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Abstract: Water distribution networks are expected to fulfill the water demand by all consumers 
and at all times, even during critical scenarios, such as pipe failures. In this work, a methodology is 
proposed to maximize the quality of service during pipe failures by operating valves. The selection 
of the valves to operate is done by solving an optimization problem using Gondwana, a generic 
optimization tool for drinking water distribution networks. Different objective functions and 
different failure scenarios are investigated, considering a real-life water distribution network. The 
analysis is performed considering the peak demand condition. The proposed methodology is useful 
for water companies in managing the operation of their networks during critical scenarios. 
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1. Introduction 

During abnormal events, it is very important to maintain a good level of service of water 
distribution networks (WDN), in terms of satisfying customer water demands. For this reason, the 
resilience of these systems is a key property [1]. In 2005, the World Conference on Disaster Reduction 
(WCDR) highlighted the importance of the term resilience, in the context of disaster scenarios, and 
many authors proposed new methods to quantify the resilience [2]. Ref. [3] proposed an evaluation 
of the disaster resilience, based on dimensionless analytical functions related to the variation of 
functionality, obtaining a tool for disaster assessment in structural engineering. Successively, [4] 
evaluated the performance of a WDN in the case of catastrophes using three indices: the number of 
users temporarily without water, the water level in the tank and the water quality. 

In the framework of WDN, many definitions of resilience have been proposed over the years by 
different authors. Resilience has been used as a reliability indicator, together with other indexes. In 
the first developed approaches, the evaluation of the reliability of a WDN was made by the estimation 
of direct indicators, which required a high computational effort, due to the various scenarios and the 
complexity of real networks [5–8]. Successively, to reduce the computational time, reliability has been 
often expressed using indirect indexes. Many studies have been realized to understand which of the 
above-mentioned surrogate measures is the most appropriate, to better characterize the full reliability 
of the network depending on the considered problem. 
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The resilience index can be viewed either as a design parameter, aiming at maximizing resilience 
and minimizing investment costs, or as an operation parameter to consider how an existent network 
should be operated under crisis scenarios. The latter is considered as the main theme of this work, 
since the resilience assessment of an existing WDN is currently a main topic in the water research 
field. With this purpose, the resilience can be defined as the capability of a system to maintain and 
adapt its operational performance in the face of failures and other adverse conditions [9]. Recently, 
the Water Network Tool for Resilience (WNTR), an open source Python package designed to simulate 
and analyze resilience of WDN, has been developed [10]. It integrates hydraulic and water quality 
simulation, a wide range of damage and response options, and different metrics into a single software 
framework for evaluating water network resilience. 

The problem at hand is understanding how a network performs during critical scenarios and 
then prioritizing the operational choices that can improve its performance. Methodologies based on 
simulation and optimization tools can help water utilities in individuating how to operate their 
networks in these cases. 

In the study, a methodology to guarantee the highest possible resilience during critical scenarios 
is also developed. After the evaluation of the network resilience during critical scenarios, the next 
step is to select how to operate the network. In particular, considering a pipe failure, the network 
resilience is maximized by changing valve statuses. This is formulated as an optimization problem, 
in which the decision variables are the valves to operate (open or closed), and the objective function 
is to maximize the network resilience, expressed as demand satisfaction rate. Gondwana [11], a 
generic optimization tool for drinking water distribution networks, is used. Different objective 
functions are considered, in order to understand which is the most appropriate to improve network 
performance during critical scenarios. The methodology is tested on a real water distribution serving 
a city in The Netherlands. Different tests are realized, selecting 18 different critical scenarios and 
assessing resilience during the peak hour. 

2. The Proposed Methodology 

In the present paper, the resilience index is expressed through the demand satisfaction rate, 
DSRs, defined as the ratio between the total available water that can be delivered to the consumers, 𝑄௦, under the scenario 𝑠, and the total water that is required by the consumers, 𝐷 [12]: 𝐷𝑆𝑅௦ = 𝑄௦𝐷 = ∑ 𝑞௜,௦ே஽௜∑ 𝑑௜ே஽௜  (1)

where, 𝑑௜ is the water demand at node i of the network, 𝑞௜,௦ is the actual delivered water to node 𝑖 in the scenario 𝑠, 𝑁𝐷 is the number of nodes in the network.The supplied water flow at each node 
is a function of the nodal pressure, evaluated as [13]: 

𝑞௜,௦ = ⎩⎪⎨
⎪⎧ 0                                  𝑖𝑓 𝐻௜,௦ < 𝐻௜,଴𝑑௜,௦ ቆ 𝐻௜,௦ − 𝐻௜,଴𝐻௜,௠௜௡ − 𝐻௜,଴ቇఊ                  𝑖𝑓 𝐻௜,଴ ≤ 𝐻௜,௦ < 𝐻௜,௠௜௡ 𝑑௜,௦                                    𝑖𝑓 𝐻௜,௦ ≥ 𝐻௜,௠௜௡

 (2)

where, 𝐻௜,௦ is the actual head at node 𝑖 and scenario 𝑠, 𝐻௜,଴ is the minimum head to allow any flow 
to the node, and 𝐻௜,௠௜௡ is the service head to fully satisfy nodal demand. The exponent 𝛾 is usually 
set to 0.5 [11]. In order to compute pressure driven demands, the pressure driven demand extension 
for EPANET (EPANET.pdd) developed by [14] has been built in Gondwana. In this way, it is possible 
to compute, for each time step, the demand that is actually delivered to each node of the network 
during a critical event. 

In order to investigate if it is possible to improve the network resilience under critical scenarios 
by changing its operational mode, the following methodology is performed: 

Each critical scenario is created, considering one pipe failure. 
The demand satisfaction rate is determined without changing valve statuses (current valve 

statuses), in order to get the initial resilience index of the WDN. 
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The valve statuses are changed using the numerical optimization technique implemented in 
Gondwana, in order to maximize the demand satisfaction rate, or in other words, to minimize the 
demand deficit. This is done considering the following objective functions: 
Total demand: Maximization of total demand satisfaction rate summed over all nodes n of the network 
and for the simulation period, t, which is obtained by maximizing the following function: 𝑚𝑎𝑥 ෍ ෍ ∑ 𝑞௜,௦ே஽௜∑ 𝑑௜ே஽௜

௡
௜ୀଵ௧  (3) 

Maximum demand: Maximization of the demand satisfaction rate at the node with highest demand 
deficit ndef summed over all time steps of the simulation period, expressed as: 𝑚𝑎𝑥 ෍ 𝑞௡ௗ௘௙,௦𝑑௡ௗ௘௙௧  (4) 

Maximum nodal demand: Maximization of the demand satisfaction rate of the highest demand deficit 
for each node n evaluated over the entire simulation period, obtained through: 𝑚𝑎𝑥(𝑚𝑖𝑛௧ 𝑞௜,௦𝑑௜ ) (5) 

In each scenario, the simulation is done with each of the three objective functions, in order to 
compare the results and assess which one is more appropriate in the context of the problem. 

3. Results 

3.1. The Case Study 

The proposed methodology is applied to a WDN serving a city in the Netherlands, with ca. 105 
thousand inhabitants. The network supplies a total demand of 31,272 m3/day. The elevation varies 
between 15–23 m, and pipes are made of plastic materials (84%), steel (12%) and concrete (4%). The 
hydraulic simulations are performed with the software EPANET, adopting the Darcy–Weisbach 
resistance formula. The network scheme, reported in Figure 1, is composed of 4311 pipes, 5096 
junctions, 5 reservoirs and 891 valves. In the model, three different demand patterns are assigned for 
considering different types of the consumptions. 

3.2. The Considered Scenarios and the Performed Tests 

Overall, 18 critical scenarios are considered, and each of them assumes one pipe out of service. 
To select the pipes for the failure scenarios, different criteria were considered, based on the diameter 
and length, highest flow, and proximity to the node with the highest base demand. The selected pipes 
are indicated in the network scheme of Figure 1. Two kinds of tests are performed. The former refers 
to a situation in which it is assumed that the valve statuses in the network model are an accurate 
representation of the real valve statuses, and in this case all valves are assumed open. Then, the 
optimization model selects the valves to close. This is often not the case: in fact, water utilities in the 
Netherlands believe that about 1% of valves are in a different status than described in the model, due 
to unregistered network operations. In order to assess the resilience taking into consideration some 
uncertainty about valve statuses, the same computations are performed on different network models 
assuming 1% of closed valves randomly placed in the network. Then, the optimization model selects 
the valves to close for optimizing the resilience. 
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Figure 1. EPANET model for the WDN of a Dutch city, with indication of the pipes considered to be 
out of service in the 18 critical scenarios. 

It is assumed that the events take place during an entire simulation period (00:00–24:00). In real-
life situations, it is important to consider the actual start time of an event and its duration, and 
compute the resilience in this time period. In all nodes, a service pressure, Hi,min, equal to 20 m is 
considered for the computation of the pressure delivered demand. This means that, for nodes with a 
pressure below 20 m, the volume of water that is actually delivered is less than the demand (Equation 
(2)). Gondwana uses a genetic algorithm (GA) for the optimization, and the GA parameters used are 
summarized in Table 1. 

Table 1. Optimization parameters used in Gondwana for the genetic algorithm. 

Optimization Parameter 
Population size (number of individuals) 200 

Initialization Current values 
Selector Tournament 

Elitism rate 10% 
Terminator 50 generations 

Uniform matution rate 0.001 
Crossover rate (one point crossover) 0.95 

3.2. Results 

In presenting the results, the 18 different scenarios are sorted, starting from the worse one, i.e., 
the one with a higher percentage of unsatisfied demand in the initial situation, DEFp0, evaluated 
during the peak hour, defined as: 𝐷𝐸𝐹௣଴ = 1 − 𝐷𝑆𝑅௣଴ (6)
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Referring to the case in which it is assumed that all valves are open (Test1), Table 2 summarizes 
the results obtained for the four most critical scenarios. It reports the improvement of the unsatisfied 
demand after the optimization process 𝐷𝐸𝐹௣ = 𝐷𝐸𝐹௣଴ − 𝐷𝐸𝐹௣. 

Table 2. Percentage of unsatisfied demand in the initial condition and percentage improvement of 
the unsatisfied demand after the optimization for the three different objective functions (all valves 
open). 

Pipe Out of Service Critical Node DEFp0 % 
𝑫𝑬𝑭𝒑 % 

(Total Dem.) 
𝑫𝑬𝑭𝒑 % 

(Max. Dem.) 
𝑫𝑬𝑭𝒑 % 

(Max. Nod. Dem.) 
Pipe 2 lungend01 47.74% 24.05% 26.57% 24.23% 

Pipe 13 X14321 37.43% 2.66% 1.11% 1.26% 
Pipe 7 X00027a 31.37% 0.41% 0.41% 0.60% 

Pipe 25 X08436 29.28% 0.68% 0.55% 0.10% 

The second column reports the node which is most affected by the critical scenario (represented 
in Figure 2), while the third one indicates the percentage of unsatisfied demand in the current 
situation (i.e., before the optimization). The other three columns summarize the percentage decrease 
of the unsatisfied demand in the same node after the optimization, considering the three different 
objective functions. As shown in the table, the improvement after the optimization process is high 
only for the most critical scenario (failure of pipe number 2). The obtained improvement is similar 
for the three different analyzed objective functions. 

Figure 2. Position of the critical nodes in the network. 

Table 3. Percentage of unsatisfied demand in the initial condition and percentage improvement 
of the unsatisfied demand after the optimization for the Total Demand objective function (1% of 
closed valves)—shows the corresponding results relative to the case with 1% of valves initially closed 
(Test2). The four most critical scenarios are reported, and represented in Figure 2, along with the 
percentage of improvement after the optimization of valve statuses, obtained by considering only the 
objective function total demand. 
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Table 3. Percentage of unsatisfied demand in the initial condition and percentage improvement of the 
unsatisfied demand after the optimization for the Total Demand objective function (1% of closed valves). 

Pipe Out of Service Critical Node DEFp0 % 
𝑫𝑬𝑭𝒑 % 

(Total Demand) 
Pipe 7 X00027a 33.11% 3.77% 
Pipe 25 X08436 31.00% 3.86% 
Pipe 1 X12308 27.97% 3.83% 
Pipe 11 X12308 27.47% 3.81% 

Comparing the results of the two different tests, the two worst cases of Test 1 are not present in 
the first four of the second one, while the scenarios with the rupture in pipes 7 and 25 are present in 
both. For those ones, the percentage of unsatisfied demand is higher in the case with 1% of closed 
valves, and the obtained improvement, even if small, is higher with respect the other case. The results 
indicate that the analyzed network has, in general, a high resilience to the pipe failure. 

In order to give a more customer-oriented view of the improvement, the user connections 
affected by the critical scenarios above a given demand deficit threshold, before and after the 
optimization process, are counted. In Table 4, the results are summarized, considering an initial 
situation with all open valves, and an initial situation with 1% of closed valves. A reduction of the 
unsatisfied user connects is observed after the optimization, and in particular it is very consistent for 
the 25% of the demand deficit relative to the Test2. In this case, the performance of the network is 
significantly improved after the optimization. 

Table 4. Number of connections affected by the pipe failures before and after the optimization 
process, considering demand deficits of 10, 15, 20, 25 and 30%. 

All Open Valves Case 
 Demand Deficit 

Pipe out of 
service 30% 25% 20% 15% 10% 

 Before After Before After Before After Before After Before After 
Pipe 2 1 0 1 0 742 739 2607 2551 4843 4808 
Pipe 13 1484 1148 2522 2457 998 984 3346 3342 5077 5018 
Pipe 7     815 767 2565 2548 4841 4829 
Pipe 25   21 0 887 768 2568 2560 4871 4837 

1% of closed valves case 
Pipe out of 

service 30% 25% 20% 15% 10% 

 Before After Before After Before After Before After Before After 
Pipe 7 9 9 594 12 6527 2664 12,242 9528 20,536 16,845 
Pipe 25 3 0 929 68 6473 2984 12,302 9551 20,536 16,886 
Pipe 1   1043 325 8174 4674 12,722 10193 21,497 18,482 
Pipe 11   575 9 6861 2656 12,327 9554 20,568 16,914 

Considering that in every scenario the optimization consists in changing the valve statuses in 
order to reach a higher resilience, Table 5 reports the number of times that every single valve is used 
for each objective function. In this way, it is possible to check which are the critical valves of the 
network, and so the ones that the water utility has to pay extra attention to. It can be noted that there 
are two valves operated many times with all the objective functions. In particular, for all cases, the 
most operated one is the valve 839. 
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Table 5. Number of use for each valve valves in the WDN. 

Sum 
ValveID 81 253 839 1217 1857 2001 3101 6723 7361 

N. used  5 5 9 2 7 3 5 7 2 

Maximum Network 

Valve ID 57 81 253–254 839 1857 2001 3101 6723 

N. used 2 7 2 11 7 4 5 10 

Maximum Element 
Valve ID 81 83 253 835 839 2395 2769 4127 4611 4785 7275 

N. used 5 5 3 4 11 5 8 8 3 3 3 

4. Conclusions 

In the present paper, a methodology to maximize the quality of the service during a pipe failure 
event has been studied. The obtained results prove that it is possible to make a WDN more resilient, 
in terms of unsatisfied demands, by changing the valve statuses. It has been applied to an over-
dimensioned and highly looped network that has resulted in being already very resilient to failures. 

The methodology can be used either during critical scenarios, or during maintenance works. It 
indicated also the valves operated more frequently during critical scenarios, which is a useful 
information for network management to preserve their functioning. Moreover, this is a useful 
information also in performing valve location designing analysis. 

In future studies, the methodology will be applied to more complex networks, in particular 
divided into district meter areas (DMAs), where the resilience is lower due to the closure of boundary 
valves. In particular, it is expected that, in this case, the optimization of valve manipulations can 
furnish a great improvement. 

Author Contributions: The methodology was developed by I.V. and further studied by A.G.; A.G. computed 
the results for the case study; K.v.L. developed the code in Gondwana for valve operation, assessment of 
resilience and pressure driven demand simulation; I.V., M.B., C.Q., A.L., R.G. and C.D.C. supervised the work. 
The paper was written by A.G., A.L. and C.D.C. All authors have read and agree to the published version of the 
manuscript. 

Funding: The development of the methodology was funded through grant 402045/080 (BTO 2018-2023). It was 
also supported by the Erasmus Traineeship Programme of University of Cassino and Southern Lazio. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Makropoulos, C.; Nikolopoulos, D.; Palmen, L.; Kools, S.; Segrave, A.; Vries, D.; Koop, S.; Van Alphen, H.J.; 
Vonk, E.; Van Thienen, P.; et al. A resilience assessment method for urban water systems. Urban Water J. 
2018, 15, 316–328, doi:10.1080/1573062x.2018.1457166. 

2. Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, 
K.; Wallace, W.A.; Von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic 
Resilience of Communities. Earthq. Spectra 2003, 19, 733–752, doi:10.1193/1.1623497. 

3. Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. 
Eng. Struct. 2010, 32, 3639–3649, doi:10.1016/j.engstruct.2010.08.008. 

4. Cimellaro, G.P.; Tinebra, A.; Renschler, C.; Fragiadakis, M. New Resilience Index for Urban Water 
Distribution Networks. J. Struct. Eng. 2016, 142, 4015014, doi:10.1061/(asce)st.1943-541x.0001433. 

5. Gargano, R.; Pianese, D. Reliability as Tool for Hydraulic Network Planning. J. Hydraul. Eng. 2000, 126, 354–
364, doi:10.1061/(asce)0733-9429(2000)126:5(354). 

6. Tanyimboh, T.T.; Tabesh, M.; Burrows, R. Appraisal of Source Head Methods for Calculating Reliability of 
Water Distribution Networks. J. Water Resour. Plan. Manag. 2001, 127, 206–213, doi:10.1061/(asce)0733-
9496(2001)127:4(206). 



Environ. Sci. Proc. 2020, 2, 32 8 

 

7. Ciaponi, C. Performance analysis in water supply. In Performance Indicators for the Planning, Design and 
Management of Water Supply; Ciaponi, C., Ed. CSDU: Milano, Italy, 2009. 

8. Creaco, E.; Franchini, M. Fast network multi-objective design algorithm combined with an a posteriori 
procedure for reliability evaluation under various operational scenarios. Urban Water J. 2012, 9, 385–399, 
doi:10.1080/1573062x.2012.690432. 

9. Herrera, M.; Abrham, E.; Stoianov, I. A Graph-Theoretic framework for assessing the resilience of 
sectorized water distribution network. Water Res. Manag. 2016, 30, 1685–1699. 

10. Klise, K.A.; Bynum, M.; Moriarty, D.; Murray, R. A software framework for assessing the resilience of 
drinking water systems to disasters with an example earthquake case study. Environ. Model. Softw. 2017, 95, 
420–431, doi:10.1016/j.envsoft.2017.06.022. 

11. Van Thienen, P.; Vertommen, I. Gondwana: A Generic Optimization Tool for Drinking Water Distribution 
Systems Design and Operation. Procedia Eng. 2015, 119, 1212–1220, doi:10.1016/j.proeng.2015.08.978. 

12. Creaco, E.; Fortunato, A.; Franchini, M.; Mazzola, M.R. Comparison between Entropy and Resilience as 
Indirect Measures of Reliability in the Framework of Water Distribution Network Design. Procedia Eng. 
2014, 70, 379–388, doi:10.1016/j.proeng.2014.02.043. 

13. Wagner, J.M.; Shamir, U.; Marks, D.H. Water Distribution Reliability: Simulation Methods. J. Water Resour. 
Plan. Manag. 1988, 114, 276–294, doi:10.1061/(asce)0733-9496(1988)114:3(276). 

14. Morley, M.S.; Tricarico C. Pressure Driven Demand Extension for Epanet (Epanetpdd); University of Exeter: 
Exeter, UK, 2008. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


