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Abstract: Fourier-Transform mid-infrared (FTIR) spectroscopy offers a strong candidate screening 
tool for rapid, non-destructive and early detection of unauthorized virgin olive oil blends with other 
edible oils. Potential applications to the official anti-fraud control are supported by dozens of 
research articles with a “proof-of-concept” study approach through different chemometric 
workflows for comprehensive spectral analysis. It may also assist non-targeted authenticity testing, 
an emerging goal for modern food fraud inspection systems. Hence, FTIR-based methods need to 
be standardized and validated to be accepted by the olive industry and official regulators. Thus far, 
several literature reviews evaluated the competence of FTIR standalone or compared with other 
vibrational techniques only in view of the chemometric methodology, regardless of the inherent 
characteristics of the product spectra or the application scope. Regarding authenticity testing, every 
step of the methodology workflow, and not only the post-acquisition steps, need thorough 
validation. In this context, the present review investigates the progress in the research methodology 
on FTIR-based detection of virgin olive oil adulteration over a period of more than 25 years with 
the aim to capture the trends, identify gaps or misuses in the existing literature and highlight 
intriguing topics for future studies. An extensive search in Scopus, Web of Science and Google 
Scholar, combined with bibliometric analysis, helped to extract qualitative and quantitative 
information from publication sources. Our findings verified that intercomparison of literature 
results is often impossible; sampling design, FTIR spectral acquisition and performance evaluation 
are critical methodological issues that need more specific guidance and criteria for application to 
product authenticity testing. 

Keywords: virgin olive oil; non-destructive FTIR spectroscopy; adulteration; non-targeted 
authenticity testing; edible oils; chemometrics 
 

1. Introduction 
Today, a large number of analytical tests are planned to ensure the quality and 

authenticity of virgin olive oil products throughout their production and global supply 
chain, based on a set of organoleptic, physical and chemical characteristics. Standard 
quality and purity specifications for labeling “extra-virgin” and “virgin” olive oil 
(EVOO/VOO) are proposed by the International Olive Council (IOC), adapted in the 
European legislation (EC No 2568/1991 Regulation and amendments) [1,2] and accepted 
in worldwide commercial transactions (Codex Committee for fats and oils). Within the 
European Union (EU), screening tests that involve sensory analyses by accredited tasting 

Citation: Ordoudi, S.A.; Strani, L.; 

Cocchi, M. Toward the Non-

Targeted Detection of Adulterated 

Virgin Olive Oil with Edible Oils via 

FTIR Spectroscopy & Chemometrics: 

Research Methodology Trends, Gaps 

and Future Perspectives. Molecules 

2023, 28, 337. https://doi.org/10.3390/ 

molecules28010337 

Academic Editor: Daniel Cozzolino 

Received: 31 October 2022 

Revised: 23 December 2022 

Accepted: 23 December 2022 

Published: 1 January 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Molecules 2023, 28, 337 2 of 25 
 

 

panels and/or basic laboratory analyses (e.g., acidity, viscosity, oxidative stability, 
triacylglycerol content, peroxide, anisidine and iodine values, moisture content, and 
specific gravity) are performed regularly at the production/supply chain in order to check 
for non-conformities and reduce the prevalence of common law violations. The latter refer 
primarily to marketing of EVOO or VOO blends with cheap vegetable and seed oils or 
low-grade olive oil as pure virgin one. Although the conformity checks in this sector are 
considered sufficient, there is a continuous global debate about the effectiveness of the 
test methods, especially in providing early warning signals; as the fraudulent practices 
become more “scientific” or sophisticated, these tests often fail to detect risks from 
unexpected, undisclosed adulterants. Moreover, as the assessment protocols are invasive 
in nature and time-consuming, the average duration of conformity checks until 
completion is prolonged, having also negative impact on the overall cost of the quality 
control [3]. In the last years, it has been suggested that regulations need to be amended 
and to integrate traditional with modern analytical approaches following technological 
innovations [4]. 

1.1. Non-targeted Authenticity Testing 
Non-targeted screening methods based on spectroscopic techniques (mainly 

vibrational and Nuclear Magnetic Resonance (NMR) spectroscopy) [5,6] have recently 
attracted the interest of researchers in the field of food authentication, as they could offer 
alternative means for rapid quality control and authenticity testing. Such methods utilize 
the whole spectrum as sample fingerprint, similar to the concept of non-targeted 
metabolomics, to uncover undisputed cases of fraud, e.g., mislabeling of provenance and 
product category or adulteration. In this frame, non-destructive and non-invasive testing 
approaches based on Near- and Mid-Infrared or Raman spectroscopies that have been 
used for many decades in the industrial process control of several commodities (e.g., beer, 
dairy and cereal products), but also hyperspectral imaging, could aid the on-field/official 
control of EVOO/VOO. Thus far, there is a wealth of scientific evidence that such 
techniques can be powerful in identifying cheaper seed oils or deodorized olive oils in 
EVOO [7,8]. Given that the vibrational spectrum contains multivariate information about 
several quality parameters and is obtained out of minute amounts of sample, 
spectroscopic sensors can be used to collect data from multiple monitoring points along 
the production and supply chain as parts of modern, digital food quality systems [9]. 
Modern data science tools that employ signal processing, data compression and 
multivariate calibration models are indispensable to extract information from the complex 
spectra and turn it into operational knowledge in the context of chemometrics [10]. 
Chemometric assessment can be greatly advantageous for quantitative or qualitative 
analyses of data. Nevertheless, it represents a vigorous task that requires 
multidisciplinary skills and expertise, along with standard guidelines. Skibsted and 
Engelsen pointed out that “the challenge and workload of robust calibration remains an 
effective stopper for widespread use of spectroscopic devices” [11]. Robustness is needed 
to handle data variability originating from various sources, i.e., the types of reference 
samples that are used for model training and validation, as well as instrumental instability 
and instrument-to-instrument differences. 

In a forensic view, the ultimate goal is to define the probability of detecting 
adulterated virgin olive oil as atypical and pure one as typical of its origin and category. 
To this aim class-modeling coupled with a non-targeted analytical approach seems to be 
the most promising strategy [12]. The “proof of evidence” could be evaluated considering 
the predictive performance of the trained model against samples of unknown origin, or 
directly their distance to the model of the authentic category [13]. However, there is not 
yet a standard approach or guideline protocol, thus the significance of the results usually 
varies depending on the statistical algorithm originally selected or the validity of the 
evaluation criteria [14]. Nowadays, many experts in the field stress that when class models 
are trained for the prediction of abnormalities in spectra, it is essential to define standard 



Molecules 2023, 28, 337 3 of 25 
 

 

performance criteria, regardless of the statistical approach. For example, sensitivity 
against atypical samples and specificity rates at a desired confidence level should match 
the nominal values, and the chosen confidence should be in agreement with the regulation 
requirements. In fact, it is necessary to avoid possible safety hazards and/or to reduce the 
number of suspect samples that need to be re-tested. Thus, the selection of a model vali-
dation procedure is crucial for the future applicability of the method in the context of non-
targeted authenticity testing. Currently, there is a consensus that standard guidelines are 
needed in every step of the workflow, including the very first one, e.g., creation of refer-
ence data sets. Scenario analyses, theory of sampling and experimental design principles 
should be employed much more to ensure representativeness, sufficient size, etc. [15–17]. 
Above all, the reference samples that are used to calibrate the predictive model should be 
“relative to the universe of authentic samples, the variability of the method itself relative 
to the specification range, and the natural variability inherent in the universe of the au-
thentic ingredient” [18]. Representative sampling is a key requirement for stepping for-
ward to spectroscopic data analysis through general workflows, as those proposed by 
Nunes [19] or Callao and Ruisanchez [20], and building internationally standardized pro-
tocols. 

1.2. FTIR Spectroscopy in the Quality Control of EVOO/VOO 
In the case of edible oils, chemometric models based on mid-infrared (MIR) spectro-

scopic data often perform better than near-infrared (NIR) and Raman ones, when study-
ing quality issues in general [19]. FTIR spectroscopy represents a powerful, versatile, non-
destructive technique of low analysis cost, an alternative to wet-chemical and time-con-
suming techniques. It monitors the fundamental vibrational and rotational movements of 
molecules upon absorption of light in the mid-infrared region of the electromagnetic spec-
trum (4000 to 400 cm−1). This region retains information about the structure and confor-
mation of proteins, polysaccharides and lipids that can be useful for diagnostic purposes. 
Multiple signals of varying frequency/intensity, due to the contribution of multiple ana-
lytes or even the sample matrix itself, compose the FTIR spectrum of an oil sample at a 
particular time slot. Therefore, by spectral data analysis, it is possible to identify, monitor 
and track undesired structural changes in lipid molecules in terms of, e.g., the chain 
length, unsaturation, trans/cis configuration of double bonds or ester linkages of fatty ac-
ids. Many factors related with intrinsic characteristics of the olive fruits (genetic, physio-
logical) and environmental conditions (oxygen, light, temperature) may induce molecular 
transformations during the production, handling and storage of the EVOO/VOO prod-
ucts, giving rise to subtle variation in their spectra. Figure 1 displays characteristic peaks 
and bands in the raw FTIR spectra of virgin olive oils, along with assignments [21] that 
are considered diagnostic of quality deterioration during various conditions of processing 
and storage. As an example, variance in the band at 966 cm−1 due to isolated (non-conju-
gated) trans double bonds [22], but also in the region between 914 to 800 cm−1 [23,24], may 
reveal the presence of thermal oxidation products. In contrast, variance at around 1746 
cm−1 due to carboxylic ester groups is expected to carry information about improper con-
ditions of olive storage and elevation of fatty acid ethyl esters (FAEEs) content [25]. 
Chemometric analysis of the spectral data is indispensable and may offer insight to the 
“natural” variability in pure virgin olive oil composition. Beyond inherent variation, the 
presence of extraneous matter, e.g., oils of foreign botanical origin or extraneous pig-
ments, can also induce invisible differential changes that can be exposed, depending on 
the quality of the attained spectroscopic data and the overall strategy of chemometric 
modeling and validation [26]. The signals in the fingerprint region from 1500 to 700 cm−1, 
as well as the C–H stretching bands from 3100 to 2800 cm−1, are often under scrutiny, as 
they can be diagnostic of the target adulterant. Usually, shifted bands between 3003 and 
3020 cm−1 that are due to C-H stretching in cis-olefins denote a high level of unsaturated 
fatty acids and adulteration with seed oils. In practice, as spectral variance arises synchro-
nously from C–H, C–O and C=C vibrations in different structural units of the predominant 
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acylglycerols, it is impossible to identify the extraneous botanical origin in complex olive 
oil blends [27]. Chemoinformatic databases with FTIR spectroscopic data for EVOO/VOO 
or other types of oil samples are necessary for fingerprint analyses [26,28]. However, given 
the lack of standard assessment protocols, confusion about the terminology and misuses, 
misinterpretation of the research findings are often encountered in the scientific literature 
[6,29–31]. 

 
Figure 1. Attenuated Total Reflectance (ATR)-FTIR (3600–650 cm−1) spectral features that are com-
monly accepted as diagnostic of virgin olive oil quality deterioration throughout its production and 
storage [21,23–25]. Peak assignments are highlighted in red. ν, stretching vibration; δ, bending, in 
plane deformation vibration; γ, bending, out of plane deformation vibration; ρ, rocking vibration; s, 
symmetric vibration; as, asymmetric vibration; ROH, aliphatic alcohols; LOOH, lipid hydroperox-
ides; TAGs, triacylglycerols; DAGs, diacylglycerols. 

2. Concept and Methodology 
The current review aims to summarize the results and evaluate the methodological 

concepts and workflows of literature studies where FTIR spectroscopy was proposed as a 
non-destructive tool to detect virgin olive oil adulteration with blends of lower quality or 
cheaper vegetable oils. The main objective is to highlight critical issues, starting from the 
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design of experiments and selection of samples, instrumental settings and acquisition of 
data, pre-processing methods and data exploration up to the multivariate calibration/clas-
sification methods and validation results. For this purpose, a systematic literature search 
and meta-analysis of the data published thus far were carried out. To the best of our 
knowledge, no similar research has been conducted to evaluate trends in the research 
methodology, identify gaps and suggest future perspectives for implementation of FTIR 
spectroscopy to the anti-fraud control of high value olive oil products. 

Extensive literature search was carried out in the Web of Science (core collection), 
Scopus and Google Scholar databases (last searched on July 2022). Various combinations 
of the keywords ‘virgin olive oil’ AND ‘adulteration’ AND ‘FTIR’ in the search fields “ti-
tle” and “abstract” were used with no publication time filters. The retrieved papers were 
screened for compliance with our search criteria to remove studies of low relevance. In 
total, 47 original research articles and 12 reviews were retrieved. The data sets from Web 
of Science and Scopus that included information about the type of paper, authors’ name 
and title, authors’ affiliations, journal name, doi, publication year, keywords and abstract 
were exported using the Research Information Systems (RIS) format and further pro-
cessed via the open source BibExcel toolbox [32]. This tool allowed all the metadata to be 
extracted in a file format that could be imported to Microsoft Excel and uniquely tagged 
to the respective publication. Next, we defined some additional criteria to find those orig-
inal research articles that report experimentation with mixtures of virgin olive oil and 
other types of edible oils using rapid, non-destructive measurement protocols. Infor-
mation was extracted from the (i) aim of the study, (ii) materials and methods, as well as 
(iii) the results and discussion sections, and it involved the following six subject catego-
ries: (i) field of application i.e., the botanical origin or process type of adulterant(s) under 
study, (ii) sampling methodology, focusing on the design and composition of test mix-
tures (binary, ternary, complex and concentration ranges) and summarizing details about 
the number of reference samples and available metadata, (iii) spectra acquisition condi-
tions (type of instrument, type of cell, instrument parameters), (iv) spectral pre-processing 
schemes and (v) modeling strategy (e.g., types of calibration models and validation 
schemes). Bibliometric results are presented and discussed in separate sections per cate-
gory. In-depth explanation of various mathematical treatment and chemometric methods 
that are mentioned throughout the article is not given here, but the reader is referred to 
the basic bibliography for more details, e.g., [33–46]. A glossary of some terms and basic 
descriptions is also given as supplementary information (see Supplementary Materials). 

3. Results and Discussion 
Given the inclusion criteria, 32 journal articles that covered the entire publication pe-

riod (27 years), were considered for further analysis in this study. Figure 2 shows the 
changes in the annual rate of publication of relevant papers since the early 1990s. It is 
clearly illustrated that the rate increased almost exponentially after the pioneering works 
of Wilson and colleagues [47–49]. It is also striking that almost 40% of the papers were 
published from 2015 onwards, which verifies that research on the particular topic has be-
come more systematic in the last decade (Figure 2). 
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Figure 2. Annual rate of publications about FT-IR detection of EVOO adulteration over the period 
1995-2022. Data retrieved from the Web of Science, Scopus and Google Scholar databases using var-
ious combinations of the keywords “virgin olive oil” AND “adulteration” AND “FTIR” in the search 
topics (last search: July 2022). The red segment depicts the shift to more systematic research during 
the last quarter of the publication period (2015 onwards). 

3.1. Field of Application 
Almost all of the eligible studies focused on discriminating mixtures of Extra Virgin 

Olive Oil (EVOO) with cheaper refined oils of various botanical origin (from vegetable, 
seeds and nuts) from pure EVOO. Mixtures with lower grade olive oil (refined olive oil 
(OO), pomace OO, OO from whole olive fruits, etc.) as process-type adulterants have also 
been investigated (Figure 3). 
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Figure 3. Frequency of records about the edible oils that were chosen to represent different botanical 
origin or process-type adulterants of EVOO in the articles under review. 

Refined sunflower, corn and soybean oils were, by far, the three most frequently in-
vestigated types of EVOO adulterants representing real cases of cheap, readily available 
substitutes in various local markets of the world. As they are typically devoid of chloro-
phyl or carotenoid pigments and much richer in polyunsaturated FAs than virgin olive 
oil, their FTIR spectral characteristics are easily discriminated from those of the authentic 
product. Thus, the probability of detection in binary EVOO mixtures via the proposed 
FTIR-based methods is expected to be high. In contrast, detection of blends with refined 
oils that are high-in-oleic acid is quite more challenging. It seems that process-type adul-
terants, such as refined olive and olive pomace oils, but also refined hazelnut oil, were 
investigated mostly in earlier studies published before 2015 [27,47,49–53]. Other botanical 
origin-type adulterants that are rich in oleic acid (e.g., from canola seeds and peanut) have 
gained popularity in studies published after 2015 [54–60]. At the moment, it cannot be 
estimated whether the shortfall in global edible oil supplies due to current geopolitical 
circumstances (e.g., Ukraine crisis) and the high increase in domestic market prices may 
prompt new types of fraud in the olive oil sector. Those conditions urge the need for im-
plementation of efficient non-destructive screening tools and early warning signals in the 
official controls. 

3.2. Sampling Methodology and Reference Samples 
The schemes in Figure 4a–c illustrate methodological trends regarding the size and 

the supply source of the sample collection used to create the reference spectra in each 
study. It is striking that almost 1/3 of the relevant publications reported poor details about 
their sampling method. The rest of the studies were classified basically into two groups 
that both corresponded to relatively small collections of reference spectra. The latter cor-
responded to either less than 15 or from 20 to 50 different samples of pure EVOO. In cases 
where the collection contained only a few average spectra (up to 15), they would rather 
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represent different commercial EVOO brands with no tracking records on origin and pro-
duction year. Very often, different batches of the same brand were purchased from the 
local market and mixed before analyses. Other investigators used mixtures of different 
commercial brands to reduce the heterogeneity of the reference sample set. Thus, compo-
sitional variation of authentic EVOO due to, e.g., cultivar, origin of production or harvest 
year, was seldom provisioned in the reference spectral data of the adulteration studies 
under review. When this condition was met, samples representing different geographical 
origin would be purchased from various international markets [27] or from producers [61] 
without any complementary purity control. In the cases where the collection counted up 
to 50 [49,50,53,55,62–64] and even more than 90 average spectra for EVOO [59,65], the 
sampling pattern was more complex; it seems that multiple sources other than the local 
market were used for the collection of pure EVOOs. Most probably, the researchers col-
laborated with producers, manufacturers, other colleagues, national authorities and offi-
cial laboratories, as well as the IOC, to gain confidence about cultivar/geographical origin 
or quality parameters of the collected oils. The use of an in-house reference spectral library 
with available metadata for authentic EVOO/VOOs has also been exploited, as reported 
very recently [59]. Our survey showed that regardless of the supply source, only a third 
of the studies under review have attained accompanying analytical data with, e.g., fatty 
acid content of the samples, as additional purity indices of their reference samples 
[50,58,59,64–71]. 

As far as it concerns the sampling of refined vegetable or seed oils used as EVOO 
adulterants, details are poorly recorded (Figure 4b); the available data signify that collec-
tions per type of botanical origin are rather small (e.g., 1 up to 10 samples) and may rep-
resent a possible batch-to-batch compositional variation. 

 
Figure 4. Recorded data about the size of reference sample collections for (a) virgin olive oil, (b) 
pure adulterant oils and (c) mixtures, along with (d) their supply sources in the EVOO adulteration 
studies. 

When it comes to the oil blends used as reference materials in adulteration studies, 
the dominant approach is to prepare the mixtures in-house with incremental dilution of 
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the base EVOO, i.e., by simply mixing various volumes of a base EVOO with adulterant 
oils. The issue of poor representativeness may also refer to those blends. For example, 
each mixture component usually corresponds to a blend or individual sample that is se-
lected arbitrarily from the whole collection to represent a given botanical origin. Details 
about the rationale behind the sampling and mixture design are often missing or not un-
derlined in the published papers; thus, further assumptions cannot be made. In the ma-
jority of the studies, binary mixtures of authentic EVOO and a single adulterant oil were 
produced over widely varying volume ratios useful for calibration purposes. In such 
cases, the working levels could be much lower or higher than those that may stimulate 
fraud for economic profit. 

Ternary or more complex mixtures were rarely studied using non-destructive proto-
cols for FTIR spectral acquisition [58,59,63,69,70,72]. Table 1 summarizes the recorded de-
tails about the composition of the complex mixtures. The data show that the mixture prep-
aration part is often poorly or not accurately explained. For example, Rohman and collab-
orators reported that “the composition of EVOO and others in their ternary and quater-
nary mixtures was randomly designed in order to avoid the correlated concentration pro-
files” and cited another paper for deeper detail about their design [73]. Three out of the 
total studies dealing with complex mixtures focused on investigating blends that contain 
>60–70% EVOO [58,59,63], and they pose a much greater challenge for attaining highly 
sensitive FTIR-based predictive models. It is worth noting that the most recently pub-
lished ones explored ternary mixtures that bear a close resemblance to the authentic prod-
uct with regard to their fatty acid profile and contents. The preparation protocols simu-
lated different practices of fraud, e.g., dilution of the base EVOO with different volumes 
of a mixture of adulterant oils that has a standard composition (refined rapeseed and pea-
nut oils, 1:1 v/v) [58] or with a fixed volume of an oil mixture that varies in relevant com-
position (refined canola, hazelnut or safflower oils, at interchanging volume ratios) [59] 
(see Table 1). 

Table 1. Recorded details about the composition of complex mixtures of olive oil with adulterant 
oils in the EVOO adulteration studies under review (in chronological order). 

Combination of oils  Mixture composition 
(%) 

 No of study under re-
view (cited reference) 

 Preparation  
A-Adulterant oil (oil 

1:oil 2) 
B-EVOO 

(no of samples)  

EVOO – CO - SuO 
Incremental addition of 
A to B – varying com-

position of A 

2-20 
(0:1, 1:3, 1:2, 1:1, v/v) 

80 (n = 5) 
85 (n = 3) 
90 (n = 3) 
95 (n = 3) 
98 (n = 3) 

[63] 

EVOO – GSO – RBO – 
WNO  Random design  

0–100 (miscellaneous 
ratios) 

0 (n = 4) 
2.5–50 (n = 19) 
50–98 (n = 3)  
100 (n = 1) 

[72] 

OO – VCNO – PO   Random design  0–100 (miscellaneous 
ratios) 

0 (n = 2)  
2.5–40 (n = 9)  
40–65 (n = 12)  

100 (n = 1) 

[70] 

EVOO – SuO – RSO 
and 

EVOO – HOSuO – RSO 
and 

EVOO – HOSuO – SuO 

Incremental addition of 
A to B 

0–100 (miscellaneous 
ratios)  

0 (n = 9) 
10–40 (n = 34) 
50–90 (n = 20) 

100 (n = 1) 

[69] 
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EVOO – PNO – RSO 
Incremental addition of 
A to B – standard com-

position of A 
~ 2–40 (1:1, v/v) ~ 60–98 (n = 120) [58] 

EVOO – CO – HO - 
SafO 

Fixed volume addition 
of A to B – varying 
composition of A 

& G-optimal simplex 
design 

20 (0:1, 1:7, 1:3, 1:1, 3:1, 
7:1, 1:0, v/v) 

 
13 (1:1, v/v) 

10 (1:0, 0:1, v/v) 

80 (n = 137) 
 
 
 

87 (n = 3) 
90 (n = 8) 

100 (n = 85) 

[59] 

CO, corn oil; EVOO, extra virgin olive oil; GSO, grape seed oil; HO, hazelnut oil; 
HOSuO, High-oleic sunflower oil; OO, olive oil; PO, palm oil; PNO, peanut oil; RBO, rice 
bran oil; RSO, rapeseed oil; SafO, safflower oil; SO, soybean oil; SuO, sunflower oil; 
VCNO, virgin coconut oil; WNO, walnut oil. 

3.3. Spectra Acquisition Conditions 
A standardized operating procedure for the preparation of the sample and subse-

quent measurements is necessary to evaluate data with the same statistical methods and 
develop sustainable models [74]. Our literature search indicated that the instrumental pa-
rameters and conditions of measurement are presented with highly varying degrees of 
detail in the articles under review. Reasonably, a variety of instrument models and sam-
pling accessories from different vendors, as well as measurement protocols, have been 
used over the years. Relevant trends are highlighted in Figure 5a–d. Deuterated Triglycine 
Sulphate (DTGS) coupled with KBr optic system is a common detector system of FTIR 
spectrometers and, by far, the most frequently reported in the articles under review. Mer-
cury-cadmium-telluride (HgCdTe, MCT), being more sensitive than common DTGS de-
tector, but with lower dynamic range, plus the requirement for cooling (e.g., liquid nitro-
gen), followed next in frequency of report [27,50,53,58,62]. 
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Figure 5. Data about the FTIR spectra acquisition conditions: (a) instrument models; (b) detectors; 
(c) ATR cell element types and (d) reflection points that were employed in the literature studies 
under review. 

Based on the recorded data, the publications could be broadly clustered into separate 
groups according to the model and ATR cell characteristics of the FTIR instrument that 
was used in the study. Publications that were authored by the same group of researchers 
were excluded at this stage. Next, articles from different groups were pinpointed as of 
interest for coupling and comparison (e.g., [50] vs [53], [54] vs [65], [62] vs [75], [67] vs 
[76]) [50,53,54,62,65,67,75,76]. Only two shared a common objective, that was, detection of 
adulteration with sunflower oil. Apart from the detector (MCT vs DTGS), the sample 
measurement protocol was completely different. For example, it involved either deposi-
tion of the oil sample into an ATR cell holder and scanning the entire mid-infrared region 
[75] or dipping a fiber-optic probe with a diamond ATR sensor into the oil under study 
and scanning over 3000–600 cm−1 [62]. Despite the variation in analytical instrumentation 
and sample acquisition conditions, both studies claimed very small prediction errors (< 
3%) of their FTIR-based quantitative models for detecting sunflower oil in EVOO. 

In almost half of the studies, the ATR cell accessory consisted of a horizontal plate 
equipped with a crystal window made from ZnSe and multiple internal reflection geom-
etry. Alternatively, it could bear a single or 3-reflection point diamond cell. The retrieved 
data show that the cell accessory would be temperature-controlled in very few cases, e.g. 
[57,65]. As a general trend, the FTIR spectrum was acquired after removal of the back-
ground noise against the empty ATR cell (air), with a resolution of 4 cm−1 and by accumu-
lating 32 interferograms. Most frequently, the samples were scanned over the entire mid-
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infrared region that expanded from 4000 cm−1 until 650 ± 50 cm−1. The long wavelength 
cut-off limit would vary widely from 400 to 900 cm−1, regardless of the type of cell crystal 
used, e.g., [76]. 

Notably, more than half of the publications under review do not report any infor-
mation about the temperature of oil samples during measurements, the amount of the test 
sample in the cell or the number of replicate spectra per sample. In the remaining studies 
(almost a third of the articles), it is inferred that most often, three replicate spectra were 
taken at room temperature using a “small drop” of oil sample, which would vary from a 
few μL to few mL, depending on the sampling accessory. It has to be stressed that the 
choice of sample temperature during the measurements could be critical for the repeata-
bility and overall quality of the FTIR spectra, given that some of the potential adulterant 
oils (e.g., palm oil) are solid at room temperature. The issue was raised early enough by 
Wilson and colleagues [49], but thus far, it has been appraised only once, in a non-targeted 
detection approach [65]. Elaborate washing and drying of the ATR cell window is abso-
lutely needed to avoid the “memory effect” of the oil sample on the surface of the crystal 
[52]. Details about this procedure were missing in almost 40% of the studies under review 
or described satisfactorily in the rest, especially those using a horizontal ATR plate for 
spectral measurements. 

The use of hand-held, portable FTIR instruments was also reported very recently. In 
2018, Pan and colleagues [55] compared the performance of hand-held versus benchtop 
FTIR spectrometers in the detection of EVOO mixtures with corn, sunflower, soybean, 
canola and peanut oils (5–45%, v/v). According to their results, the hand-held ATR-FTIR 
method could accurately recognize mixtures with 5% to 10% of common adulterant oils, 
despite spectral interferences due to water vapor or lower signal-to-noise ratio and lower 
sensitivity compared with the benchtop instrument. Two years later, Aykas and col-
leagues [65] used portable FTIR instrumentation that allowed them to scan a quite large 
sample set of reference samples consisting of pure EVOO or blended with VOO, refined 
olive oils and vegetable oils that were attained through an official control laboratory or 
the IOC. Their models were found to be 100% efficient in recognizing blends of EVOO 
with refined olive oil and corn, sunflower, soybean or canola oil in a non-targeted ap-
proach. They also found that quantification of major fatty acids, pyropheophytin and total 
phenol content through the FTIR spectral data was sufficiently accurate (standard error of 
prediction < 1.5%). The findings thus far signify that the potential of portable FTIR tech-
nology for on-field applications to the anti-fraud control of olive oil needs further research 
to assess its technical and cost feasibility. 

3.4. Spectral Pre-processing Schemes 
Variation in the spectral acquisition conditions, instrumental accuracy, inherent 

physical and compositional characteristics of the samples or experimental errors affect the 
quality of the obtained spectra and account for possible artifacts, such as noise, baseline 
shifts, slope, scatter effects, etc. Artifacts are not always easy to identify visually, as they 
involve combinations rather than individual bands. Thus, it is necessary to pre-process 
the raw data via various mathematical functions in order to remove these artifacts and 
obtain cleaned data that will better fit to the goal of chemometric analysis [41]. It is gener-
ally accepted that the method(s) of pre-processing can also introduce unwanted, irrelevant 
variation to the data; hence, their choice can be critical for the success of the entire exper-
iment. However, objective criteria for the selection of the “best” spectral pre-processing 
methods for different types of spectral signals are not clear yet. In their review article, Lee 
et al. [43] stressed that it is not possible to draw any objective criteria, nor to propose a 
user-friendly tool to rapidly evaluate the performance of the pre-processing methods. In 
this section, we tried to deploy a strategy of selection and application of those methods by 
overviewing the relevant records in the studies under review. One out of the originally 
selected 31 publications [77] was excluded, as it did not apply chemometrics. The Pareto 
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chart in Figure 6 shows the most widespread data-preprocessing methods, regardless of 
the sampling, measurement conditions or modeling methods used. 

 
Figure 6. Pareto chart for the FTIR spectral data pre-processing methods that were most frequently 
reported in the EVOO adulteration studies under review. ATRCor, ATR correction; BCor, baseline 
correction; D’ and D’’, 1st and 2nd order derivatization; MC, mean centering; Norm, normalization 
according to 0/1 or Singular Value Decomposition (SVD); Scal, scaling; ScatCor, scatter correction 
via Standard Normal Variate (SNV), Multiplicative Signal Correction (MSC) or Orthogonal Signal 
Correction (OSC); Sm, smoothing via Savitzky–Golay (SG) method; VarSel, variable selection via 
random, Variable Important for Projection (VIP) or Monte-Carlo (M-C) algorithms; WavComp/Den, 
wavelet decomposition and denoising. 

Simple normalization, 1st and/or 2nd order derivatization, wavelength selection and 
mean centering were the most popular mathematical treatments applied to the FTIR spec-
tra of EVOO and its blends before chemometrics. In almost a third of the reviewed publi-
cations, the selection of limited spectral regions was the primary step of the workflow. 
Half of those studies referred to visual inspection and removal of the low S/N regions 
above 3100 cm−1 and between 1800 and 2600 cm−1 as a means to improve sensitivity. Sev-
eral others referred to post-processing evaluation of the chemometric results on data sets 
that corresponded to more selective spectral regions. However, the methodology of vari-
able selection was scarcely discussed in these publications. Specific feature extraction al-
gorithms included moving window, stepwise Partial Least Squares (PLS) weights and 
Variable Importance Projection parameter (VIP), interval- and synergi-interval-PLS (i-
PLS, si-PLS, respectively) and the Monte Carlo Uninformative Variable Elimination (MC-
UVE) [44], but also “automatic” selection and visual inspection of the spectra have been 
reported, e.g., [51,56,58,60,62,64,65,67,68,75,78]. The use of the Successive Projection Algo-
rithm (SPA) that is more popular in hyperspectral data pre-processing has been recorded 
once in the course of an EVOO adulteration study that aimed at fusing FTIR and NIR 
spectroscopic data [66]. 

The observed methodology trends stem probably from the need to tackle one of the 
major difficulties encountered with FTIR spectroscopic analysis of EVOO mixtures, that 
is, the low selectivity of the signal output. In the spectra of the mixtures, the infrared ab-
sorption bands that could serve as markers of the compositional changes are extensively 
overlapped. This type of interference can be implicitly resolved by derivatization, mainly 
of the 2nd rather than of the 1st order. Derivatization may also remove baseline offset, alt-
hough this type of interference does not usually appear in ATR-FTIR spectra of edible oils. 
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However, derivatization, especially of higher order, may introduce noise; thus, it is better 
to use it after a simple treatment that removes noise, such as smoothing. 

Smoothing via the Savitzky–Golay algorithm [33] or even using wavelets [38] were 
used occasionally in the EVOO adulteration studies under review. A similar trend was 
observed also for baseline correction. The publication history records imply that pre-pro-
cessing by derivatization became more popular over recent years (after 2015), probably 
because the corresponding algorithms could be easily implemented through the commer-
cial spectroscopy software that became available (e.g., TQAnalystTM, The Unscrambler, 
PLS Toolbox, XLSTAT). Normalization, which passes from an absolute to a relative scale, 
by dividing the intensity value at each wavenumbers of a single spectrum according to a 
pre-selected constant, such as the highest or total sum of intensity, the spectrum norm, 
etc., was referred to in almost a fourth of the publications. In most cases, range scaling 
making the maximum and minimum absorbance values equal to 1 and 0, respectively, 
was applied. Preference for this kind of pre-processing implies that a part of the spectral 
variation (e.g., intensity fluctuations) could be associated with inconsistencies of the test 
sample amounts in the ATR cell [43]. 

As data set pre-processing, i.e., applied column wise on the data matrix holding all 
samples, mean centering, which removes a constant offset, is usually recommended and 
applied. It should be emphasized that centering the columns of the data matrix is appro-
priate in a standard pre-processing procedure prior to chemometrics via projection tech-
niques (exploratory analysis by Principal Component Analysis (PCA) [36,42] or regression 
analysis by PLS [37,39]. Only in this way is it possible to define PCs as the linear combi-
nations of the (centred) variables [36,37,39,42,46]. In a few cases, scaling, e.g., autoscaling 
that sets each column to the same variance, has been applied [47,59,63]. However, au-
toscaling is usually not recommended, as it forces baseline contributions to count as much 
as peaks [41]. In general, all the particular pre-processing methods are selected because 
they facilitate subsequent application of projection methods and interpretability of the re-
sulting scores plots [43,63]. For example, scattering correction with the Standard Normal 
Variate (SNV) algorithm that subtracts the mean and divides with the standard deviation 
was often combined with mean-centering to more effectively correct background and off-
sets in the EVOO spectra. 

Although PCA-based methods have been used quite frequently in the studies under 
review, almost half of the corresponding publications did not clearly record whether 
mean-centering was employed or not. In the great majority of the studies, the pre-pro-
cessing scheme usually delimited multiple combinations of methods with no justification. 
Regardless of whether spectral variables were pre-selected or not, the spectra were pre-
processed following one of the three generic workflows that are outlined in Figure 7. Thus, 
they would be either derivatized at some step of the pre-process or not derivatized at all. 
One way or another, normalization was often considered necessary, as commented above. 
Before derivatization, the spectra would get normalized [56,58,64,67,70,71], smoothed 
[59,65], mean-centered [51,72] or even baseline-corrected [78]. Less often, they would be 
derivatized first and then normalized, smoothed or mean-centered [27,54,69,76]. 
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Figure 7. Outline of the most frequently used FTIR spectral pre-processing schemes in the EVOO 
adulteration studies under review. 

Comparison of each pre-processing method performance against unprocessed data 
is very rare in the relevant literature, e.g., [47,76,79]. Thus far, few research groups fol-
lowed a post-processing optimization workflow to evaluate the fitting performance of 
those methods [27,56,59,64,67,68,71,72,79]. In particular, they rated quantitative, PLS or 
Principal Component Regression (PCR)-based calibration models of the corresponding 
data sets according to the root-mean-square error of cross-validation (RMSECV) and pin-
pointed the one with the lowest CV error as representative of the “best” pre-processing 
method(s). It is underlined that in some cases, the researchers made a decision after co-
evaluating the prediction error (RMSEP) on independent test data sets, a strategy that is 
prone to data overfitting [64,72]. The chosen pre-processing scheme can be critical for the 
predictive performance of classification models, as well. In one case, the authors followed 
a rather misleading way to justify the selection of the “best” pre-processing method for 
the calibration data set based on the misclassification rate of the nearest centroid classifi-
cation models on a given test data set in [76]. Apparently, the decision criteria can be mul-
tifaceted. In a recent article, it was reported that after scaling with the Pareto scaling 
method, the 2nd derivative, mean-centred FTIR spectral data for EVOO and complex mix-
tures fitted less efficiently to Partial Least Squares-Discriminant Analysis (PLS-DA) and 
one-class Soft Independent Modeling of Class Analogy (SIMCA) models [59]. Despite this, 
the sub-optimal models of the Pareto scaled data set were found more sensitive in detect-
ing blends of similar FA composition to that of pure EVOO. It was suggested that discrim-
inating information was probably hidden in the less intense spectral characteristics of the 
reference EVOOs that were revealed after scaling. The particular sub-optimal pre-pro-
cessing method did not affect the detection of strong outliers in the reference data set. As 
pointed out by Engel et al. [41], it may be extremely difficult to pre-determine which com-
binations of pre-processing methods will correct for different spectral artifacts and high-
light important information. Exploratory data analysis by PCA comparing scores and 
loadings plot before and after spectral preprocessing could help in understanding which 
effects are removed and/or if artifacts are introduced. Estimating the classification errors 
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(in calibration phase) after choosing the best and worst pre-processing workflows with 
respect to model accuracy could help the decision-making. The uncertainty induced in 
this step can be minimized a priori if standardized experimental procedures up to the 
acquisition of the spectra are followed in order to remove sources of spectral interference 
and artifacts. 

3.5. Exploratory Analyses 
Exploratory approaches in the analysis of FTIR spectral data also became popular in 

recent years. In exploratory analysis, unsupervised approaches that attempt to identify 
the similarities and differences between samples by reducing the data dimensionality 
without any prior information about the data categories are highly appreciated [80]. Our 
literature survey showed that there were 10 relevant publications that reported the use of 
unsupervised techniques to reduce dimensionality of the FTIR spectral data [27,54,55,57–
59,61,67,69,76]. Principal component analysis (PCA) was the chemometric technique of 
choice; some author groups [27,61,76] also employed Hierarchical Cluster Analysis 
(HCA), Continuous Locality Preserving Projections (CLPP) or Locally Linear Embedding 
(LLE) as alternative unsupervised methods for dimensionality reduction [61,81,82]. 

At this phase of model development, the original data matrix is decomposed to a new 
subspace with fewer dimensions, namely, the principal components (PCs), which are or-
thogonal and linear combinations of the original ones. PCs with high eigenvalues define 
the directions of the highest variability in the data, such that after the original observations 
are orthogonally projected onto the latent subspace, their exact location can be depicted 
through distinct score values. The most used algorithms to compute PCA are NIPALS 
(non-iterative partial least squares) or singular value decomposition (SVD) [36,42] that are 
encoded in the commercial spectroscopy software (e.g., TQAnalystTM, The Unscrambler, 
MATLAB-PLS Toolbox, XLSTAT). The employed algorithm is information not always 
easy to retrieve, and thus far, it was referred to only once [69]. A PCA model is fitted to a 
certain number of PCs, usually the percentage of explained variance guides the choice 
along with cross-validation (CV), and the goodness of fit is evaluated by computing R2 
values. As few PCs should retain a high percentage of the original variance, their optimal 
number denotes the complexity of the model. The ultimate goal is to explore the data for 
similarities, meaningful trends and abnormalities or outliers. For example, in cases where 
FTIR is applied to monitor quality attributes during food processing, PCA score plots may 
grasp the dynamics of the process and explain the spectral data variance, which is of high 
value in routine process monitoring, as, e.g., in [25,83]. In the EVOO adulteration studies, 
PCA score plots were mainly exploited as a tool for visual assessment of possible separa-
tion among pure EVOO and adulterated samples. Exploratory PCA has been employed 
also as a strategy to detect outliers [59,69], an issue that seems to be ignored or not widely 
discussed thus far [49,58,62,65]. However, evaluation of outliers can be critical for the def-
inition of the pure EVOO class boundaries, especially in the context of non-targeted spec-
troscopic analyses [84]. 

3.6. Modeling Strategies 
The next step after data pre-processing involves different approaches, such as classi-

fication or calibration, depending on the aim of the study. The modeling step is always a 
two-phase procedure consisting of model development (calibration phase) and evaluation 
of model performance (optimization-validation phase). The strategy to evaluate the accu-
racy of the trained models involves, in turn, cross-validation (CV) or/and split-validation 
(SV) approaches. As a general rule, CV should serve the optimal setting of model meta 
parameters, such as the number of latent variables in PLS regression, while an external 
test set, not to be used at any point in the model calibration phase (neither to choose pre-
processing, selecting spectral regions and so far), should be used to assess predictive per-
formance (model validation). For the latter, the SV approach that involves a priori parti-
tion of the data into training and test sets is the most appropriate one, paying attention 
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that calibration and test sets span a similar domain. In this way, the untrained data set is 
reserved for post-evaluation of the predictive model performance through a single set of 
accuracy statistics (e.g., standard error of prediction). Obviously, this validation step only 
covers an initial, most probably optimistic estimation of model performance, and future 
collected samples are really needed to assess the long-term model validity. In practice, the 
choice of the validation strategy could be also dictated by the size of the available refer-
ence sample collection or the goals of the study. For example, Leave One Out cross-vali-
dation (LOOCV) after sample order randomization was suggested as a compromise 
choice when resources to do reference measurement are limited [62]. 

Our survey pointed out several cases where clear information about the selected 
model validation schemes, i.e., the CV or SV methodology approach, the number and rep-
resentativeness of samples in the split sub-sets could not be extracted from the recorded 
data [54,63,85]. Where available, the data showed that a calibration sub-set would most 
likely count for 60–90% of the total sample size. Few research groups [59,60,66,79] elabo-
rated on the selection of a representative sampling algorithm (e.g., Kennard Stone and 
Onion methods) [40] that would help to retain even distributions of reference samples in 
the training and test sets, according, i.e., to compositional variation. 

3.7. Calibration 
Calibration models via PLS-R or PCR methods were developed in the majority of the 

EVOO adulteration studies under review. The authors used regression techniques exclu-
sively or in combination with classification methods to make conclusions about the effi-
ciency of the spectroscopic tool. In general, there were two different approaches of quan-
titative modeling, depending on the objective of the study. The first one aimed at evalu-
ating the purity (%) of EVOO in the studied mixtures, regardless of the type of possibly 
co-existing foreign oil. In this case, the models were calibrated against the volume fraction 
of EVOO in the mixture (from 100% to 0%, v/v). In the second, more popular approach, 
the objective was to quantify a particular adulterant oil in the EVOO mixture. To increase 
the specificity of the methods, a variable selection pre-processing step would precede. 
Therefore, the X data matrix corresponded either to the whole FTIR spectrum 
[47,49,52,55,71,76] or to broad regions devoid of noise [27,50,57,59,61,63,69,72,79], or to 
shorter regions specific to the target adulterant(s) [51,56,58,60,62,64,65,67,68,75,78]. The 
methods used for this latter type of selection varied a lot, as discussed earlier. 

3.7.1. Case study I: Multivariate Regression of FTIR Spectral Data Against Reference 
Fatty Acid Content Values. 

In the majority of the studies, the volume fraction of the target mixture component 
(EVOO or adulterant) spanning wide addition ranges over 0 to 100% of the total volume, 
constituting the y data. An alternative strategy considers a multivariate Y, including ref-
erence values from chemical compositional analyses, e.g., the % content in certain fatty 
acids. The latter may vary within the limits established by Commission Regulation (EEC) 
No 2568/91 [1,2] for EVOO’s major monounsaturated (oleic acid, C18:1; 55–83%), polyun-
saturated (linoleic acid, C18:2; 3.5–21%) and saturated fatty acids (palmitic acid, C18:0; 
7.5–20%). 

The particular methodology of FTIR data calibration was reported in only two re-
cently published articles [56,65]. It is worth noting that both exploited short spectral re-
gions, and the second derivative spectral preprocessing, in order to obtain more robust 
and accurate calibration models for common EVOO adulterants (soybean, sunflower, corn 
and canola oils). Thus, variable selection in this phase of data modeling could be consid-
ered a switch towards a targeted analytical approach. For example, Filoda et al., using 
only a small collection of samples of unknown origin (10 pure EVOO and 5 seed oils), but 
known fatty acid composition, prepared 68 binary mixtures (4 types of seed oil x 17 levels 
of addition) and, finally, created a spectral data set with 91 observations, representing 
pure EVOO, pure refined seed oils (sunflower, soybean, corn and canola oils) and their 
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mixtures. The iPLS and siPLS algorithms were used to screen which spectral regions 
where relevant, without a priori excluding small variance regions, which could also show 
significant fluctuations of major fatty acid content profiles (oleic, linoleic, linolenic acids) 
[56]. For instance, the variance over the carbon dioxide spectral region (2250–2330 cm−1), 
but also the region between 1860 and 1930 cm−1 (usually assigned to –CO–F) that are usu-
ally eliminated as irrelevant or noise, were revealed as important for the accuracy of their 
10-factor FTIR-PLS-R models. The RMSEP values for linolenic (C18:3) and linoleic (C18:2) 
acids were found to be very low (< 1 and 2%, respectively), much lower than that for oleic 
acid (C18:1) (< 5%), and entailed a strong “proof of concept” about the potential of FTIR-
based methods to recognize mixtures with oils that exceed the upper unsaturated FA con-
tent values of pure EVOO. The selected spectral features (3042−2727, 2331−2253, 
1936−1858 and 1304−910 cm−1) were thus considered robust markers of atypical chemical 
composition. Following another methodology, Aykas et al. used a quite larger sample col-
lection (> 90 pure EVOOs and 70 mixtures with various types of vegetable oils) with ac-
companying metadata about the origin and purity, but also reference values for various 
quality indices (free fatty acids (FFA), peroxide value (PV), pyropheophytin (PPP), total 
polar compounds (TPC) other than the content in major fatty acids (palmitic, stearic, oleic, 
linoleic, and linolenic). In the variable selection step, they first eliminated irrelevant, noisy 
and unreliable variables from the FTIR spectra and then selected wavenumbers specific 
to the type of target molecule/quality index. Although details about the variable selection 
methodology are missing, it can be observed that the FTIR-PLS-R models of highest pre-
dictive ability (standard error of prediction < 1.0%) were those calibrated independently 
against FFA, TPC and PV values, along with palmitic, stearic and linolenic acid contents 
[65]. 

Overall, the proposed strategy of FTIR spectral data calibration requires large 
chemoinformatic database resources to build robust quantitative models. However, such 
models can offer more versatile solutions to the VOO anti-fraud control, as gross adulter-
ation cases usually entail a high volume proportion of different types of foreign seed and 
vegetable oils that may alter the whole chemical compositional profile of the blend. Such 
fraudulent practices may thus distinctly leverage the total content in unsaturated or free 
FAs, suppress the content in polar phenolic compounds and cause relative content 
changes to several other constituents that are of diagnostic value in the mid-infrared spec-
tral region. 

3.7.2. Case study II: Detection of EVOO Adulteration with Olive Pomace Oil 
Thus far, two different research groups have proposed FTIR-PLS-R methods for the 

detection of olive pomace oil (OPO) in EVOO at concentration levels as low as 5% v/v 
[51,52]. This particular task is quite challenging because OPO represents a process-type 
adulterant of EVOO that resembles its chemical composition, especially regarding the pro-
file of esterified FAs. Thus, certain compounds belonging to triterpene alcohols (e.g., 
uvaol, erythrodiol, aliphatic acids and waxes) that may mark the presence of OPO [86] are 
expected to contribute only with skeletal vibrations over the fingerprint, mid-infrared re-
gion, as shown in [52]. Table 2 presents data about the accuracy statistics and performance 
of the published methods. Overall, clear differences in the experimental design and strat-
egy for data analysis were evidenced. As a result, the model that was trained with 1st de-
rivative, mean-centered spectral data from the fingerprint region and corresponded to 
replicate measurements of only 3 mixture combinations (ref no [51]) was found less com-
plex (4 vs 11 Latent Variables), but also less accurate (REP = 16.4 vs 3.3%), than the one 
that had been trained with multiplicative scatter-corrected spectral data from the whole 
mid-infrared region for 21 mixture combinations. External validation was performed with 
untrained data from either two new mixture combinations of the same oils [52] or new 
replicate spectra of the same combinations of the same oils used for calibration [51]. The 
recorded data indicate different degrees of model overfitting in the course of training and 
development, which probably account for the evidenced difference in the REP values of 
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the two models. These results also highlight the need for representative sampling in both 
training and test sub-sets in order to optimize the predictive performance of the quantita-
tive FTIR-based models. 

Table 2. Methodology design for the FTIR-PLS-R detection of olive pomace oil in EVOO (data extracted from [51,52]. 

no 
Type of 

adulterant 
oil/country 

Reference 
Samples1 

(n) 

OPO-
VOO2  

(%, v/v) 

Cworking 
levels 

Working 
spectral re-
gion (cm−1) 

Spectral data 
pre-pro-
cessing 

Criteria for 
selection of 

optimal 
LVs3 

LVs 
(n) 

ncal / nval 
spectra 

PRESS4 

Fitness to 
the 

model 
(R2) 

REP5 
(%) 

[52] 
Olive Pomace 

Oil / USA 
4 

5:95 to 
95:5 

21  4000–650 MSC RMSECV6 11 21×3/21×17 0.122 0.991 3.3 

[51] 
Olive Pomace 

Oil / Italy 
-8 

5:95 to 
30:70 

5 1876–912 
MC, D’, MW 

(10p) 

F ratio of 
PRESS Haa-

land & 
Thomas cri-
terion, 1988 

4 3×3/2×3 0.002 0.973 16.4 

1 used for mixture preparation; 2 OPO, Olive Pomace Oil; VOO, Virgin Olive Oil; 3 LV, Latent Varia-
bles; 4 PRESS, Predicted Residual Error of Sum of Squares; 5 REP, Residual Error of Prediction; 6 

RMSECV, Root Mean Square Error of Cross Validation; 7 replicate spectra; 8 – denotes missing data. 

3.8. Discirminant Classification 
Classification models were also very popular among investigators in the field, as they 

were proposed in almost 2/3 of publications under review. In certain studies, the FTIR 
spectral data had been analysed only with classification methods [49,53,54,58–60,79]. Lin-
ear Discriminant Analysis (LDA) or Partial Least Squares Projection to Latent Structures-
Discriminant Analysis (PLS-DA) were, by far, the most frequently used algorithms. In 
PLS-DA, the focus matrix, Y, expresses the class membership of the training set using one 
0/1 dummy variable per class [45]. One of the most used classification rules consists of 
assigning a new sample to a certain predefined class when the predicted y-value for that 
class is higher than a threshold (e.g., 0.5) [45]. In the discriminant approach, each sample 
is always assigned to one of the classes, even if it does not belong to any of them. Other 
classification methods, such as the Nearest Centroid, which computes a centroid (mean) 
for each class and compares the FTIR spectra of a new sample to each of the class centroids, 
or the k-Nearest Neighbor (kNN), were also reported [61,76]. Neural networks (NN) and 
Support Vector Machines (SVM), which are popular in the machine learning community, 
have been scarcely exploited in the EVOO adulteration studies under review, e.g., 
[49,58,61]. 

3.9. Class Modelling Methods in Non-Targeted Approach 
Over the last five years, class modelling methods, such as the Soft Independent Mod-

eling of Class Analogy (SIMCA) [34,44], that are more appropriate to solve “asymmetric” 
classification problems, such as food fraud detection [87], became more popular in the 
field of EVOO authentication. SIMCA helps to identify systematic variation of samples 
that belong to a single class and then define its boundaries via different distance-based 
rules that resemble outlier detection techniques [44]. The probability of an unknown sam-
ple belonging to each class is modelled independently. According to Gao et al. [6], the use 
of one-class instead of multiclass classification is more appropriate because it can simplify 
the criteria into the typical/atypical question and help to make a decision of whether the 
product conforms or not to purity specifications. In contrast, two- and multiclass classifi-
cation is quite more challenging, not only in determining relevant thresholds for each 
class, but also in acquiring truly representative sample sets as reference for classifications. 
SIMCA, as any class-modelling technique, differs from other supervised techniques be-
cause it does not force class assignments if the distance to the class model of an unknown 
sample exceeds the upper limit for every modelled class. However, it could be sensitive 
to undersampled data for the modelled category because the class boundary can be not 
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well defined in those cases. Thus, a sample may not be assigned to a class either because 
it is an outlier (correctly) or because it comes from a class that is not sufficiently well rep-
resented in the model (incorrectly rejected in this case) [65]. 

Our literature survey showed that thus far, both one- and multiclass approaches have 
been applied to EVOO adulteration studies, resulting either in binary class models (au-
thentic EVOO vs. EVOO mixtures), e.g., [59,63,65] or/and in multiple ones (e.g., authentic 
EVOO vs various types of mixtures depending on their composition), e.g., [55,61,65]. In 
any case, a well-defined target class that represents authentic EVOO samples was neces-
sary to train those models. In an alternative approach, Georgouli and co-workers [61], 
using few samples of authentic EVOO (Italian and Greek origin), created a reference set 
of 256 binary mixtures with hazelnut oil. These mixtures represented different combina-
tions of the four base oils with four samples of crude and refined hazelnut oil at varying 
volume ratios from 0 to 100%. Then, multiclass SIMCA models (among other methods), 
referring to concentration ranges of low or high resolution (4 vs 10 classes, respectively), 
were assessed, indicating better classification rates in the former case. 

Special emphasis will be given to the records about one-class modeling methods in 
EVOO adulteration studies, as they are suggested for non-targeted authenticity testing 
[15]. In this approach, only the class of authentic samples is modelled; this is because in 
practice, the falsified samples do not really constitute a class, but an amorphous collection 
of adulterated, diluted, spiked, etc. samples that do not share common characteristics [87]. 
In line with the non-targeted approach, Gurdeniz and Ozen were the first to propose a 
one-class FTIR-SIMCA model for detecting EVOO adulteration. Their model was found 
efficient in recognising mixtures with corn and sunflower oils at levels > 5% v/v. Based on 
visual observations, the authors suggested that the discriminating power of their model 
was due to spectral variance at around 3000–3010 and 2923 cm−1, at 1377 and 913-914 cm−1 
that can be diagnostic of changes in the unsaturation level, the relative content of mono-
unsaturated fatty acids, along with that of triolein, respectively. The non-targeted ap-
proach was reported again many years later, in the article published by Aykas and col-
leagues [65]. Their one-class SIMCA model was found 100% efficient in recognising coun-
terfeit EVOO products (that were known to contain corn, sunflower, soybean and canola 
oil at unknown levels) and 89% efficient in identifying blends with lower grade olive oil 
(mixture of VOO and OO). It is emphasized that a portable instrument was used to scan 
pure EVOO and different types of blends with widely varying composition in major fatty 
acids. In this case, the discriminating power was attributed to bands at 2830-2930, 1777, 
1705, 1672, 1412 and 1377, as well as 1107 to 1172 cm−1 (see Figure 1 for peak assignment). 
Very recently, another one-class FTIR-SIMCA method that investigates adulteration of 
EVOO with blends of adulterants that simulate the composition of the authentic product 
was developed and proposed by some of us [59]. In that study, a reference spectral library 
for pure EVOO and VOOs, accompanied by metadata for harvest year, geographical 
origin, cultivar and/or fatty acid composition and other quality indices, was exploited. Six 
base oils of different geographical origin and varying content in some quality attributes 
(e.g., TPC), along with different samples of refined canola, hazelnut and/or safflower oils, 
and known fatty acid composition were used to prepare 101 binary and ternary mixtures 
of EVOO with adulterant oils at a standard addition level (20% v/v). The one-class SIMCA 
model was trained with 2nd derivative FTIR spectral data for samples of 47 authentic 
EVOOs that covered different harvest years, cultivars and geographical origins against 
those of 73 mixtures. Validation was performed by creating several external sets of EVOOs 
from different harvest year, cultivar and origin, lower grade olive oils (VOO) or different 
combinations with adulterant oils, signifying high overall predictive power, > 92%. 

Based on the recorded data, the aforementioned one-class FTIR-SIMCA models de-
tected challenging cases of adulteration, i.e., blends with lower grade olive oil [65] or with 
a mixture of 5% canola and 15% hazelnut oils [59] as atypical EVOOs, in line with the 
principle of non-targeted authenticity testing. The loading plots exposed that spectral var-
iation at 2820–2860 and above 2920 cm−1 (especially around 3001-3005 cm−1) were the most 
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discriminating features of the reference EVOO mixtures. The region between 950 and 976 
cm−1 (isolated trans-double bonds) was found important for identifying mixtures with re-
fined oils that are richer in trans-fatty acids. 

To gain further insight into the identity or the concentration of the foreign oil(s) in 
the particular type of counterfeit products, one can consider combination with quantita-
tive methods, i.e., PLS-R. In this context, a data fusion strategy that may combine the out-
puts of FTIR with those of a different non-destructive spectroscopic technique, such as 
NIR, has emerged as a way to increase the reliability of multivariate calibration methods 
as compared to using a single technique [88]. Similar efforts in the field of EVOO adulter-
ation are on their way [66,89] and pave the step toward new, more advanced applications 
of the FTIR technique. 

3.10. Method Performance Criteria 
Almost every qualitative method proposed in the studies under review was evalu-

ated in terms of model accuracy statistics (number of optimal factors, summary of fit-to-
model), regardless of the algorithm used for multivariate calibration. Correct classification 
rates (CCR), mahalanobis distance metrics in Coomans’ plots and Fisher statistics are also 
very popular tools for assessing the performance of those models. Other important figures 
of merit, such as the sensitivity (the percentage of samples that are correctly recognized 
as members of the target class) and specificity (the percentage of samples from other clas-
ses that are correctly assigned as suspect/non-compliant) of the predictive models, are 
currently gaining importance, especially in the research field of non-targeted food authen-
tication. Standard guidelines about how to set the threshold class value (boundary be-
tween the two classes) that optimizes both the sensitivity and specificity of the predictive 
one-class models [90] or how to establish a regular method evaluation protocol in line 
with the principles of quality assurance [84] are yet to be addressed. 

4. Concluding Remarks and Future Perspectives 
In summary, our literature review and meta-analysis of the retrieved data verified 

that research beyond the “proof of concept” stage is needed to develop accurate, robust 
and fit-for-purpose FTIR-based methods for non-targeted detection of VOO adulteration. 
The exposed trends in the research methodology thus far showed that non-representative 
sampling, along with the uncontrolled conditions of oil sample treatment and spectra ac-
quisition, are underestimated sources of systematic errors that need to be taken into ac-
count more carefully in the future. In some cases, misconduct in spectral data curation 
and multivariate analysis may stem from a lack of technical knowledge or overexploita-
tion of mathematical and statistical treatments. All these different aspects of research 
methodology define the complexity of the analytical problem, which is related to non-
targeted authenticity testing. In the future, data fusion strategies that aim to combine the 
signal outputs of different non-destructive spectroscopic techniques (i.e., FTIR with NIR, 
Raman and/or low-field NMR) are expected to increase the reliability of multivariate cal-
ibration methods, as compared to those based on a single fingerprinting technique. New 
approaches in data analysis, along with tendencies for integration with novel optic sys-
tems, mid-infrared hyperspectral sensors and miniaturization of spectrometers, will most 
probably boost the need to standardize the FTIR experimental protocols. Standardization 
is essential to produce a reproducible molecular fingerprint of virgin olive oil, without 
sophisticated pre-processing before statistical evaluation. Building comprehensive, 
chemoinformatic databases for exploratory analyses will certainly assist non-targeted 
screening. Above all, the development of FTIR predictive models for VOO adulteration 
seems to be a decision-making process that requires close collaboration among scientists 
from multidisciplinary fields and expertise. 
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