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Abstract

In this study, we contribute to the existing literature on the impact of temperature on
growth by examining the orthogonalized seasonal effect jointly with the feedback from
economic activity (hence treating the increase in global temperature as anthropogenic)
on a sample of 225 EU NUTS2 regions. For this purpose, we use a Panel Mixed-
Frequency VAR. The empirical findings show, first, a worsening impact of temperature
on growth over the last sub-sample (2000-2019) relative to the full sample analysis
(covering the 1981-2019 time span). Moreover, our findings show that seasonal
temperature effects are not restricted only to the agriculture sector, and we also
find evidence of a heterogeneous impact of seasonal temperature on growth when
we turn our focus on hot and cold regions (using the average EU median annual
temperature as a threshold), rich and poor regions (using the average EU median
income per capita as a threshold) and between competitiveness (using the median

Regional Competitiveness index as a threshold).
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1 Introduction

The focus of this study is the analysis of the impact of rising temperature on economic
growth using sub-national data for Europe. The recent report by Copernicus in the 2022
Annual Climate Summary shows, for Europe, the hottest summer ever recorded, and
the highest rate of increase of any continent in the world (European temperatures have
increased by more than twice the global average over the past 30 years). Therefore, it
has become more stringent a prompt action by policymakers to implement the climate
policies necessary to meet, in Europe, the 2030 greenhouse gas emissions net reduction
intermediate target of 55% below 1990 levels, and to achieve the long-term European
Green Deal target of EU-wide climate neutrality by 2050. In the baseline analysis, we
use data on air temperature levels and on a proxy of real economic output observed for
225 EU NUTS2 regions over the period 1981 — 2019. While data on regional economic
activity is typically sampled at an annual frequency, temperature level series for European
regions are available at a higher frequency. We construct a quarterly (i.e., seasonal) series
of air temperature levels and we model the joint interactions between seasonal temperature
and annual economic growth (aggregate and sector-specific) by estimating structural
mixed-frequency Panel Vector Autoregressions (hereafter Panel MF-VAR).

Our contribution to the existing literature on temperature effect on growth is as follows.
First, we focus on a linear seasonal effect model as an alternative to non-linear single
equation model specification considered in the cross-country studies of Burke et al. (2015)
and Burke et al. (2018) finding a concave relationship between temperature and income, or
the one by Kahn et al. (2021) finding a different impact of positive and negative deviation
from a temperature norm proxied by a moving average observed over a long-horizon.! To
our knowledge, the only study accounting for seasonal effect is the one by Colacito et al.
(2019). Our contribution to Colacito et al. (2019) is, first, based on the orthogonalization
of shocks to seasonal temperature to avoid that a shock in a given season (e.g., summer) is
contaminated by shocks occurring in other seasons. For this purpose, we use a structural
form Mixed Frequency Panel VAR fitted to five endogenous series: four seasonal temper-
ature series and GVA growth and identification is achieved through recursive ordering
(with GVA growth ordered last).

IStudies based on sub-national data which find evidence of an inverted-U relationship between income
and temperature are those by Olper et al. (2021) focusing on Italy and by Zhao et al. (2018) using 10597
global grid cells. Mohaddes et al. (2022) focus on US states using positive and negative deviation from a
temperature norm in a way similar to Kahn et al. (2021).



A further contribution to Colacito et al. (2019) is the feedback from economic activ-
ity (hence treating the increase in global temperature as anthropogenic; see the study of
Bansal et al., 2016, among others) given the multiple equations setting characterizing our
model specification. Contrary to our study, the literature addressing the endogeneity bias
of the impact of temperature on growth does not include seasonal effects, and it is based,
first, on single equation panel regression, such as an autoregressive distributed lag, ARDL
(see the Kahn et al., 2021 and Mohaddes et al., 2022, focusing mainly on the long-run, or
the local projection studies by Acevedo et al., 2020 and by Olper et al., 2021). Second,
feedback effects have been explicitly taken into account through Panel VAR. In particular,
while Donadelli et al. (2021) focus on the joint interaction between temperature levels
and economic growth, Alessandri and Mumtaz (2021) focus on the relationship between
temperature volatility and economic growth. In particular, Alessandri and Mumtaz (2021)
estimate a structural Panel VAR augmented with stochastic volatility using data for 133
countries observed over the 1960 — 2019 time span. This methodology allows the authors to
identify shocks both to the levels and the volatility of temperature and economic growth.?
Contrary to our model specification based on mixed frequency data (in a Panel VAR
context), the aforementioned studies do not include seasonal temperature effect. It is
important to observe that the use of mixed frequency data allows to avoid a potential
temporal aggregation bias that might arise when high-frequency data are aggregated to a
lower sampling frequency (see for example Ghysels, 2016; Marcellino, 1999, for a discussion
on the consequences of temporal aggregation bias in time series regressions).

An additional contribution to the literature on temperature and growth is the focus on
seasonal temperature effects using sub-national data, which allow to account for the within-
country heterogeneity in temperatures and growth. The need to avoid aggregation at the
country level is motivated by, first, taking into account the exposure of different regions
units within a country to opposing temperature shocks within a given period; second,
by the wide income differences within countries. In particular, the growth-temperature
relationship based on sub-national data is the focus of Deryugina and Hsiang (2014),
Colacito et al. (2019), Mohaddes et al. (2022) using data for the US states. Li et al.
(2019) focus on Chinese provinces; the studies of Zhao et al. (2018), Acevedo et al. (2020),
Kalkuhl and Wenz (2020), GreBer et al. (2021) use sub-national data for a sample of global
economies; Olper et al. (2021) focus on NUTS3 data for Italian provinces. Our focus is on
225 NUTS2 region of Europe.

Our final contribution is the analysis of heterogeneity. Several studies find evidence that a

2See also Kotz et al. (2021) study of temperature variability effect on growth using sub-national data.



temperature increase has a detrimental effect, especially in relatively hot countries, and
in those relatively poor (given that they have fewer means available to adapt to further
temperature increases). In particular, Dell et al. (2012) find a negative and statistically
significant impact of temperature on economic growth only for poor countries. Kahn et al.
(2021) find that poor countries are largely affected by temperature shocks. Nevertheless,
negative effects are also found for rich countries. Furthermore, the empirical evidence
in Burke and Tanutama (2019) suggests that while the negative impact of temperature
exposure is much more common in poor regions, there are no meaningful variations in
the response of poor and rich economies to increasing temperature. In their study on
US, Colacito et al. (2019) show that the negative effect of rising temperature on GDP
growth in hot states is not driven by the relatively poor states. Our final contribution is
to the literature studying the heterogenous response of growth to temperature shocks by
conditioning not only on hot/cold (using the average EU median annual temperature as a
threshold to split the sample) and on rich/poor regions (using the average EU median
income per capita as a threshold for sub-sample splitting), but also on high and low
competitiveness (using the median Regional Competitiveness index as a threshold to split

the sample).

Contrary to the study of Colacito et al. (2019), which finds a statistically negative effect
of temperature on growth only during summer, our empirical evidence suggests a negative
relationship between temperature and real GVA growth also during other seasons. Over
the period 1981 — 2019, an exogenous 1° Celsius increase in seasonal temperature levels
leads to a contemporaneous reduction in GVA growth, particularly pronounced in summer
and, to a lesser extent, in winter (although non-statistically significant). We find that
the negative response of GVA growth reaches its peak typically after a one-year horizon.
Moreover, the results suggest that the magnitude of the detrimental effect of increasing
temperature on real economic activity is larger over a more recent sub-sample period
(2000 — 2019), both at aggregate and sectoral levels, showing non-negligible responses in
GVA not only for agriculture, forestry and fishing sector but also for construction, industry
and services. The use of panel data regressions allows us to investigate the presence of
heterogeneity in the response of GVA growth to temperature shocks over different groups of
regions: cold vs. hot regions, rich vs. poor regions, and highly- vs. low-competitive regions.
Heterogenous temperature effects on growth show up once we account for seasonalities,
that is only in the mixed-frequency Panel VAR analysis. In particular, the detrimental

effects of shocks to temperature on growth during winter, summer and fall are more



pronounced in hot regions (e.g., those above the median temperature) than in colder ones
(e.g., those below the median temperature). These findings are in line with Kahn et al.
(2021) for a large number of countries and with Mohaddes et al. (2022) and Colacito et al.
(2019) for US. Moreover, the negative effects of shocks to temperature on growth during
each season are more pronounced in poor regions (e.g., those below the median per capita
income) than in rich ones (e.g., those above the median per capita income). The only
exception is summer which shows a rebound (positive and statistically significant) effect
at a horizon corresponding to one year. A similar heterogeneous pattern is observed when
considering low and high competitive regions (e.g., those below and above the median
Regional Competitiveness index, respectively): the former are affected more negatively
than the latter during winter, spring and fall. As for the summer, only on impact, there
is evidence for low competitive regions of a more detrimental effect on growth than for
the highly competitive ones with a rebound effect after one year. While the common
frequency study of Kahn et al. (2021) finds evidence of a heterogenous temperature effect
on growth only when the average world growth is introduced to control for cross-sectional
dependence, our study shows the role played by seasonal effects interacting with level
development (proxied by either income per capita or regional competitiveness) in driving

the resilience of economic growth to temperature shocks.

Our paper is structured as follows. Section 2 describes the empirical model. Section 3
describes the empirical analysis: data and empirical findings. Section 4 discusses a number

of robustness checks and Section 5 concludes.

2 Panel VAR analysis

We estimate a pooled stacked mixed-frequency Panel VAR (Panel MF-VAR) fitted to a
K, = 1 quarterly (seasonal) series of temperature levels and to a K; = 1 macroeconomic

variable observed at an annual frequency, that is every four seasons (s = 4):

p
Yie=a;+Bd+ Y AiYieo +uiy (1)
=1
_ U U / / !\ g 3 4
where Yi: = (T} yinter» Ti springs Tisummers Tt s D¥i )" s @ K-dimensional stacked vector

of mixed-frequency variables observed for the i-th NUT2 region at year ¢, with K =
K;+ Kps = 5. The stacked vector of endogenous variables includes the quarterly series of

temperature levels (7} ;) observed for the i-th NUTS2 region during season s (i.e., winter,



spring, summer, and fall) and the annual log changes of the proxy of real economic activity
(Ay, 1) observed for the i-th NUTS2 region at year t. As described by Ghysels (2016), in
the stacked mixed-frequency VAR the vector of endogenous variables evolves according to a
standard common frequency VAR at the lowest sampling frequency available in the sample.
Hence, in our case, Y;; evolves according to an annual panel VAR model. Furthermore,
«; indicates the region-fixed effects, while d; indicates the vector of annual dummies.
Moreover, given that we rely on pooled estimation, the slope coefficients matrices (A, 4, for
¢ =1,...,p) associated with the lagged endogenous variables (Y;;_,) and the reduced-form
residuals u;; are common across regions (i.e., homogeneity assumption), that is A;, = Ay
and u;; = u; ~ N(0,%).* The homogeneity assumption is imposed in our study due to
the short sample length, especially when the model is estimated over the 2000 — 2019
subsample period. We partially release this assumption by exploring the response of
economic activity to temperature shocks in different groups of regions, according to the
initial level of temperature, income and competitiveness degree.”

In the baseline specification, the proxy of real economic activity (y;+) is the (log of) regional
real Gross Value Added (GVA).> Alternative proxies of regional economic activity are
used: (i) (log of) real GVA by NACE sector, (i) (log of) real GVA per capita. The model
is estimated using data for an unbalanced panel of 225 NUTS2 regions in 22 EU countries,
over two sample periods: (i) 1981 —2019 and (7) the more recent 2000 — 2019 sub-sample.”
The lag length is set equal to one. We also estimate a common-frequency Panel VAR
(Panel CF-VAR), where both the levels of temperature and the proxy of economic growth
are observed at an annual frequency. In particular, the annual series of temperature levels
is obtained by computing the mean of the four seasonal observations. For comparison, the
Panel MF-VAR and the Panel CF-VAR are estimated using the same estimation samples
and lag structure.

Both the MF- and Panel CF-VARs are estimated using Bayesian techniques. In particular,
following Banbura et al. (2010), we impose a Natural conjugate prior on the VAR coefficients

by using artificial observations. The Gibbs sampling is used to simulate the posterior

3See Canova and Ciccarelli (2013) for a discussion on the pooled estimation with fixed effects in Panel
VAR models.

4A similar empirical strategy is used in the study of Ciccarelli and Marotta (2021), which investigates
the macroeconomic effects of climate-related transition and physical risks in 24 OECD countries over the
1990 — 2019 time span.

®Data on real Gross Domestic Product (GDP) are also available in the ARDECO database. However,
we prefer to use real GVA as a proxy for real economic activity whose data are also available for the
different economic sectors. Results for real GDP are qualitatively and quantitatively similar to those
obtained using real GVA and they are available upon request.

SFor more details on the availability of data for each country, see Section 3.1.



distribution of the VAR parameters. The number of replications is set equal to 25000,
using the last 10000 for inference (see Appendix A for technical details).”
The seasonal temperature shocks are identified by computing the Cholesky decomposition

of the residual covariance matrix:

S = ByB (2)

where By is a lower triangular matrix containing the contemporaneous effect of the
structural shocks &, ~ N (0, I ), such that u; = Bye;. In our study, the block of seasonal
temperatures is ordered before the proxy of real economic activity (i.e., the growth rate of
GVA). The recursive identifying scheme of the Panel VAR with the climate proxies ordered
first is along the lines of the recent works of Donadelli et al. (2021), which focus on real
economic activity effects of annual mean temperature, and of Alessandri and Mumtaz (2021),
which focus on real economic activity effects of annual temperature volatility. Moreover,
in our study, the four seasonal average temperatures are stacked into the vector of mixed-
frequency variables according to the following order: T = (Tyinter, Lsprings Tsummers Ltait)-
This ordering implies that an exogenous increase in the average temperature during each

season affects only the following seasons.

3 Empirical analysis

3.1 Data

The mixed- and common-frequency Panel VARs are estimated using a proxy of temperature
levels and of real economic growth for 225 NUTS2 regions in 22 EU countries, observed over
the 1981 — 2019 time span.® In the baseline specification, we use data on GVA at constant
prices (deflated to 2015 price levels) as a measure of real economic activity, available at
an annual frequency. The data are collected from the publicly available Annual Regional
Database of the European Commission’s (ARDECO database) Directorate General for
Regional and Urban Policy, which is maintained and updated by the Joint Research

Centre.” In further specifications, we use GVA at constant prices disaggregated into six

"The codes used in our paper are an adaptation of those provided by Beetsma et al. (2021) and available
on Haroon Mumtaz’s website .

8 Although data on temperature levels and on economic activity are available up to 2021 for most of
the regions included in the sample, we prefer to exclude the COVID-19 observations and estimate the
models using data up to 2019.

9The database contains information on demographic and macroeconomic (including labour market,
capital formation and domestic product) variables for the EU27 countries plus Albania (AL), Montenegro


https://sites.google.com/site/hmumtaz77/research-papers?authuser=0

NACE2 sectors: (i) agriculture, forestry and fishing, (i) industry, excluding construction,
(@i1) construction, (iv) wholesale, retail, transport, accommodation and food services,
information and communication, (v) financial and business services, and (vi) non-market
services. As a robustness check, we estimate the model using the growth rate of the GVA
per capita, computed by taking the ratio of GVA to total population (using, for the latter,
data downloaded from ARDECO).

In the present study, we measure seasonal temperature effects using the level of the monthly
average temperature registered during four seasons: winter (January, February, and March),
spring (April, May, and June), summer (July, August, and September), and fall (October,
November, and December).'” In particular, we use monthly NUTS2-level data downloaded
from the publicly-available Copernicus climate change service (C3S) operational energy
dataset. The database contains climate-relevant indicators for the energy sectors, such
as air temperature, among others, for 38 European countries from 1979 onward.!! The
historical dataset produces reference climate variables based on the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis fifth generation (ERA5) and
retrieved from the Climate Data Store. Data are available both at the grid (approximately
30 x 30 km) and at the country (NUTS0) and regional (NUTS2) levels. Moreover, the series
are available at different frequencies, that is 1 hour, 3 hours, 6 hours, daily, monthly, and
yearly.!? In our empirical application, we use the 2 meters air temperature series, which
is defined as the ambient air temperature near to the surface (i.e., typically at a height
of 2m). We collect the monthly (averaged) series for NUTS2 regions. The regional series
are obtained by aggregating the station-level observations using both fractional land-sea
mask and latitude cosine weights. The former allow accounting for the difference between

land and sea grid points, while the latter account for the earth’s spherical curvature. The

(ME), North Macedonia (MK), Norway (NO), Serbia (RS), and Turkey (TR). Data are available for all
the levels of the Nomenclature of territorial units for statistics (NUTS), that is NUTS0 (corresponding to
the country level), NUTS1, NUTS2 and NUTS3 (i.e., the lowest level of the territorial classification). The
time series cover the period 1980 — 2023, where the last four annual observations are forecasted based on
the 2017 — 2019 trend. Data and technical details can be found at the ARDECO online page.

10See Colacito et al. (2019) for a similar construction of seasonal temperature proxies.

UData are available for Albania (AL), Austria (AT), Bosnia and Herzegovina (BA), Belgium (BE),
Bulgaria (BG), Switzerland (CH), Cyprus (CY), Czech Republic (CZ), Germany (DE), Denmark (DK),
Estonia (EE), Greece (EL), Spain (ES), Finland (FI), France (FR), Croatia (HR), Hungary (HU), Ireland
(IE), Island (IS), Italy (IT), Lichtenstein (LI), Lithuania (LT), Luxembourg (LU), Latvia (LV), Montenegro
(ME), North Macedonia (MK), Malta (MT), Netherlands (NL), Norway (NO), Poland (PL), Portugal
(PT), Romania (RO), Serbia (RS), Sweden (SE), Slovenia (SI), Slovakia (SK), Turkey (TR), and United
Kingdom (UK).

12The “Climate and energy indicators for Europe from 1979 to present derived
from reanalysis” database is wupdated at a monthly frequency and it is available at
https://cds.climate.copernicus.eu/cdsapp!/dataset /sis-energy-derived-reanalysis?tab=overview.


https://knowledge4policy.ec.europa.eu/territorial/ardeco-online_en
https://cds.climate.copernicus.eu/cdsapp##!/dataset/sis-energy-derived-reanalysis?tab=overview

series of temperatures are measured in degrees Kelvin (K). We convert the series into
degrees Celsius (°C). To estimate the common-frequency Panel VAR, the annual average
temperature series is obtained by averaging out the four seasonal observations in each year.
The final dataset includes regional observations of temperature levels and of real GVA
growth rate for 22 EU countries and it is constructed as follows.'® First, we exclude from
the initial sample of 33 countries (that is the maximum geographical coverage for which
information on both economic activity and temperature is available) the ones that consist
of only one NUTS2 region (i.e., no distinction between NUTS levels): Cyprus, Estonia,
Luxembourg, Latvia, Montenegro, North Macedonia, and Malta. Moreover, we exclude
Albania, Norway, Serbia, and Turkey since they are not EU members. Finally, since
data on 2m air temperature are not available for Région de Bruzxelles-Capitale (BE10),
Bremen (DE50), Ciudad Auténoma de Ceuta (ES63), Ciudad Autonoma de Melilla (ES64),
Guadeloupe (FRY1), Martinique (FRY2), Guyane (FRY3), La Réunion (FRY4), Mayotte
(FRY5), and Regiao Auténoma dos Agores (PT20), we remove these regions from the
estimation sample.

To investigate whether the temperature levels increased in the 225 NUTS2 regions over
the 1981 — 2019 period, we follow Kahn et al. (2021) and Mohaddes et al. (2022) and we
regress the temperature levels on a constant term and a deterministic linear time trend
for each NUTS2 region.'* The region-specific coefficients associated with the time trend,
which measure to what extent the temperature has increased on average per year, are
reported in Figure 1. We report the results for the seasonal temperatures as well as for the
annual (averaged) temperature. As can be seen in Figure 1, temperature levels observed
in each season increased over the 1981 — 2019 time span, in almost all the NUTS2 regions.
The largest average (across NUTS2 regions) per annum increase in temperature levels has
been observed in spring (0.0522), followed by winter (0.0393), fall (0.0391), and summer
(0.0368), while the average (across NUTS2) rise in annual temperature is equal to 0.0419

13The 22 EU countries are: Austria (AT), Belgium (BE), Bulgaria (BG), Czech Republic (CZ), Germany
(DE), Denmark (DK), Greece (EL), Spain (ES), Finland (FI), France (FR), Croatia (HR), Hungary (HU),
Ireland (IE), Italy (IT), Lithuania (LT), Netherlands (NL), Poland (PL), Portugal (PT), Romania (RO),
Sweden (SE), Slovenia (SI), and Slovakia (SK). In the baseline specification, we deal with an unbalanced
panel of observations given that data availability differs both between and within countries, especially for
macroeconomic data. The largest sample is observed in 11 countries (i.e., 1981 — 2019), including AT, BE,
DE, DK, ES, FI, FR, IT, NL, PT, SE, while the smallest one is reported by EL and HR (i.e., 1996 — 2016).
Moreover, in Germany, 8 regions out of the 38 NUTS2 territories report data only from 1992 onward.

4As in Kahn et al. (2021) and Mohaddes et al. (2022), the region-specific regression has the following
representation: T} ; = oy + B;t + u; ¢, where T;; is the temperature levels observed in region ¢ at year ¢,
during each of four seasons individually (winter, spring, summer, and fall) as well as over the year (annual
average), for i = 1,...,225. Moreover, 3; is the region-specific coefficient associated with the linear time
trend and it measures the per annum average rise in temperature levels reported by the i-th region.



Figure 1: Estimates of the average increase in temperature levels over the 1981 — 2019
time period.
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Notes. Distribution of the estimate of the coefficients associated with the deterministic time trend (5;) of
the following regression: T;; = o; + B;t + u; ¢, where T} ; is the temperature levels observed in each of
four seasons individually (winter, spring, summer, and fall) and the averaged yearly temperature (annual).
The third quartile for winter (0.0474), spring (0.0596), summer (0.0435), fall (0.0468), as well as for the
average annual series (0.0473) is also reported (red line).

per annum.

3.2 Aggregate GVA results

In line with Grefer et al. (2021) study based on sub-national data, results in Table 1 do
not show evidence that temperature and regional economic development across the 225
NUTS2 European regions follow an inverted U-shape. As an alternative to the non-linear
single equation model specification, we use a multiple linear equation setting with seasonal
effects captured through the Panel Mixed-Frequency VAR.

10



Table 1: Non-linear effect of temperature level on real economic growth, over the
1981 — 2019 period.

Annual Winter Spring  Summer Fall

T  0.1453 0.0654**  0.4224* 05648  0.2553*
(0.2562)  (0.0268) (0.2347) (0.4182)  (0.0610)
T2 0.0210  0.0305** —0.0106 —0.0198  0.0027
(0.0137)  (0.0034) (0.0083) (0.0121)  (0.0046)

Notes. Estimated coefficients (in percent) associated with the
level of annual temperature (and its squared term) (column 1)
and with the level of seasonal temperatures (and their squared
term) (columns 2—5) obtained from the estimation of the following
regressions: (1) Ay = o + fit + 0T+ + ¢Ti2¢ + ¢, where T4
is the averaged yearly temperature (annual); (i1) Ay;r = a; +
Bit + Zi:l 0sT5.s1 + Z;l:l gzbsTfs ¢ + Uiz, where T; 54 is the level of
temperature observed in each season s (winter, spring, summer,
and fall). Moreover, Ay;; is the growth rate of real GVA and
(i is the coefficient of the region-specific linear time trend. The
estimation sample is 1981 — 2019. Standard errors clustered by
region are in parentheses. Significance at the 1% (***), 5% (**),
and 10% (*) levels are also reported.

In this section, we discuss the empirical findings for the baseline specification (based on
the full sample observed over the period 1981 — 2019 for a panel of 225 NUTS2 regions). In
particular, we report the impulse response functions of the real GVA growth rate (AGVA)
to temperature shocks () proxied by an exogenous increase in the 2m air temperature.
The impulse responses are normalised to an increase of 1°C (on impact) both in the Panel
MF-VAR (i.e., a unitary increase in the temperature level in each of the four seasons)
and in the Panel CF-VAR, and they are computed over an 8-year forecast horizon.'®
Figure 2 shows the structural impulse responses of AGVA to a 1°C increase in the level of
temperature observed during each of the four seasons (i.e., winter, spring, summer, and
fall). In each chart, we report the median response (blue line) and the corresponding 68%

error bands (grey shadow area) obtained from the estimation of the Panel MF-VAR fitted

15As a robustness check, we follow Colacito et al. (2019) and we estimate the Panel MF-VAR fitted
to AGVA and deseasonalized temperature series. The latter is computed as follows. First, we estimate
the following panel regression: T; 4 = 2;2:1 Ymdi,m + o + Ui q, where T; g is the temperature levels in
region ¢ and day d, I; », is a dummy for month m in region ¢, a; are region-fixed effects, and w; 4 is the
error term. Then, we compute the residuals from the estimated panel regression and aggregate them at a
monthly frequency. Finally, the four seasonal deseasonalized temperature series are obtained by averaging
out the three monthly observations. The results of the Panel MF-VAR (and of the Panel CF-VAR) fitted
to AGVA and to the deseasonalized temperature levels are qualitatively and quantitatively similar to
those obtained by using the raw temperature levels and they are available upon request.

11
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Figure 2: Responses of the regional real GVA growth.
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Notes. Impulse responses of the real GVA growth rate (AGVA) in percent, computed over an 8-year
forecast horizon, using the 1981 — 2019 period as estimation sample. The charts show the impulse response

profile of AGVA to temperature shocks occurring in winter (£1;,,.), spring (e2,,;,,,), summer (e7,,.....),

and fall (53’;&”). Each chart displays the median response (blue line) and the corresponding 68% error
bands (grey shadow area) computed by estimating the Panel MF-VAR described in equation (1). The
size of the temperature shocks in each season is normalized to a 1°C increase in the temperature levels.
The median response (red line with asterisk) obtained from the estimation of a Panel CF-VAR (fitted to
annual temperature and real GVA growth rate) and the corresponding 68% error bands (red dashed lines)
are also reported. For comparison, the size of the shock in the Panel CF-VAR is also normalized to a 1°C
increase in the level of temperature.

to the four seasonal time series of temperature level and to the annual log changes of real
GVA. For compa