈ V , are initially set to infinity. Of course the distance of s to itself (tss) is zero,

and s will be marked as the first current node. Let S = V be the initial set of all unvisited

nodes. Associated with each node vi is also τi, its predecessor node in the best known

route from s to vi; this predecessor is initially set to s for all nodes.

Each iteration of Dijkstra’s algorithm preforms the following tasks:

1. set the status of current node to node vi (vi ∈ S) characterized by the lowest

current non-definitive label cost tsi of a path from s to this node vi

(vi = arg minvh ∈ S tsh);

2. mark the current node vi as a visited node (i.e., remove it from set S because it has

“definitive” minimal label);

9

3. update the values of the labels tsj of paths from s to all vj (vj ∈ S) adjacent to the

current node vi ((vi, vj) ∈ A), according to formula (8) if tsi + tij < tsj,

tsj = tsi + tij (8)

and set τj = vi, i.e., node vi becomes the predecessor of vj for the path with the

updated label tsj.

The algorithm is executed until node d is marked as visited or, if necessary, until all the

nodes receive a definitive label – creating a full minimum-cost tree for the network from

node s to all nodes in V \ {s} (assuming all nodes can be reached from s). The cost of the

optimal path from s to d is given by label tsd and the path is obtained from the sequence

of predecessors of d, starting with τd until reaching s.

The network in Fig. 4(a) is used to exemplify the Dijkstra’s algorithm. Figures 4(b)-(g)

show the subsequent steps to find the shortest path tree from node A to all the other nodes.

Nodes with definitive labels are marked with an asterisk in the figures. The thicker lines

signal arcs in the shortest path tree rooted at node A.

At the start, node A is labelled with 0 and all other nodes are labelled with an infinite

value (not shown for simplicity). Hence the current node A label becomes definitive because

is the smallest label value. The next step is to update the label for nodes connected to

A (since A was the current node). The label of B changes to tAB = 2 and the label of D

changes to 3 (Fig. 4(b)). For simplicity, the possible successive updates of the predecessor

of each node are omitted, but each predecessor in the shortest path is shown in the figures

as the tail node of the (thicker) arcs depicting the current shortest path.

Next, B becomes the current node, and its label is marked as definitive because it is the

smallest non-definitive label value. Once again it is necessary to check which non-definitive

labels need upgrading. Connected to node B are nodes C and D. Node C gets a new non-

definitive label, it is now 6. Node D does not change its label because it would become 6

which is greater than its present cost tAD (Fig. 4(c)).

Node D is now the current node and gets a definitive label (because it has the smallest

non-definitive value among nodes C and D). Next, both nodes C and E change their labels

because they are connected to node D. Node C gets a new non-definitive label of value 5.

Node E changes its label to 10.

Afterwards node C becomes the current node and to gets a definitive label. This in

turn will cause node E to update its label to 9. Notice only node E could get a new label,

10

$�
�

%�

'�

&

(�

�

� �

�

�

�

��

(a)

$����
�

%����

'����

&

(�

�

� �

�

�

�

��

(b)

$����
�

%����

'����

&���

(�

�

� �

�

�

�

��

(c)

$����
�

%����

'����

&���

(�����

�

� �

�

�

�

��

(d)

$����
�

%����

'����

&���

(����

�

� �

�

�

�

��

(e)

$����
�

%����

'����

&���

(����

�

� �

�

�

�

��

(f)

$����
�

%����

'����

&���

(����

�

�

��

(g)

Figure 4: Dijkstra’s algorithm example: (a) Network used; (b)-(g) Dijkstra’s algorithm
steps

11

because all other nodes already have a definitive label (Fig. 4(e)). Finally, node E gets a

definitive label (Fig. 4(f)) and the execution of the algorithm ends.

The running time of the original Dijkstra’s algorithm is bounded from above by O(|V |2),
where |V | is the number of nodes in a graph, but can be reduced to O(|A| + |V | log |V |),
where |A| is the number of arcs in the graph when using a Fibonacci heap in implementation

of the algorithm [25].

Dijkstra’s algorithm operating in polynomial time has been shown to return the optimal

path, i.e., the minimal cost path. The proof of optimality can be based on the invariant

hypothesis that for all nodes vi with definite label, the costs of paths from s to vi (tsi) are

the minimal ones, i.e., they cannot be decreased by using any other path. Indeed, it is clear

to see that according to the description of the algorithm above, a path from s to any vi

traverses only the nodes with definitive label. Therefore, for any node with non-definitive

label vw at a given stage of the algorithm we have:

tsw ≥ tsi (9)

If we consider a possibility of existence of a shorter path to node vi via node vw then

we would have:

tsi = tsw + twi (10)

which is contradictory to formula (9).

4.2 Modified Dijkstra’s Algorithm

The Dijkstra’s algorithm is very efficient but it has the aforementioned limitation that it

only works with non-negative arc (and edge) costs. A modified Dijkstra’s algorithm can

support negative arc costs (but only if there are not any negative loops).

The algorithm is similar to the previous one, but in this algorithm definitive labels may

not be final: they must be checked in each round (in its third step) and if a lower cost is

found, these labels will become non-definitive again and their values will be substituted

with new (i.e., smaller) non-definitive labels. If all arc costs are non-negative no definitive

→ non-definitive change can occur, and the modified Dijkstra’s algorithm behaves just

like the regular Dijkstra, albeit slower. In the next example, to illustrate the modified

Dijkstra’s algorithm, the previous network topology is reused, with certain arcs reversed

and with symmetrical costs (Fig. 5(a)).

We start labelling node A with 0 and all other nodes with an infinite value, as with the

12

$�
�

%�

'�

&

(�

�

�� �

�

�

��

���

(a)

$����
�

%����

'�

&

(�

�

�� �

�

�

��

���

(b)

$����
�

%����

'����

&���

(�

�

�� �

�

�

��

���

(c)

$����
�

%����

'����

&���

(�����

�

�� �

�

�

��

���

(d)

$����
�

%����

'����

&���

(�����

�

�� �

�

�

��

���

(e)

$����
�

%����

'����

&���

(�����

�

�� �

�

�

��

���

(f)

$����
�

%����

'����

&���

(����

�

�� �

�

�

��

���

(g)

$����
�

%����

'����

&���

(����

�

�

�

��

(h)

Figure 5: Modified Dijkstra’s algorithm example: (a) Network used; (b)-(g) Modified
Dijkstra’s algorithm steps

13

original Dijkstra’s algorithm. Then node A label becomes definitive. The next step is to

upgrade the label for nodes connected to node A. Node B is the only one directly connected

to node A. Label of B changes to 2 (Fig. 5(b)).

Next, B label becomes definitive. Once again we need to check which non-definitive

labels need to be upgraded. Nodes connected to B are node C and node D (Fig. 5(c)).

Node C gets a new non-definitive label, with value 6. Node D gets a new non-definitive

label as well, also with value 6.

Any of the two nodes with minimum cost value, could be chosen to become the current

node. Node D is chosen and gets a definitive label. Connected to D are nodes A, B and E

(Fig. 5(d)). Only node E will change its label value to 13.

The node which will next become definitive is C (Fig. 5(e)). Connected to C is node D.

Despite label of D having been considered definitive, it must become non-definitive again,

because a smaller cost is found as shown in Fig. 5(e).

Label of D becomes definitive (Fig. 5(f)). Connected to node D is node E, and it gets

a new non-definitive label, with value 11. Now, label of E becomes definitive, and the

algorithm ends (Fig. 5(g)). All nodes now have definitive labels, defining the Shortest

Path Tree (Fig. 5(h)).

5 Suurballe’s and Bhandari’s Algorithm

Considering the min-sum problem, two general algorithms are commonly used to determine

two link-disjoint paths for this problem, the Suurballe’s algorithm [26] and the Bhandari’s

algorithm [27].

5.1 Suurballe’s Algorithm

For the Suurballe’s algorithm [26], the steps of the basic algorithm are:

1. Find the minimum cost path from source s to destination d.

2. Transform the network, by changing the direction for the arcs in the computed

minimum-cost path and the cost for all network arcs, as described below.

3. Find a new minimum-cost path from s to d in the changed network.

4. Remove the common arcs with opposite directions in the computed paths. The

remaining arcs form two minimum cost disjoint paths.

14

$�
�

%�

'�

&

(�

�

� �

�

��

�
�

�

�

(a)

$�
�

%�

'�

&

(�

�

� �

�

��

�
�

�

�

(b)

Figure 6: Suurballe’s algorithm: (a) after transformation and (b) new/second shortest
path

In Suurballe’s algorithm, the transformation in Step 2 (creating what is called reduced

costs) is done to avoid negative arc costs. Assuming the original cost of arc (vi, vj) is

defined as cij and the minimum distance from source s to node vi in the original network is

computed in Step 1 as tsi, the arc costs cij are replaced by costs c′ij as given in formula (11).

This assures that the cost of a path between any two particular nodes is changed by the

same amount that all other paths between those nodes, since any non-terminal node along

the path contributes twice with some value (distance from s to that node), but once as

negative and once as positive, with a null sum overall. Therefore, any optimal solution

for the network with reduced costs is also the optimal solution for the network using the

original costs.

c′ij = cij + tsi − tsj (11)

The cost c′ij thus reflects the additional cost (above the minimum cost previously com-

puted) induced by including arc (vi, vj) in the path to node vj. After that, the arcs on

the original path (which have a reduced null cost) will have their direction reverted, and

any duplicate arcs coalesce into the null cost arc thus created. Since every c′ij is either

positive or null, the Dijkstra’s algorithm can be used in this new network in Step 3 of the

algorithm.

Figures 6, 7 and 8 exemplify the Suurballe’s algorithm, in the same network as before,

to determine two disjoint paths from A to E (see Fig. 4(a)).

The algorithm begins by calculating the shortest path from A to E (already shown in

Fig. 4(g)). The next step is to reverse the arcs on the shortest path (depicted by the dotted

lines), and assign them a null cost, as shown in Fig. 6(a). All other arc costs change, to

reflect the additional cost of that arc to the shortest path. For instance, the cost of arc

15

$�
�

%�

'�

&

(�

�

� �

�

��

�
�

�

� �

(a)

$�
�

%�

'�

&

(�

�

� �

�

��

�
�

�

� �

(b)

Figure 7: Suurballe’s algorithm: (a) paths before deinterlacing and (b) interlaced edge

$�
�

%�

'�

&

(�

�

� �

�

��

�
�

�

� �

(a)

$�
�

%�

'�

&

(�

�

� �

��

�

(b)

Figure 8: Suurballe’s deinterlacing: (a) the two new paths and (b) after deinterlacing,
disjoint paths

16

(C,B) becomes 7 (4 + 5− 2) as stated in formula (11).

After creating the transformed network (Fig. 6(a)), the Disjkstra algorithm is used to

obtain the second path (Fig. 6(b)). Both computed paths are shown in Fig. 7(a) (before

deinterlacing). Figure 7(b) highlights that there is an interlaced edge (C,D) – an edge used

on both directions – which consequently can be removed.

Figure 8(a) depicts the two computed disjoint paths, and Fig. 8(b) the new (disjoint)

paths, obtained after removing the interlacing edges.

5.2 Bhandari’s Algorithm

For the Bhandari’s algorithm [27], the steps of the basic algorithm are:

1. Find the minimum cost path from source s to destination d.

2. Transform the network by changing cost and direction for the arcs in the computed

minimum-cost path, as presented below.

3. Find a new minimum-cost path from s to d in the changed network.

4. Remove the common arcs with opposite directions in the computed paths. The

remaining arcs form two minimum cost disjoint paths.

The Bhandari’s algorithm uses the same structure as in Suurballe’s algorithm [26], but a

simpler network transformation in Step 2 (Bhandari’s network transformation), which only

affects a subset of the arcs. However, this transformation requires the new minimum-cost

algorithm in Step 3 to be able to support negative arc costs.

As in Suurballe’s algorithm, in Step 2 the arcs belonging to the original shortest path

are reversed, but in this transformation their costs become symmetrical of the original

costs. Duplicate arcs are coalesced, but now into the negative cost arcs. All remaining arcs

are unchanged. This transformation creates a network with negative arc costs (although no

negative cycles assuming non-negative original arc costs). Since negative arc costs prevent

the use of the standard Dijkstra’s algorithm, in Step 3 a suitable algorithm is required

(e.g., the modified Dijkstra’s algorithm).

The transformation in Step 2 ensures that arcs belonging to the shortest path of Step 1

are not used when the shortest path algorithm is run in the modified network in Step 3.

In addition, the (new) arcs directed towards the source allow interlacing the path found in

Step 3 with the shortest path found in the original graph (Step 1). As stated in [27], the

17

$�
�

%�

'�

&

(�

�

�� �

�

�

��

���

(a)

$�
�

%�

'�

&

(�

�

�� �

�

�

��

���

(b)

Figure 9: Bhandari’s algorithm: (a) after transformation and (b) new/second shortest path

$�
�

%�

'�

&

(�

�

� �

�

�

�

��

��

(a)

$�
�

%�

'�

&

(�

�

� �

�

�

�

��

��

(b)

Figure 10: Bhandari’s algorithm: (a) paths before deinterlacing and (b) interlaced edge

optimality of the solution results from the allowed interlacing and negativity of the arcs

costs.

To exemplify the Bhandari’s algorithm, we reuse again the network topology in Fig. 4(a).

To get the transformed network, we need only to reverse the arcs present in the shortest

path and assign them the symmetrical of their cost. Other arc costs do not change, as

depicted in Fig. 9(a).

Again take the transformed network and calculate the second shortest path but now

with a suitable algorithm allowing negative arc costs. This path is depicted in Fig. 9(b).

Subsequently, this algorithm executes the same operations of the Suurballe’s algorithm.

Both paths determined are shown in Fig. 10(a). Figure 10(b) highlights the interlaced

edge (pair of arcs in opposite directions) on those paths.

In Fig. 11(a), the two computed disjoint paths are presented again. In Fig. 11(b), the

final disjoint paths are displayed after removing the interlacing edges.

For simplicity, the paths computed so far by the algorithms in this section are just

arc-disjoint: they may share nodes other than the source and destination. However both

Suurballe’s and Bhandari’s algorithms can be used to obtain node-disjoint paths of min-

18

$�
�

%�

'�

&

(�

�

� �

�

�

�

��

��

(a)

$�
�

%�

'�

&

(�

�

� �

��

�

(b)

Figure 11: Bhandari’s algorithm deinterlacing: (a) the two “new” paths and (b) after
deinterlacing, disjoint paths

$�

(a)

$
�$� �

(b)

Figure 12: Examples of node splitting: (a) Before node splitting (b) After node splitting

sum cost, as any node can be split into two nodes linked by a directed arc with null cost,

as is explained in the next sub-section.

5.3 k-Bhandari’s Algorithm

To create fully arc- and node-disjoint paths, the network can be modified by replacing each

node A with two nodes, A and A′, connected by a null cost arc, as shown in Fig. 12. If a set

of k node-disjoint paths is required, the node transformation shown in Fig. 12 is necessary

for each transit node traversed by all k − 1 paths.

The arcs incident in A remain incident in A and the arcs emergent from A now emerge

from A′. This transformation is illustrated in the k-Bhandari’s algorithm. This algorithm is

an extension of the previously presented Bhandari’s algorithm, to obtain k disjoint paths,

with k ≥ 2. The rationale for this algorithm is to iterate the Bhandari’s algorithm steps,

and before each new path performing a Bhandari network transformation for the k − 1

paths to discovered so far.

The network in Fig. 13(a) is used to exemplify the k-Bhandari’s algorithm, knowing

the two min-sum disjoint paths from A to H, shown in Fig. 13(a) To get the third disjoint

path we need to transform the network considering these two paths.

19

�%�

+�

&�

$�

'�

&� (�

*�

)�

�

�

��

�

�

�
�

�
�

��

�
�

�

�

�

(a)

%�

+�

(
�

'
�

&�

$�

%
� '�

&
�&� (� (�

*�

)�

�

�
��

� ��

��

�

��

�

�� ��

�

�

�

�

��

�
�

(b)

Figure 13: Bhandari’s transformation: (a) Original paths, no node splitting (b) Trans-
formed network, with node splitting

%�

+�

(
�

'
�

&�

$�

%
� '�

&
�&� (�

*�

)�

�

�
��

� ��

��

�

��

�

�� ��

�

�

�

�

��

�
�

(a)

�%�

+�

&�

$�

'�

&� (�

*�

)�

�

�

��

�

�

�
�

�
�

��

�
�

�

�

�

(b)

Figure 14: Example of k-Bhandari’s algorithm: (a) New shortest path on transformed
network (b) three disjoint paths, after merging and deinterlacing

Figure 13(b) shows the transformed network, considering the two previous paths. All

arcs of the two paths were reversed and their cost changed to the symmetrical. No other

cost was changed. Notice that to enforce node dis-junction, node splitting was performed

in this figure.

In the transformed network, using the modified Dijkstra’s algorithm, a new shortest

path was obtained (shown by a dashed line in Fig. 14(a)). After removing the interlaced

edge, we obtain three min-sum node-disjoint paths shown in Fig. 14(b).

20

6 Establishing a Set of k Disjoint Paths for a Multi-

cost Network Scenario

Concerning the problem to establish a set of k disjoint paths, as already mentioned in this

chapter, there are two distinct scenarios, referred to as single-cost, and multi-cost networks,

accordingly. The former case refers to the same costs ch of arcs ah applied when finding

each of k disjoint paths of a demand [2]. In general, the problem of establishing a set of

k disjoint paths for a demand is NP-complete [2, 28]. However, for single-cost networks,

the exact solution can be found in polynomial time for a particular case of the min-sum

problem with the objective to minimize the total cost of k disjoint paths for a demand

(e.g., using Bhandari’s algorithm [29]).

In a multi-cost network case [2], the cost ch of arc ah may be, in turn, different for each

of k paths of a demand. It can occur, e.g., in the case of a backup path sharing scheme,

where the cost of arc ah is frequently only a fraction of its cost used in computations

of a primary path [30]. However, as shown in [2], the problem of establishing a set of k

disjoint paths for the multi-cost network case is NP-complete even concerning the min-sum

objective function.

In order to find a sub-optimal solution to the min-sum problem of establishing a set of

k disjoint paths in a multi-cost scenario, we can apply e.g., k -Penalty algorithm from [1]

being similar to the active path first (APF) approach [2] of establishing each next disjoint

path in a single consecutive iteration. The main idea of the algorithm is presented in

Fig. 16 for a demand to establish a set of k=3 node-disjoint paths between nodes 1 and

10.

k -Penalty utilizes Dijkstra’s algorithm [29] to calculate each of k paths of a demand.

Similar to APF, in k -Penalty the primary path is determined first (Fig. 16(a)). However,

next steps for k -Penalty are different. In APF, when calculating each next (j -th) disjoint

path for a demand, the costs of links referring to the already calculated (j -1 paths) are set

to infinity to identify the forbidden arcs needed to be excluded from further computations.

A disadvantage of APF is its sensitivity to the trap problem denoting the inability to

establish a next disjoint path despite a real possibility to obtain it for a graph of a given

network topology, as shown in Fig. 15.

To prevent from triggering the trap problem, when calculating each next (j -th) path

by k -Penalty, the costs of forbidden arcs (i.e., links traversed by previous j -1 paths or links

incident to transit nodes of previous j -1 paths in the case of a link- and nodal-disjointness,

21

2

6

1

8

1

1

1

1

1

1

4 4

4

4

4

4

74

9

3

5

Figure 15: Example of a trap scenario for APF approach despite the topological possibility
to establish a set of three node-disjoint paths for a demand between nodes 1 and 9

accordingly) are not set to infinity. They are increased in the beginning of a given iteration

by the total a cost of all j -1 already calculated disjoint paths (Fig. 16(b)). Traversing these

forbidden links will thus cost more to try to prevent the next (j -th path) from traversing

links already used by previous j -1 paths of a demand (i.e., to provide disjointness).

However, if the next j -th path happens to be not disjoint with previous j -1 paths (as

in Fig. 16(b)), the costs of all conflicting arcs (i.e., links jointly traversed by previous j -1

paths or links incident to transit nodes jointly traversed by previous j -1 paths in the case of

a link- and nodal-disjointness, accordingly) are permanently increased by the total cost of

j -th path, all calculated paths are removed and the algorithm starts its execution from the

beginning (Fig. 16(c)). k -Penalty terminates after calculating all k disjoint paths possibly

after several conflicts (Fig. 16(c)-(g)) or returning no solution after reaching the maximum

number of allowed conflicts.

7 Minimum-cost Path-pairs with Common Arcs and

Nodes

We have seen in the previous sections that finding a suitable set of failure-disjoint paths

for the connection minimising a certain arc metric (e.g., delay) might be a challenging

problem. However, network operators are willing to provide their services with minimal

effort and resources while a certain level of survivability is maintained for the connections.

We argue in this section that end-to-end path disjointness is often an unnecessary and

strict requirement to achieve this goal.

For example, paths might traverse disaster-prone regions, where disjointness is a desired

property, while in safe regions the two paths might share some common arcs to minimize

network resource usage. This routing problem boils down to find a minimum-cost path-pair

22

1 1 1 1 1

22

33

33

22

1 2 5 7 9 10

4

3

6

8

6 6 6 6 6

27

38

83

72

1 1 1 18 18

22

33

203

22

7 7 18 18

88

39

203

22

4

3

6

8

109751
7 20 1 18 18

22

322

203

22

4

3

6

8

1091
20

5 72 2
29 10 27 18

1111

322

203

1111

4

3

6

8

1091
20

5 72

29 10 68 59

1111

322

6144

1111

4

3

6

8

1091
20

5 72

(a) (b) (c)

(d) (e) (f)

(g)

1 2 5 7 9 10

4

3

6

8

1 2 5 7 10

4

3

6

8

9

Figure 16: Example execution steps of k -Penalty algorithm for a demand between nodes
1 and 10

23

while a given level of availability is maintained [31], discussed in Sect. 7.1. Furthermore,

common nodes along an established arc-disjoint pair of paths might have also beneficial

implications. For instance, in cases that the recovery time is critical, the traffic might be

retransmitted from the closest common node to the faulty arc rather than from the source.

Accordingly, the problem of allowing that the pair of arc-disjoint paths share a bounded

number of common nodes [32] will be discussed in Sect. 7.2.

7.1 Tunable Availability-aware Routing

In [31], the concept of tunable survivability was developed, which provides a quantitative

measure to specify the desired level of survivability. This concept allows any degree of

survivability in the range 0% to 100%, thus transforming survivability into a quantifiable

metric. In addition to the cost, each arc a ∈ A is associated with a failure probability

value ρa. We define a survivable connection as a pair of paths (p1, p2), which are not

necessary disjoint. Accordingly, we quantify the level of survivability of connections as the

probability that all common arcs are operational is at least ρ =
∏

a∈p1∩p2(1− ρa).
The cost of a survivable survivable connection (p1, p2) is defined as follows.

Definition 2 For connection (p1, p2) its cost CT-cost WCT (p1, p2) is the sum of its arc

costs counting the common arcs twice (WCT (p1, p2) =
∑

a∈p1 wa +
∑

a∈p2 wa).

Counting common arcs twice suits well for QoS metrics like average delay, while count-

ing arcs once is good to represent monetary costs, giving rise to several tunable survivabil-

ity optimization problems [31]. Here, we establish an interesting structural property and

present an algorithmic solution to the following problem.

Problem 1 CT-Constrained QoS Max-Survivability (CT-CQMS): Given a net-

work G(V,A), a source node s ∈ V , a destination node d ∈ V and a QoS bound B, find a

survivable connection (p1, p2) from s to d such that:

max
∏

a∈p1∩p2

(1− ρa) subject to WCT (p1, p2) ≤ B. (12)

A. The Structure of Optimal Solutions

We proceed to show that the arcs that may affect the survivability level of the optimal

solution are restricted to a (typically small) subset of the network’s arcs.

24

Definition 3 Given a survivable connection (p1, p2), a critical arc is an arc a ∈ A that

is common to both paths p1 and p2. Accordingly, the set of critical arcs of a survivable

connection is defined as C(p1, p2) = {a|a ∈ p1 ∩ p2}.

Definition 4 Given a source s and a destination d, L(s,d) is the set of all the cost-shortest

paths between s and d.

Definition 5 Given a source node s ∈ V and a destination node d ∈ V , an in-all-cost-

shortest-paths arc is an arc a ∈ A that is common to all paths in L(s,d). Accordingly, the

set of in-all-cost-shortest-paths arcs is defined as L = {a| a ∈
⋂
p∈L(s,d) p}.

Note that if there is a unique cost-shortest path between s and d, i.e., |L(s,d)| = 1, then

L precisely consists of its arcs. Moreover, L is a subset of the set of arcs of any cost-shortest

path. We are ready to present the main result of [31].

Theorem 1 For any bound B on the additive end-to-end QoS, a (any) survivable con-

nection (p1, p2) that is an optimal solution of the respective CT-Constrained QoS Max-

Survivability Problem (per Def. 1) is such that all its critical arcs are in-all-cost-

shortest-paths arcs. That is, C(p1, p2) ⊆ L.

B. Establishing QoS-aware Survivable Connections

It was proved [31] that the optimization problem for Prob. 1 is NP-hard. However, an

exact solution of pseudo-polynomial complexity is still possible. The approach is based on

a graph transformation that reduces our problem to a standard Restricted Shortest Path

(RSP) problem. We recall that RSP is the problem of finding a cost-shortest path while

obeying an additional (additive) constraint, as follows.

Definition 6 Restricted Shortest Path (RSP) Problem: Given is a network G(V,A)

where each arc a ∈ A is associated with a length la and a time ta. Let T be a positive integer

and s, d ∈ V be the source and the destination nodes, respectively. Find a path p from s to

d such that:

min
∑
a∈p

la subject to
∑
a∈p

ta ≤ T. (13)

Although the RSP problem is known to be NP-hard [33], the literature provides several

pseudo-polynomial solutions [34] as well as ε-optimal Fully Polynomial Time Approxima-

tion Schemes (FPTAS) [35], which we employ to solve Prob. 1. Moreover, we use the

findings of Sect. 7.1A in order to further reduce the complexity of the solutions for the CT

25

problem. Next, we present the main ideas behind a pseudo-polynomial algorithmic scheme

for solving the CT-CQMS problem (refer to [31] for full details). The method employs two

well-known algorithms: (i) to find two arc-disjoint paths with min-sum between two nodes

(e.g., Sect. 5.1); (ii) to solve the NP-hard RSP problem (e.g., using a pseudo-polynomial

scheme from [34]). The CT-CQMS scheme includes the following stages:

Stage 0 The algorithm first finds a cost-shortest path pmin in the network G(V,A) by em-

ploying a well-known shortest path algorithm (e.g., Sect. 4.1). According to Thm. 1,

in an optimal solution of a CT problem, each of the critical arcs is included in any

cost-shortest path. Therefore, we can have the algorithm focus on just nodes and

arcs that belong to some (any) cost-shortest path.

Stage 1 Construction of a transformed network G̃(Ṽ , Ã) constituting an input for an RSP

algorithm in the next stage. Specifically, the transformed network consists of two

types of arcs: (i) simple arcs, which consist of the original network arcs in the cost-

shortest path pmin; (ii) disjoint arcs, which consist of additional arcs representing

possible min-sum path-pairs between pairs of nodes in the cost-shortest path pmin.

Each arc is associated with two metrics: a length lã and a time tã according to its

arc type.

Stage 2 Given the above transformed network G̃(Ṽ , Ã), the second stage calculates a

restricted shortest path. Here, we may employ any pseudo-polynomial time algorithm

or FPTAS, e.g., [34, 35], for solving the RSP problem.

Stage 3 Accordingly, in the third stage, we construct the sought pair of paths of a sur-

vivable connection (p1, p2) out of the arcs of the RSP solution, i.e., path p̃. Then,

the algorithm outputs the optimal survivable solution (p1, p2).

7.2 Min-Cost Arc-disjoint Path-pairs with Common Nodes

Considering single arc failures, a common approach for failure protection is the usage of

a (fully) arc-disjoint path-pair (p1, p2) between given source and destination nodes. While

the two paths must be arc-disjoint to guarantee surviving failures, they still might share

common nodes, i.e., a node, other than the source and destination, that belongs to both

paths. We define C(p1, p2) as the number of common nodes of (p1, p2). Accordingly, a

node-disjoint path-pair (p1, p2) is a pair of arc-disjoint paths between these nodes with no

common nodes, i.e., C(p1, p2) = 0. In [32], the total cost of the two paths (min-sum) is

26

used to measure the quality of the solution (as in Def. 2). We are looking for a minimum

cost arc-disjoint path-pair between the source and destination with different restrictions on

the number of their common nodes, e.g., resulting in the following optimization problem:

Problem 2 Given are a network G(V,A), a source node s ∈ V , a destination node d ∈ V
and an integer k. Find an arc-disjoint path-pair (p1, p2) such that:

minW (p1, p2) subject to C(p1, p2) ≤ k. (14)

This problem is referred to as Minimum-Cost Arc-Disjoint Paths restricted Upper

Bound Common Nodes (called MWLD-Upper-BCN in [32]).

A. MWLD-Upper-BCN in General Graphs

It was proved that the problem versions with lower and tight bound are NP-hard in general

graphs [32]. However, note that in directed acyclic graphs (DAGs) a polynomial-time

algorithmic scheme exists, which provides solutions for all three bounds [32]. We summarize

here only the polynomial-time solution for the MWLD-Upper-BCN problem in general

graphs, which consists of the following stages:

Stage 1 Comprising the construction of an auxiliary network G̃(Ṽ , Ã) with identical sets

of nodes Ṽ = V and arcs representing possible node-disjoint shortest path-pairs in

the (original) network (e.g., calculated with Suurballe’s algorithm [26] (see Sect. 5.1).

Therefore, the cost of each arc in G̃ is equal to the cost of the disjoint path-pair

between its end-nodes in G.

Stage 2 Calculating a cost-shortest path with at most k + 1 arcs between s and d in the

new auxiliary network G̃(Ṽ , Ã) by applying the L-Link Bellman-Ford algorithm [32]

(which is a dynamic programming approach that iteratively finds a cost-shortest path

with at most L arcs), where L is set to be k+1. By stopping the algorithm execution

at L = k+1, we will have an optimal path p̃ with at most k common nodes, where the

arcs of the optimal path p̃ represents node-disjoint path-pairs in the original graph.

Stage 3 Finally, constructing the pair of paths (p1, p2) in the original network from the

solution of the L-Link Bellman-Ford algorithm.

The time complexity of the algorithm is O(|A| · |V |2+ |V |3 · log(|V |)). We note here that

in problem instances where the optimal arc-disjoint solution is already node-disjoint, or the

27

bound is larger than the number of common nodes in the optimal arc-disjoint solution, the

MWLD-Upper-BCN algorithm can not improve the cost of traditional arc-disjoint min-sum

algorithms.

B. MWLD-Upper-BCN with Selective Common Nodes

From a practical perspective, the common nodes of the desired arc-disjoint path pair might

consist of a special property, e.g., having high storage capacity (data centre node) or lying

in a disaster-safe area. Therefore, it can be required to restrict the common nodes to

be selected out of this smaller subset. Such a solution can be obtained with a slight

modification of the MWLD-Upper-BCN algorithm.

Problem 3 Given are a network G(V,A), a source s and destination d, an integer k

and a set of allowable common nodes Vc (V \ {s, d}. Find an arc-disjoint path pair

(p1, p2) such that in Prob. 2, while its common nodes must be allowable common nodes,

i.e., {c|c ∈ p1 ∧ c ∈ p2} ⊆ Vc.

In Prob. 3 the arc-disjoint path pair (p1, p2) also is a node-disjoint path pair in terms

of the specific set V \ Vc. The proposed reduction [32] is shown in Fig. 12, which denies

every node v ∈ V \ (Vc ∪ {s, d}) from being a common node.

C. Minimum-Cost Arc-Disjoint Second Path with Common Nodes

Finally, we consider the problem of optimizing a second arc-disjoint path given one path,

where a restriction on their number of common nodes has to be satisfied.

Problem 4 Given are a graph G(V,A), a source node s ∈ V , a destination node d ∈ V ,

a first established path p1 = s d. Find an arc-disjoint path p2 such that:

minW (p2) subject to C(p1, p2) ≤ k. (15)

It was shown that the optimal solution of a minimum-cost path is tractable for the

upper-, tight- and lower-bound case [32]. The algorithm runs on the original graph G

and follows a dynamic programming approach by maintaining 3-dimensional arrays for the

path costs and path nodes. Thus, it has a time complexity of O(|V |3).

28

8 Conclusions

The great majority of network failures are caused by a single node or link failure [3]. To

protect against this type of events link-(node-) disjoint path pairs can be used. An Integer

Linear Problem (ILP) Formulation for the calculation a min-sum disjoint path pair was

presented. Then effective algorithms for solving the min-sum link-disjoint path pair prob-

lem were described, together with illustrative examples. A simple graph transformation,

that allows to transform a node into an arc, was explained, thus showing how the previous

algorithms can be used to obtain node-disjoint solutions. Moreover a detailed description

of Dijkstra’s algorithm, a basic sub-routine required by many of the discussed protection

schemes, was given.

To further improve network survivability one must also consider strategies to make

the network resilient to multiple failures. This can be addressed through the concept

of SRLGs. Alternatively a set of k (k > 2) disjoint paths can be calculated. Hence

k-Bhandari’s algorithm is briefly described followed by an approach to determine a set of

k-disjoint paths in a multi-cost network scenario.

Finally, and in order to reduce the cost required by extra resources to increase network

resilience, a more conservative approach was discussed: instead of requiring a pair of paths

to be fully disjoint, it would suffice to ensure the paths are disjoint in disaster-prone areas,

while being allowed to share links and/or nodes in safer network regions. To conclude,

we would like to recall that the algorithms presented in this chapter are often used as

sub-routines for solving problems related to network resilience and/or to disaster-resilience

such as in [10,15].

References

[1] J. Rak. k-Penalty: a novel approach to find k-disjoint paths with differentiated path

costs. IEEE Communications Letters, 14(4):354–356, April 2010.

[2] D. Xu, Y. Chen, Y. Xiong, C.Qiao, and X. He. On the complexity of and algorithms

for finding the shortest path with a disjoint counterpart. IEEE/ACM Transactions

on Networking, 14(1):147–158, Feb. 2006.

[3] J. Rak. Resilient Routing in Communication Networks. Computer Communication

and Networks. Springer, 2015.

29

[4] T. Gomes, J. Tapolcai, C. Esposito, D. Hutchison, F. Kuipers, J. Rak, A. de Sousa,

A. Iossifides, R. Travanca, J. André, L. Jorge, L. Martins, P. O. Ugalde, A. Pašić,

D. Pezaros, S. Jouet, S. Secci, and M. Tornatore. A survey of strategies for com-

munication networks to protect against large-scale natural disasters. In 2016 8th

International Workshop on Resilient Networks Design and Modeling (RNDM), pages

11–22, Sept 2016.

[5] J. Tapolcai, Pin-Han Ho, D. Verchere, T. Cinkler, and A. Haque. A new shared

segment protection method for survivable networks with guaranteed recovery time.

Reliability, IEEE Transactions on, 57(2):272 –282, June 2008.

[6] M. Pollack. The maximum capacity through a network. Operations Research,

8(5):733–736, 1960.

[7] B. H. Shen, B. Hao, and A. Sen. On multipath routing using widest pair of disjoint

paths. In 2004 Workshop on High Performance Switching and Routing, pages 134 –

140, 2004.

[8] J. Q. Hu. Diverse routing in optical mesh networks. IEEE Transactions on Commu-

nications, 51(3):489–494, March 2003.

[9] Y. Cheng, J. Li, and J. P. G. Sterbenz. Path geo-diversification: Design and analysis.

In 2013 5th International Congress on Ultra Modern Telecommunications and Control

Systems and Workshops (ICUMT), pages 46–53, Sept 2013.

[10] Y. Cheng, D. Medhi, and J. P. G. Sterbenz. Geodiverse routing with path delay and

skew requirement under area-based challenges. Networks, 66(4):335–346, 2015.

[11] A. de Sousa, D. Santos, and P. Monteiro. Determination of the minimum cost pair

of D-geodiverse paths. In The 2017 International Conference on Design of Reliable

Communication Networks (DRCN 2017), Munich, March 8-10 2017.

[12] R. C. de Andrade. New formulations for the elementary shortest-path problem visiting

a given set of nodes. European Journal of Operational Research, 254(3):755 – 768, 2016.

[13] L. Martins, T. Gomes, and D. Tipper. Efficient heuristics for determining node-disjoint

path pairs visiting specified nodes. Networks, 70(4):292–307, 2107.

30

[14] T. Gomes and J. Craveirinha. Efficient calculation of the most reliable pair of link

disjoint paths in telecommunication networks. European Journal of Operational Re-

search, 182(3):1055–1064, 2007.

[15] A. de Sousa, T. Gomes, R. Girão-Silva, and L. Martins. Minimization of the net-

work availability upgrade cost with geodiverse routing for disaster resilience. Optical

Switching and Networking, 31:127–143, 2019.

[16] T. Gomes, C. Simões, and L. Fernandes. Resilient routing in optical networks us-

ing SRLG-disjoint path pairs of min-sum cost. Telecommunication Systems Journal,

52(2):737–749, 2013.

[17] J. Tapolcai, L. Rónyai, B. Vass, and L. Gyimóthi. List of shared risk link groups

representing regional failures with limited size. In IEEE INFOCOM 2017 - IEEE

Conference on Computer Communications, pages 1–9, May 2017.

[18] A. Todimala and B. Ramamurthy. IMSH: An iterative heuristic for SRLG diverse

routing in WDM mesh networks. In 13th International Conference on Computer

Communications and Networks, ICCCN’2004, pages 199–204, October 2004.

[19] M. J. Rostami, S. Khorsandi, and A. A. Khodaparast. CoSE: A SRLG-disjoint routing

algorithm. In Proceedings of the Fourth European Conference on Universal Multiser-

vice Networks (ECUMN’07), Toulouse, France, 2007.

[20] D. Xu, Y. Xiong, C. Qiao, and G. Li. Trap avoidance and protection schemes in

networks with shared risk link groups. Journal of Lightwave Technology, 21(11):2683–

2693, November 2003.

[21] T. Gomes, M. Soares, J. Craveirinha, P. Melo, L. Jorge, V. Mirones, and A. Bŕızido.

Two heuristics for calculating a shared risk link group disjoint set of paths of min-sum

cost. Journal of Network and Systems Management, 23(4):1067–1103, 2015.

[22] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269 – 271, 1959.

[23] D. Oran. OSI IS-IS intra-domain routing protocol. ITEF RFC 1142, February 1990.

[24] C. Moy. Ospf version 2. ITEF RFC 2328, February 1998.

31

[25] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms and

applications. Prentice Hall, 1993.

[26] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of disjoint

paths. Networks, 14(2):325–336, 1984.

[27] R. Bhandari. Optimal physical diversity algorithms and survivable networks. In

Computers and Communications, 1997. Proceedings., Second IEEE Symposium on,

pages 433–441. IEEE, 1997.

[28] A. Sen, B. H. Shen, and S. Bandyopadhyray. Survivability of lightwave networks – path

lengths in WDM protection scheme. Journal of High Speed Networks, 10(4):303–315,

Oct. 2001.

[29] R. Bhandari. Survivable Networks, Algorithms for Diverse Routing. Kluwer Academic

Publishers, Norwell, Massachusetts, USA, 1999.

[30] J. Rak. Fast service recovery under shared protection in WDM networks. Journal of

Lightwave Technology, 30(1):84–95, Jan 2012.

[31] J. Yallouz and A. Orda. Tunable QoS-aware network survivability. IEEE/ACM Trans-

actions on Networking, 25(1):139–149, 2017.

[32] J. Yallouz, O. Rottenstreich, P. Babarczi, A. Mendelson, and A. Orda. Minimum-

weight link-disjoint node-“somewhat disjoint” paths. IEEE/ACM Transactions on

Networking, 26(3):1110–1122, June 2018.

[33] M. R. Garey and D. S. Johnson. ”Computers and Intractability: A Guide to the

Theory of NP-Completeness”. W. H. Freeman & Co., 1979.

[34] HC Joksch. The shortest route problem with constraints. Journal of Mathematical

analysis and applications, 14:191–197, 1966.

[35] D. H. Lorenz and D. Raz. A simple efficient approximation scheme for the restricted

shortest path problem. Operations Research Letters, 28(5):213 – 219, 2001.

32

	capa
	Fundamental Schemes to Determine Disjoint Paths for Multiple Failure_Scenarios
	Introduction
	Algorithms for Disjoint Routing
	SRLG-disjoint Routing
	Shortest Path Algorithms
	Dijkstra's Algorithm
	Modified Dijkstra's Algorithm

	Suurballe's and Bhandari's Algorithm
	Suurballe's Algorithm
	Bhandari's Algorithm
	k-Bhandari's Algorithm

	Establishing a Set of k Disjoint Paths for a Multi-cost Network Scenario
	Minimum-cost Path-pairs with Common Arcs and Nodes
	Tunable Availability-aware Routing
	Min-Cost Arc-disjoint Path-pairs with Common Nodes

	Conclusions

