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Abstract The aim of this retrospective multicenter observa-
tional study is to test the feasibility and safety of a combined 
extracorporeal CO2 removal (ECCO2R) plus renal replace-
ment therapy (RRT) system to use an ultraprotective venti-
lator setting while maintaining (1) an effective support of 
renal function and (2) values of pH within the physiologic 
limits in a cohort of coronavirus infectious disease 2019 
(COVID-19) patients. Among COVID-19 patients admitted 
to the intensive care unit of 9 participating hospitals, 27 
patients with acute respiratory distress syndrome (ARDS) 
and acute kidney injury (AKI) requiring invasive mechanical 
ventilation undergoing ECCO2R-plus-RRT treatment were 
included in the analysis. The treatment allowed to reduce VT 
from 6.0 ± 0.6 mL/kg at baseline to 4.8 ± 0.8, 4.6 ± 1.0, and 
4.3 ± 0.3 mL/kg, driving pressure (ΔP) from 19.8 ± 2.5 cm 
H2O to 14.8 ± 3.6, 14.38 ± 4.1 and 10.2 ± 1.6 cm H2O after 
24 hours, 48 hours, and at discontinuation of ECCO2R-plus-
RRT (T3), respectively (p < 0.001). PaCO2 and pH remained 
stable. Plasma creatinine decreased over the study period 
from 3.30 ± 1.27 to 1.90 ± 1.30 and 1.27 ± 0.90 mg/dL after 
24 and 48 hours of treatment, respectively (p < 0.01). No 

patient-related events associated with the extracorporeal 
system were reported. These data show that in patients with 
COVID-19–induced ARDS and AKI, ECCO2R-plus-RRT is 
effective in allowing ultraprotective ventilator settings while 
maintaining an effective support of renal function and val-
ues of pH within physiologic limits. ASAIO Journal 2023; 
69;36–42
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Although most of the patients affected by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) infection have 
a favorable outcome, pneumonia and severe hypoxemia can 
lead to acute respiratory distress syndrome (ARDS), which is 
associated with a high mortality rate.1

Lung-protective strategies are the mainstay of mechanical 
ventilation in patients with ARDS, as the use of a tidal vol-
ume (VT) of 6 mL/kg predicted body weight (PBW) and end-
inspiratory plateau pressures (PPLAT) <30 cm H2O improves 
survival.2 However, several studies showed that conventional 
protective ventilatory settings may not systematically pro-
tect the lungs from ventilator-induced lung injury (VILI).3–5 
Ultraprotective strategies (i.e., VT as low as 4 mL/kg and PPLAT 
≤25 cm H2O), integrated by extracorporeal CO2 removal 
(ECCO2R) to minimize the risk of severe respiratory acidosis 
caused by the reduction in minute ventilation, have therefore 
been proposed to further minimize the risk of VILI.6 It has been 
recently proposed that ECCO2R could be performed adapting 
conventional renal replacement platforms to incorporate a 
membrane lung to allow CO2 elimination allowing extracor-
poreal support of both respiratory and renal function.7,8 This 
may be of interest for patients with COVID-19 ARDS because 
(1) acute kidney injury (AKI) is common among critically ill 
COVID-19 patients, with ~20% of the patients requiring renal 
replacement therapy (RRT)9; (2) mechanical ventilation is an 
independent risk factor for mortality in patients with AKI10,11; 
(3) high dead space and low compliance of the respiratory 
system often occurring in patients with COVID-19–associ-
ated ARDS may limit the efficacy of conventional protective 
ventilatory settings.1,12,13

The current study set out to examine whether in patients 
with COVID-19–induced ARDS and AKI, the use of ECCO2R 
during RRT allows the use of ultraprotective ventilator settings 
while maintaining (1) an effective support of renal function and 
(2) values of pH within the physiologic limits.
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Methods

The study was conducted retrospectively reviewing elec-
tronic records of patients enrolled in clinical database col-
lected in the period January 2020–June 2021. Institutional 
Review Boards of nine Italian hospitals (Policlinico Umberto 
I [Sapienza Università di Roma]; Azienda Ospedaliera 
Universitaria [Università di Sassari]; Ospedale Papa Giovanni 
XXIII Bergamo; Ospedale Sant’Eugenio Roma; IRCCS 
Policlinico di Sant’Orsola [Alma Mater Studiorum, Università 
di Bologna], Policlinico di Modena [Università di Modena e 
Reggio Emilia]; AOU San Giovanni di Dio e Ruggi D’Aragona, 
[University of Salerno]; Ospedali Riuniti Marche Nord Pesaro; 
Spedali Civili Brescia) approved the study protocol. Consent 
was obtained according to institutional indications.

Among patients admitted to the intensive care unit (ICU) 
of participating hospitals, patients were enrolled if they met 
the following inclusion criteria: worsening respiratory symp-
toms caused by COVID-19; mild or moderate ARDS14 requir-
ing invasive mechanical ventilation; ∆P (i.e. the difference 
between end-inspiratory plateau pressure [PPLAT] minus posi-
tive end-expiratory pressure [PEEP]) ≥15 cm H2O

15 despite 
the use of conventional protective ventilatory settings2; AKI 
requiring continuous venovenous hemodiafiltration. Exclusion 
criteria were duration of mechanical ventilation <48 hours, 
patients eligible for extracorporeal membrane oxygenation 
(ECMO) following Extracorporeal Life Support Organization 
(ELSO) criteria,16 end-stage renal disease requiring dialysis, 

decompensated heart failure or acute coronary syndrome; 
severe chronic obstructive pulmonary disease; acute brain 
injury; and severe liver insufficiency (Child–Pugh scores >7) or 
fulminant hepatic failure, heparin-induced thrombocytopenia, 
contraindication for systemic anticoagulation, platelet <50 g/L, 
catheter access to femoral vein or jugular vein impossible, 
pneumothorax, incomplete records for the variables of inter-
est, “do not intubate/do not resuscitate” order.

All patients matching inclusion and exclusion criteria 
received ECCO2R during RRT with the OMNI blood purifi-
cation system (B.Braun Avitum AG, Melsungen, Germany) 
available for clinical use in all sites. This blood purification 
system is equipped with a polymethylpentene membrane 
lung (1.81 m2; Eurosets, Medolla, Italy) connected to a fresh 
gas flow source (100% oxygen) at a suggested rate of 8 L/
min and inserted before the hemofilter (polysulphone 1.6 m2) 
(Figure  1). Vascular access (internal jugular vein or femoral 
vein or subclavian veins) was performed using a 14 French 
double lumen catheter (OMNIcath; B.Braun Avitum AG) 
inserted with the Seldinger technique. Anticoagulation was 
ensured by continuous infusion of heparin to maintain values 
of activated partial thromboplastin time (aPTT) ratio at 1.5–2.0 
of baseline.

Patients were treated with an ultraprotective ventilatory 
strategy simultaneously with continuous venovenous hemo-
diafiltration.7,17 This strategy was applied with the following 
protocol: RRT was commenced at a blood flow of 300 mL/min 
and sweep gas was set at 0 L/min. VT was reduced to 4 mL/kg 

Figure 1. Venovenous extracorporeal removal of carbon dioxide (ECCO2R) associated with a continuous renal replacement therapy (CRRT) 
circuit. The blood flows from the venous vascular access through the ECCO2R filter where the sweep gas flow removes the CO2 and imme-
diately thereafter through the CRRT filter. In the continuous hemodialysis mode a counter-current dialysate flow (first narrow from the right) 
favors the diffusion of small molecules The continuous hemofiltration mode is based on convection and removes median molecules: the 
substitution flow (second narrow from the right) replaces the convective flow in postdilution. Continuous hemodiafiltration combines these 
two CRRT modes. The effluent flows away from the loop (second narrow from the right). The syringe infuses heparin into the circuit. Manholes 
and pressure valves regulate and control the flow. Roller pumps generate the flow. 
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PBW in three steps (from 6.0 to 5.0, from 5.0 to 4.5, and from 
4.5 to 4 mL/kg PBW). Once the lowest value of VT was reached, 
sweep gas was switched on (10 L/min) to obtain PaCO2 values 
similar to baseline (±20%). To optimize oxygenation PEEP and 
FiO2 were titrated to maintain SpO2 ≥92%. Patients received 
neuromuscular blocking agents when it was difficult to pro-
vide adaptation to controlled ventilation with deep sedation as 
directed by the attending physician.

Data were analyzed for feasibility (achieve and maintain a 
VT of 4 mL/kg ideal body weight [IBW] and PPLAT ≤25 cm H2O 
with a PaCO2 not increasing more than 20% from baseline and 
a value of arterial pH >7.30 while providing effective RRT) and 
safety (occurrence of severe adverse events and of mechani-
cal/clinical ECCO2R-related adverse events [ECCO2R-AE]) as 
previously described.6

Static compliance of the respiratory system (CRS) was cal-
culated as tidal volume/(PPLAT – total PEEP).18 Driving pressure 
(ΔP) was calculated as VT/CRS.

15 Oxygenation was quantified 
as the ratio of partial pressure of arterial oxygen to fractional 
concentration of oxygen in inspired air (PaO2/FiO2). Ventilatory 
ratio (VR) was calculated as minute ventilation × PaCO2/(pre-
dicted minute ventilation × predicted PaCO2) and used as a 
surrogate of dead space.19

Clinical variables were collected before the start of ECCO2R-
plus-RRT (T0), after 24 (T1), and 48 (T2) hours and at discon-
tinuation of ECCO2R-plus-RRT (T3). Creatinine concentrations 
at ICU admission, T0, T1, T3, length of hospital stay, and mor-
tality at 28 days were recorded.

Data, unless otherwise stated, are presented as mean 
with standard deviation (±SD) for continuous variables 
and as frequencies, proportions, and percentages for cat-
egorical variables. Repeated measures for continuous vari-
ables were compared with Kruskal–Wallis test (each row 
represents matched observations); categorical variables 
were compared by Fisher’s exact tests or chi-square test. 
Longitudinal data were analyzed by jointly considering 
all four follow-up measurements (i.e., baseline, 24 hours, 
48 hours, and at the end of treatment). Multiple imputa-
tion was used to account for missing values, using chained 
equations that fill in missing values in multiple variables 
iteratively. Data were analyzed using the SPSS statisti-
cal software packages (SPSS Statistics for Mac, 22.0; IBM 
Corp., Armonk, NY). Methods of unsupervised clustering, 
statistical tests, and regression analyses were implemented 
utilizing R statistics software.

Results

Twenty-seven patients were treated with the ECCO2R-
plus-RRT. It was initiated 11 ± 9 days after ICU admission 
and discontinued after 4.3 ± 2.2 days for death in 14 patients 
and for normalization of renal function in the remaining 13 
patients.

Clinical variables before initiating the ECCO2R-plus-RRT 
treatment are reported in Table  1. All patients were venti-
lated in volume-controlled mode and received a propofol 
and opiate-based analog-sedation regime. Creatine amounted 
to 3.30 ± 1.27 mg/dL and all patients had a KDIGO (Kidney 
Disease Improving Global Outcome) class of 3. Modes of RRT 
implemented were continuous venovenous hemodiafiltration 
(15 patients), continuous venovenous hemodialysis (6 patients), 
and continuous venovenous hemofiltration (6 patients). PaO2/

FiO2, CRS, ΔP, and VR amounted to 108 ± 29, 23.2 ± 2.7 mL/cm 
H2O, 19.8 ± 2.5 cm H2O, and 2.9 ± 1.1, respectively.

Blood flow and sweep gas set on the platform ranged between 
186 and 393 mL/min and 9–11 L/min, respectively. Infusion 
of heparin maintained aPTT ratio at 1.12 ± 0.3, 1.64 ± 0.9, 
2.02 ± 1.2, and 2.08 ± 0.5 at T0, T1, T2, and T3, respectively. 
Renal dose amounted to 32 ± 3.3, 32 ± 4.4, 31 ± 4.3, and 
31 ± 4.6 mL/kg/h at T0, T1, T2, and T3, respectively.

Time course of ventilatory variables is reported in Figure 2. 
Initiation of treatment allowed to reduce VT from 6.0 ± 0.6 mL/
kg to 4.8 ± 0.8, 4.6 ± 1.0, and 4.3 ± 0.3 mL/kg; PPLAT from 
28.9 ± 2.7 cm H2O to 24.4 ± 3.9, 23.9 ± 3.9, and 21.6 ± 2.8 cm 
H2O; and ΔP from 19.8 ± 2.5 cm H2O to 14.8 ± 3.6, 14.38 ± 4.1, 
and 10.2 ± 1.6 cm H2O at baseline, T1, T2, and T3, respec-
tively (p < 0.001). Despite a ~30% reduction in minute ven-
tilation and ~10% reduction in respiratory rate (p < 0.01), 
PaCO2 remained stable whereas pH slightly but significantly 
(p < 0.01) increased (7.30 ± 0.08 at baseline, 7.35 ± 0.07 at T1, 
7.37 ± 0.07 at T2, and 7.39 ± 0.08 at T3, p < 0.05). No change 
in systemic oxygenation was observed (Figure 3).

Creatinine at ICU admission amounted to 1.93 ± 0.47 mg/dL 
and significantly increased to 3.30 ± 1.27 leading to initiation 
of RRT that resulted in a significant decrease in plasma creati-
nine over the study period to 1.90 ± 1.30 and 1.27 ± 0.90 mg/
dL after 24 and 48 hours of treatment, respectively (p <0.01). 

Table 1. Baseline Clinical, Renal, and Respiratory Variables 
Before Initiating ECCO2R plus RRT

Age (years) 64 (±11) 
Gender, male/female 24/3
SAPS II 34 (±14)
SOFA at ICU admission 6 (±3)
SOFA at T0 7 (±2)
ICU length of stay (days) 28 (±14)
Mortality at 28 days (%) 63% (17/27)
Hypertension, n (%) 13 (50%)
COPD, n (%) 6 (23%)
Diabetes, n (%) 6 (23%)
Coronary artery disease, n (%) 5 (19%)
Peripheral vascular disease, n (%) 4 (15%)
Pulmonary embolism, n (%) 2 (7.7%)
Atrial fibrillation, n (%) 1 (3.9%)
Plasma creatinine (mg/dL) 3.30 ± 1.27
VT (mL) 454 ± 59
VT/PBW (mL/kg) 6 ± 0.6
RR (breath/min) 28.6 ± 3.2
Minute ventilation (L/min) 13.0 ± 1.7
PEEP (cm H2O) 9.3 ± 2.6
PPLAT (cm H2O) 28.9 ± 2.8
pH 7.30 ± 0.08
PaCO2 (mmHg) 68.1 ± 11.2
HCO3

– (mmol/L) 30.5 ± 9.11
BE 5.7 ± 8
PaO2/FiO2 108 ± 29
CRS (mL/cm H2O) 23.2 ± 2.7
∆P (cm H2O) 19.8 ± 2.5
Ventilatory ratio 2.9 ± 1.1

Data are mean ± standard deviation. 
∆P, driving pressure; BE, base excess; COPD, chronic obstruc-

tive pulmonary disease; CRS, static compliance of the respiratory 
system; ECCO2R, extracorporeal CO2 removal; HCO3

–, bicarbonate; 
ICU, intensive care unit; PaCO2, arterial partial pressure of carbon 
dioxide; PaO2/FiO2, ratio between arterial partial pressure of oxygen 
(PaO2) and fraction of inspired oxygen (FiO2); PBW, predictive body 
weight; PEEP, positive end-expiratory positive pressure; PPLAT, pla-
teau pressure; RR, respiratory rate; RRT, renal replacement therapy; 
SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ 
Failure Assessment; VT, tidal volume.
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At the end of study treatment, plasma creatinine amounted to 
1.02 ± 0.70 mg/dL (Figure 4).

No patient-related events directly attributable to the com-
bined extracorporeal circuit and no other adverse events 
associated with the extracorporeal system were reported, 
except for four episodes of premature circuit clotting which 
required circuit replacement. The small cohort of patients 
undergoing ECCO2R-plus-RRT did not report any major 
bleeding episode, hemolysis, or infections related to the 
system.

Discussion

Results of this retrospective observational multicenter study 
show that in patients with COVID-19–induced ARDS and AKI, 
ECCO2R-plus-RRT is effective in allowing ultraprotective venti-
lator settings while maintaining (1) an effective support of renal 
function and (2) values of pH within the physiologic limits.

Mechanical ventilation may cause a form of injury that is 
clinically and morphologically indistinguishable from ARDS.20 
A seminal randomized clinical trial demonstrated that limiting 

Figure 2. Time course of ventilatory variables. VT, tidal volume; RR, respiratory rate; VE, minute ventilation; PPLAT, end-inspiratory plateau pres-
sure; PEEP, positive end-expiratory pressure; ∆P, driving pressure (ΔP = PPLAT minus PEEP). *p < 0.001 vs. baseline, #p < 0.05 vs. baseline. 

Figure 3. Time course of ventilatory variables. PaCO2, partial pressure of arterial CO2; PaO2/FiO2, ratio of arterial-to-inspiratory oxygen 
fraction. *P < 0.001 vs. baseline, #P < 0.05 vs. baseline. 
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VT to 6 mL/kg and PPLAT to ≤30 cm H2O improves survival.2 
Amato and coworkers showed that these protective ventilatory 
settings were effective if associated with a decrease in driving 
pressure (PPLAT – PEEP) and that protective ventilator settings are 
associated to a lower risk of death only for values of ΔP <15 cm 
H2O.15 Several studies demonstrated that conventional protec-
tive ventilatory settings may not be always protective because 
some patients may still present morphological or physiologic 
evidence of VILI with VT of 6 mL/kg PBW and PPLAT lower than 
30 cm H2O.5,21,22 Reduction of VT to 3–4 mL/kg and PPLAT ≤25 cm 
H2O has been proposed to further minimize the risk of VILI, 
but this entails a significant risk of severe respiratory acidosis.23 
ECCO2R can minimize this risk by clearing CO2 enabling strat-
egies that are more protective and might improve outcomes 
by (1) using VT as low as 3–4 mL/kg and further decreasing 
PPLAT below 30 cm H2O (often termed ultraprotective5,24), (2) 
decreasing respiratory rates, (3) minimizing driving pressures 
and mechanical power.25–27 A recent multicenter, random-
ized clinical trial conducted by McNamee and coworkers was 
stopped early for futility because tidal volume reduction facili-
tated by ECCO2R did not reduce mortality.28 It should be noted 
that conventional protective ventilator settings failed to obtain 
values of ∆P <15 cm H2O in ~ 50% of patients included in 
McNamee, whereas all patients included in the current study 
had values of ∆P >15 cm H2O (19.8 ± 2.5 cm H2O).

Several single center studies reported the possible alloca-
tion of a membrane lung within a conventional RRT circuit to 
allow simultaneous removal of fluids and metabolites (with the 
hemofilter) and CO2 (with the membrane lung).7,29–31 Forster 
and coworkers modified a commercially available RRT device 
(bm11/14; Edwards-Lifescience, Irvine, CA) with a standard 
setup and adjustment for continuous venovenous hemodialy-
sis adding downstream to the high-flux polysulfone capillary 
hemofilter (Polyflux 140H; Gambro, Hechingen, Germany; 
membrane surface area of 1.4 m2), a small standard hollow-
fiber gas exchanger (D902 Liliput 2 ECMO; Sorin Group Milan, 
Milan, Italy, surface area of 0.67 m2).29 They found that in 10 

ventilated critically ill patients with ARDS and AKI undergoing 
RRT and respiratory replacement therapy, this simple device 
was feasible and safe and led to a significant CO2 removal and 
rapid correction of arterial pH with a positive impact on hemo-
dynamic stability. Concomitant RRT was in no way compro-
mised, and alarm functions of the RRT system ensured safety 
control for the gas-exchange device.29 Similarly, Allardet-
Servent and coworkers modified a commercially available 
RRT device (PrismaFlex v6.0 monitor, Gambro, Lund, Sweden) 
set in continuous venovenous hemofiltration mode adding a 
polymethylpentene heparin-coated hollow fiber membrane 
oxygenator (MEDOS HILITE 2400 LT; MEDOS Medizintechnik 
AG, Stolberg, Germany; 0.65 m2) either upstream and down-
stream of the hemofilter (AN69 membrane, M150; Hospal, 
Meyzieu, France; 1.5 m2).30 The study enrolled 11 patients 
and confirmed that combined RRT with ECCO2R was safe and 
allowed sustained blood purification together with enhanced 
lung-protective ventilation during the early phase of ARDS and 
AKI.30 Blood flow through the membrane lung (p < 0.001) and 
CO2 removal rate were significantly higher when the mem-
brane oxygenator was placed upstream than when the mem-
brane oxygenator was placed downstream of the hemofilter.30 
Both studies did not report adverse events.30,31 Consistently 
with these data, Fanelli and coworkers using a propensity 
score analysis compared patients with ARDS and AKI treated 
with conventional protective ventilation and RRT with patients 
treated with ECCO2R-plus-RRT (VT of 7.04 ± 0.5 mL/kg PBW 
and ∆P of 19.2 ± 2.2 cm H2O vs. VT of 4.84 ± 0.4 mL/kg PBW 
and ∆P of 14.1 ± 2.1 cm H2O, respectively).7 Recovery of 
renal function was more pronounced, and concentrations of 
inflammatory and proapoptotic mediators were lower when 
ultraprotective ventilation was allowed by ECCO2R-plus-RRT. 
Moreover, a multicenter pilot study from Schmidt and cowork-
ers reported the use conventional RRT circuit equipped with 
a membrane lung to allow CO2 removal without provid-
ing RRT.32 A polymethylpentene, hollow-fiber gas-exchanger 
membrane (surface area 0.32 m2) was added to a conventional 
RRT platform (Prismaflex [Gambro-Baxter]) to allow low-flow 
(421 ± 40 mL/min; sweep gas 10 ± 0.3 L/min), stand-alone CO2-
removal treatments. In 20 patients with mild or moderate 
ARDS, the study showed how this approach allowed to safely 
reach low VT (from 6.10 ± 0.30 to 3.98 ± 0.18 mL/kg PBW), PPLAT 
(from 26.3 ± 3.5 to 22.8 ± 2.6 cm H2O), and ∆P (from 13.0 ± 4.8 
to 7.9 ± 3.2 cm H2O). However, this occurred with a ~20% 
increase in PaCO2 (from 43 ± 8 to 53 ± 9 mmHg).32

The relatively large number of patients included in the 
study (N = 27) and the multicenter design (nine centers) rep-
resent the major strength of this study. Our data confirm that 
the combined use of ECCO2R and RRT allows to safely (only 
four episodes of premature circuit clotting) reach and main-
tain (for 4.3 ± 2.2 days) a low VT (from ~6 to ~4 mL/kg PBW), a 
low PPLAT (from ~30 to ~20 cm H2O), and reduce ∆P (from ~20 
to ~10 cm H2O) while maintaining constant values of PaCO2 
(from ~70 to ~60 mmHg) and pH (from ~7.30 to ~7.40) at T0 
and T3, respectively, and normalizing creatinine values (from 
~3.0 mg/dL at the onset of RRT to ~2.0 mg/dL at the end of 
RRT, respectively). However, there are several important limi-
tations that should be taken into account in interpreting our 
results. First, we included only patients with COVID-19 ARDS 
in whom ECCO2R-plus-RRT was started 11 ± 9 days after ICU 
admission; this could represent a problem in generalizing to 

Figure 4. Changes in creatinine on ICU admission and during the 
study period. ICU, intensive care unit. *P < 0.001 vs. baseline, #P < 
0.05 vs. baseline. 
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ARDS from other causes and earlier admission. Second, these 
patients represent the most severe patients since CRS, ΔP, and 
VR amounted to 23.2 ± 2.7 mL/cm H2O, 19.8 ± 2.5 cm H2O, and 
2.9 ± 1.1. This profound alteration of the respiratory function 
may explain the value of PaCO2 observed at study inclusion 
(~70 mmHg) that is higher than the PaCO2 values observed in 
some of the previous studies performed (~50 mmHg).6,7,17,28,30,32 
Third, our sample may have intrinsic heterogeneity since it is 
a retrospective analysis. Fourth, mortality in these patients 
was quite high; however, this cohort of critically ill COVID-
19 patients was burdened with a particularly poor prognosis 
and met the inclusion criteria in a late phase of the disease. 
Also still not proven, ECCO2R could be beneficial to reduce 
VILI in the early phase of ARDS3 and has been suggested as a 
tool to maintain a protective level of mechanical ventilation.33 
A combined technique should be indicated in case of severe 
acute renal failure (KDIGO3); therefore, the right timing of a 
combined treatment should be clarified, taking into account 
the possible role on metabolic and fluid balance in promoting 
a faster compensation of acidosis. Further studies are needed 
to compare ECCO2R-plus-RRT vs. ECCO2R stand alone.

In conclusion, our study shows that combination of ECCO2R 
and RRT in patients mechanically ventilated for COVID-19–
induced ARDS with AKI and in whom conventional ventila-
tor settings failed to obtain effective protection from VILI (∆P 
>15 cm H2O) was able to ensure ultraprotective ventilatory set-
ting (VT of ~4 mL/kg PBW; PPLAT of ~20 cm H2O; ∆P of ~10 cm 
H2O) while maintaining constant values of PaCO2 and pH and 
providing effective RRT. Further studies are needed to assess 
overall benefits of this approach.
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