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Abstract 

In this extended abstract two novel concepts are defined in the 
study of Random Boolean Networks, i.e. those of “pseudo-
attractors” and “common sea”, and it is shown how their 
analogues can be measured in experimental data on gene 
expression in single cells. 

Introduction 

Random Boolean Networks (RBNs for short, see [1] for a 
recent review) have been widely studied as abstract models of 
complex systems, thanks to the possibility of tuning their 
behaviors from ordered to pseudo-chaotic. They are generic 
models, which can however be used also to describe important 
biological phenomena, in particular those concerning gene 
expression (indeed, RBNs were originally introduced [2] as 
strongly simplified models of gene regulatory networks).  

A RBN is a time-discrete, Boolean deterministic dynamical 
system where the overall state of a given network of N nodes, 
X(t+1)∈{0,1}N, is uniquely determined by the previous state 
X(t), given the connection topology and the transition 
functions at each node. Both connections and transitions 
functions are chosen at random according to some probability 
distribution. While the success of this model led to the 
introduction of several variants, here we will consider the 
“classical” case, where updating is synchronous: dynamical 
attractors of finite networks of this kind can be either fixed 
points or limit cycles, but the oscillations of the latter are 
largely due to the choice of synchronous updating. While this 
is a clear choice, it limits the biological plausibility of RBNs 
to describe gene regulatory networks, since it requires 
simultaneous forgetting of the previous states of all the nodes. 
Different updating schemes (e.g. asynchronous) have been 
proposed [1,3,4], but none can claim undisputed plausibility. 
In particular, cyclic attractors are fragile if the updating 
scheme is changed, while on the other hand point attractors 
are conserved. Moreover, cyclic attractors do not seem to be 
the analogue of the cell cycle, so experimental data on gene 
expression do not show this type of time dependence. 
While different alternatives have been proposed, the usual 
recipe to interpret the biological significance in multicellular 
organisms of RBNs’ attractors is that of regarding them as the 
analogue of cell types. We therefore generalize this approach 
to pseudo-attractors. In real cells, the analogue of the CS is 

then the set of genes which take the same value in every cell 
type. 

Pseudo-attractors and common sea 

As anticipated, the identification of which genes “take the 
same value” in different cyclic attractors requires some care, 
since cycles in RBNs depend to a large extent upon the choice 
of synchronous updating, which does not have a sound 
biological basis [5]. Synchronous RBNs are Markovian 
systems, whose state X(t+1) depends upon X(t), forgetting the 
previous states of all the nodes of the network. The action of a 
gene on the activation of other genes takes place through the 
action of its corresponding protein; therefore, the notion of a 
single time step corresponds to assuming a common decay 
time of the different regulatory proteins, which is not 
supported by biological data. 
By following [6] we therefore define, for each N-dimensional 
attractor, a corresponding constant N-dimensional “pseudo-
attractor”, in which each component assumes the value 1 if its 
time average in the dynamic attractor is ≥θ (in the following 
we suppose θ=0.5) and take the value 0 otherwise. As a 
consequence, the relationship between dynamical attractors 
and pseudo-attractors is not injective, and it qualitatively 
corresponds to a kind of coarse graining in phase space.  

The “common sea” (CS) is then defined as the set of nodes 
which take the same value in all the pseudo-attractors of a 
given network realization, while the set of all the other nodes 
is called the “specific part” (SP).  Note that the concept of CS 
differs from existing ones like the “frozen sea” [7] in that it is 
based on pseudo-attractors (so that also oscillating nodes can 
belong to it) and it requires that the nodes take the same value 
in all the pseudo-attractors. 

We studied the properties of the CS and the SP by 
simulating RBNs which belong to different ensembles, 
generated with different parameter values. The following 
results have been presented in [6], so we will avoid to 
continuously refer to it. Most simulations concern 
dynamically critical networks (i.e. those whose parameters 
take values which separate the regions of ordered behaviors 
from the pseudo chaotic ones) which are particularly 
interesting, for reasons discussed at length in the literature 
[7,8], which will not be reviewed in this extended abstract. 

It turns out that the fraction of nodes belonging to the CS of 
critical networks increases as the overall size of the network 
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(N) is increased, and that it comprises the majority of the 
nodes. This may look surprising but a simplified mean-field 
calculation shows that it should indeed be expected. An 
interesting result comes from the comparison of dynamically 
critical networks with different average number of 
connections per node (k) and different biases (b) of the 
Boolean functions. Indeed, dynamical criticality imposes a 
relationship between k and b, so it is possible to consider 
ensembles of networks with different pairs of values. Perhaps 
surprisingly, simulations show that the criticality condition 
does not suffice to determine the size of the CS. It appears that 
the larger the bias, the larger the CS. 

It is also interesting to observe the internal organization of 
the common sea and of the specific part. For example, once 
the CS of a given network realization is identified, we can 
look at the topology of the network that is composed of its 
nodes only. If we identify the subparts of the CS with its 
weakly connected components (WCCs), then there is often (in 
70% of the cases) only one subpart per network realization, 
but in other cases, there are more than one, although one 
usually finds a dominant subpart that comprises many more 
nodes than the others. If we perform a similar analysis on the 
specific part, we often find a more evenly distributed 
situation, with more fragments of similar size. It should be 
emphasized that these are not completely independent parts, 
and that some changes in one WCC (for example, the knock-
out of a gene) can affect the values of nodes in other WCCs. 

The presence of a large CS obviously limits the maximum 
possible distance between pairs of attractors, whose 
distribution turns out to be unimodal. 

A Preliminary Look at Single-Cell Data 

While we do not aim at an in-depth comparison of the 
behavior of the models with experimental data, we suggest 
that looking at experimental data through the lenses of our 
models can lead to new insights and new questions. To show 
how this might work, we have performed a preliminary 
analysis of an important experimental data set concerning the 
expression levels of human single cells [9]. Although these 
data are very noisy, since many different exemplars of each 
type are available, it is possible to aggregate all the 
contributions into a single profile that then constitutes the 
“average profile” of the cell type. Since these averages are 
real valued, binarization is necessary to compare them with 
pseudo-attractors: a simple way in which binarization can be 
achieved is by rescaling the values for each gene so to match 
the [0,1] interval, and by comparing the rescaled values with a 
fixed threshold ζ.  

The approach is simple and it could certainly be refined: 
however, it is very interesting to observe that the notions of a 
common sea and specific parts, which have been defined here 
in a model system, can also be applied to experimental data, 
as shown e.g. in fig.1. 

It remains to investigate possible independent criteria to 
determine the correct threshold values (possibly different for 
different genes [10]), an activity that we leave for future work. 
Here we can note that the approach potentially allows to 
identify new constraints that simulation models must satisfy in 
order to correctly interpret experimental data. 

 

  
                       (a)                                         (b) 

Figure 1 (a) Size of the common part in the Human Cell 
Landscape data, as the threshold ζ varies. (b) Fraction of 
active ("Ones") and inactive ("Zeros") genes out of the total of 
genes belonging to the common sea (in the insert the threshold 
ζ reaches the value 0.1). 

Moreover, the rescaled profiles can be used to compute the 

distribution of distances (Hamming distances) between cell 

types – a quantity which can be computed also for our 

simulated models. 
We believe that this kind of comparisons will prove really 

fruitful to improve both theory and experiment, as it provides 
new constraints on the acceptable parameters of the model as 
well as new quantities which are worth measuring. A 
thorough quantitative comparison between theoretical models 
and experimental data will be the subject of further work. 
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